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Abstract

In this work, we propose an improved synthetic data generation pipeline
based on the underwater image formation model with inclusion of the com-
monly omitted forward scattering term, while also considering a nonuniform
medium. Our results demonstrate qualitative improvements over the ref-
erence model, particularly under increasing turbidity, with a selection rate
of 82.5% by survey participants. Data, code, and more information can be
accessed on the project page: vap.aau.dk/sea-ing-through-scattered-rays.
Keywords: forward scattering, light attenuation, synthetic data, turbidity,
underwater

1 Introduction

This short paper is heavily based on our paper titled Sea-ing Through Scattered
Rays: Reuvisiting the Image Formation Model for Realistic Underwater Image
Generation accepted for presentation at the ICCV 2025 Joint Workshop on
Marine Vision. As the workshop proceedings have not yet been published, the
current text summarizes and reuses core parts of that work.

Underwater computer vision has gained significant momentum in recent
years, driven largely by the growing urgency of environmental monitoring. As
marine ecosystems face unprecedented threats from climate change, pollution,
and overfishing, there is a need for tools that can support long-term ecological
assessment and conservation efforts. However, the physical underwater environ-
ment makes collecting and analyzing data particularly hard. A major hindrance
is the low visibility that comes as a result of the properties of water. Light is
attenuated differently in water compared to the atmosphere, with longer wave-
lengths absorbed at very short depths, leading to discolorations of the footage
(Mobley [1994]). Natural light does not penetrate the medium after a certain
depth, making artificial lighting necessary. That in turn amplifies backscatter-
ing and introduces new degradations, such as uneven illumination (Sooknanan
et al. [2012], Wang et al. [2025]).

Synthetic data generation has been widely proposed as a solution to data
scarcity (Li et al. [2017], Wang et al. [2019]), particularly in the domain of
image enhancement and restoration, where access to reference images is crucial.
One common approach uses the underwater image formation model (IFM) to
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simulate various underwater effects on clean images (Hou et al. [2020], Desai
et al. [2021, 2024], Wang et al. [2019], Ueda et al. [2019]). However, it often
produces visually unrealistic results, especially for turbid conditions. We believe
that this approach has been misrepresented in the literature, with oversimplified
assumptions and formulations. Therefore, we propose improvements with a
focus on better modeling and synthesizing of turbid environments.

2 Methods

Only a portion of the light that gets reflected from an underwater scene towards
a camera reaches the lens uninterrupted. The rest may be scattered or absorbed
due to particles of varying sizes. This process can be approximated by the
underwater image formation model of Jaffe [1990] and McGlamery [1980]. In a
simplified form, it is defined as:

I(x) = D(x) + F(x) + B(x) (1)

where I(x) is the degraded image, D(x) is the direct transmission, F(x) is the
light scattered forward at small angles, and B(x) is the light backscattered by
particles without reaching the scene.

The direct transmission, D(x), is produced through attenuation of the
latent true scene radiance, J(x), which represents the image that would be
captured in the absence of degradations:

D(x) = J(x) - e PN2(x) (2)

Here, z(x) denotes the distance from the camera to the scene, while 3(\) is the

medium’s attenuation coefficient, defined as the sum of the absorption a(\) and

the scattering b(\) coefficients, all dependent on the wavelength of light A.
Backscattering is modeled similarly:

B(x) = B> [1 - e*ﬁ(/\)-Z(X))] (3)

and represents the characteristic hazy veil commonly observed in underwater
imagery. The value of the veil at an infinite distance is denoted by B*°.

In McGlamery [1980] and Jaffe [1990] the forward scattering component
is modeled to have the following form:

F(x) = [(e—G(M'z(x) - eﬂw'z(x)) .J(x)} +« H(z(x)) (4)

where G(A) < 5(A\) and H are empirical, and # signifies convolution. This is a
weighted and blurred version of J(x).

By assuming that forward scattering only introduces blur, Schechner and
Karpel [2004] simplified the direct and forward components to be a signal of the
form:

D(x) + F(x) = D(X)yyuryea (5)
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Figure 1: The proposed synthetic data pipeline. Images have been enhanced
for visualization purposes. The white-patch behavior for different water types
is shown on the top right (Solonenko and Mobley [2015]).

and showed that reduced contrast due to backscatter seemingly overpowers any
blurring effects. Their analysis has led to the forward scattering term being
overlooked in recent years.

However, when the forward scattering component is considered, the effec-
tive attenuation coefficient of D(x) + F(x) is G instead of 5. In low turbidity
environments, the coefficients are small, G ~ 8, and the effect of F(x) becomes
negligible. Nonetheless, as 8 grows and G < (3, the impact of the term increases.
Since the majority of light scattering happens at angles less than 90° (Tuchow
et al. [2016]), potentially within the field of view of a camera, F(x) is expected
to contain a sizable percentage of the captured information in scattering-heavy
environments.

In this work, we reintroduce the forward scattering term into a synthetic
data pipeline based on the underwater IFM. We do that by parameterizing the
effective attenuation coefficient G(\) in eq. (4) as:

G(A) = a(A) +g-b()) (6)

Here, g < 1 represents the portion of light that scatters away from the line of
sight and is an empirical value. This parametrization is consistent with recent
studies in water optical properties (Tuchow et al. [2016], Doxaran et al. [2016]).
We additionally address the common simplification of medium homogeneity,
which can result in overly uniform turbidity effects during data synthesization.
We propose a novel, general-purpose image degradation technique, using Gaus-
sian random fields (GRFs). 2-dimensional GRFs were scaled to small values
around 1, and multiplied by the attenuation coefficient of each pixel to intro-
duce random variations in the medium.

In our proposed synthetic data pipeline, we applied the underwater TFM
on clear images of underwater environments, extracting z(x) with DepthAny-
thingV2 by Yang et al. [2024]. Data were synthesized by varying the effective
scattering coefficient g, the blur strength H, and introducing the GRF noise.

A portion of the clear underwater images were collected in a controlled en-



vironment, where turbidity was induced using milk and clay. This provided a
ground truth for comparison. Data were also synthesized with images from the
EUVP dataset (Islam et al. [2020]), with attenuation coefficients taken from
Solonenko and Mobley [2015]. The process is shown in fig. 1.

3 Findings

Comparisons of synthesized data with data collected in the controlled envi-
ronment show that image blur is noticeable, even at short distances in turbid
conditions. Including the forward scattering term results in a higher apparent
similarity, especially when considering the sharpness of the underlying scene.
These effects can be seen in the right part of fig. 2.

The application of GRFs to the depth maps results in more gradual and re-
alistic haze effects while mitigating common artifacts from learning-based depth
estimators, such as overly smooth or artificially rounded edges.

In order to evaluate the proposed pipeline on images without references,
we collected the mean opinion ranking (MOR) through a survey. Images were
randomly selected from the EUVP dataset (Islam et al. [2020]), and had their
conditions synthetically altered with both the standard model and ours. 20
survey participants were then asked to choose the most realistic image between
the two.

Results indicate an increase in perceived realism, with our proposed pipeline
being preferred over the reference in 73.9% of the responses across all water

types and 82.5% for coastal ones.
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Figure 2: On the left, a comparison of our method against the reference on im-

ages from EUVP, for coastal water types. Survey results on the bottom. On the
right, the same comparison for the data collected in a controlled environment.
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