

# **Blowout Risk Assessment Services**

Sensitivity Analysis on Jack-up with high pressure Marine Riser

18/10/2024



### **Drilling Scenarios considered**

Blowout Probability of a typical jack-up dry BOP well with high pressure riser

- The phases considered in the analysis are:
- Drill 16" Phase:
  - Drill formation Annulus and Drill pipe
  - Tripping scenario Annulus and Drill pipe
- RIH & Cement 13 3/8" Casing:
  - Running Casing Annulus and Casing
  - Cementing Casing Annulus and Casing
- Drill 12 1/4" Phase:
  - Drill formation Annulus and Drill pipe
  - o Tripping scenario Annulus and Drill pipe
- RIH & Cement 10x10 3/4" Casing:
  - Running Casing Annulus and Casing
  - Cementing Casing Annulus and Casing

### **Assumptions**

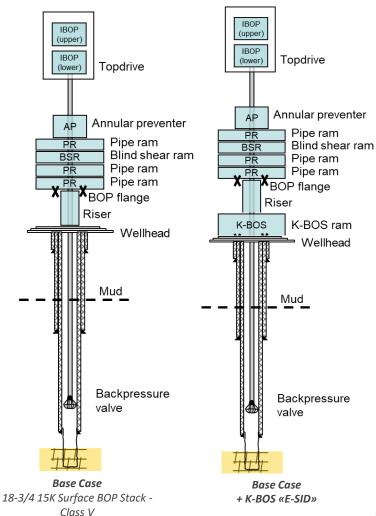
#### Blowout Probability of a typical jack-up dry BOP well with high pressure riser

- High Pressure Marine Riser Effect:
  - o Under any scenario, the failure of the riser leads to the loss of well primary and secondary barriers
  - o Based on DNVGL-ST-F201, the time between inspections for the riser is equal to 5 years. This is used as operations time for the calculation of the probability of failure on demand.
  - A well head connector is considered between the K-BOS and the well and between the K-BOS and the Riser
- Riser Reliability R(t):
  - $\circ$  Four scenarios of failure rate ( $\lambda$ ) are presented:
    - 5.8x10<sup>-7</sup> failure/hr from Oreda Database
    - 2,05x10<sup>-5</sup> failures/day from MMS
    - 1,55x10<sup>-5</sup> failures/day from Parloc
    - 8,09x10<sup>-4</sup> failures/ (km x year) from IOGP 100 meters are considered for this scenario
- o Not included in the analysis: Analysis of Common Cause Failures (CCF)
- o The probability of failure on demand of the riser is estimated as:

$$PFD = 1 - R(t) = 1 - e^{-\lambda x Operation time}$$

## **Assumptions**

**IOGP** Database


Table 2-4: Example of Breakdown of Failure Frequencies for Steel Risers and Steel Pipelines

| Release Source                                     | Hole Size Range (Size to conservatively use in QRA) |                         |                         |                                       |                         |                         |
|----------------------------------------------------|-----------------------------------------------------|-------------------------|-------------------------|---------------------------------------|-------------------------|-------------------------|
|                                                    | <=1.5 mm<br>(not considered<br>in QRA)              | 1.5 – 7 mm<br>(5 mm)    | 7 -30 mm<br>(15 mm)     | >=30 mm<br>(excl. rupture)<br>(50 mm) | Rupture<br>(Full Bore)  | Total                   |
| Riser – Above<br>Sea (per year)                    | 9.63 x 10 <sup>-5</sup>                             | 4.33 x 10 <sup>-4</sup> | 1.44 x 10 <sup>-4</sup> | 9.63 x 10⁻⁵                           | 8.00 x 10 <sup>-5</sup> | 8.50 x 10 <sup>-4</sup> |
| Riser – Below<br>Sea (per year)                    | 9.16 x 10 <sup>-5</sup>                             | 4.12 x 10 <sup>-4</sup> | 1.37 x 10 <sup>-4</sup> | 9.16 x 10 <sup>-5</sup>               | 7.61 x 10 <sup>-5</sup> | 8.09 x 10 <sup>-4</sup> |
| Safety Zone<br>– Near (up to<br>100m) (per year)   | 8.59 x 10 <sup>-5</sup>                             | 3.87 x 10 <sup>-4</sup> | 1.29 x 10 <sup>-4</sup> | 8.59 x 10 <sup>-5</sup>               | 7.14 x 10 <sup>-5</sup> | 7.59 x 10 <sup>-4</sup> |
| Safety Zone – Far<br>(100 m – 500 m)<br>(per year) | 5.57 x 10 <sup>-5</sup>                             | 2.51 x 10 <sup>-4</sup> | 8.35 x 10 <sup>-5</sup> | 5.57 x 10 <sup>-5</sup>               | 4.63 x 10 <sup>-5</sup> | 4.92 x 10 <sup>-4</sup> |
| Midline<br>(per km year)                           | 2.85 x 10 <sup>-5</sup>                             | 1.28 x 10 <sup>-4</sup> | 4.27 x 10 <sup>-5</sup> | 2.85 x 10 <sup>-5</sup>               | 2.37 x 10 <sup>-5</sup> | 2.51 x 10 <sup>-4</sup> |

### **K-BOS** applications

Class V BOP considering also Riser failure

- Base Case: 18-3/4 15K Subsea BOP Stack, Class
   V (1AP, BSR, 3PRs) with Primary intervention systems,
- K-BOS "E-SID": K-BOS ram added below the Riser as an additional barrier, totally independent from Surface BOP control system ROV intervention system and Acoustic system.



www.kwantis.com

 L

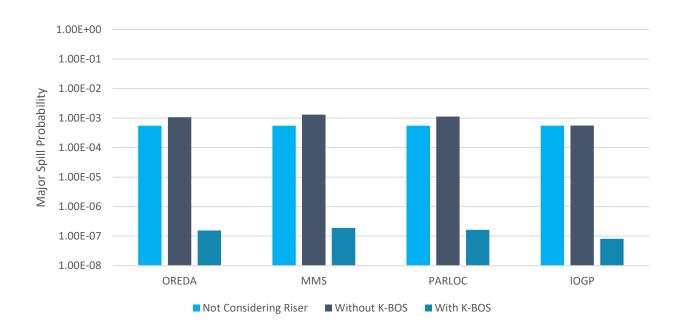
## **K-BOS** applications

#### Calculation bases

- The calculation of the Major Spill Volume probability can be defined as:
  - Major Spill Probability considering Riser:

$$\sum_{i}^{number\ of\ operations} (\textit{Loss\ of\ well\ barriers}_i + \textit{PFD\ Riser}_i)$$

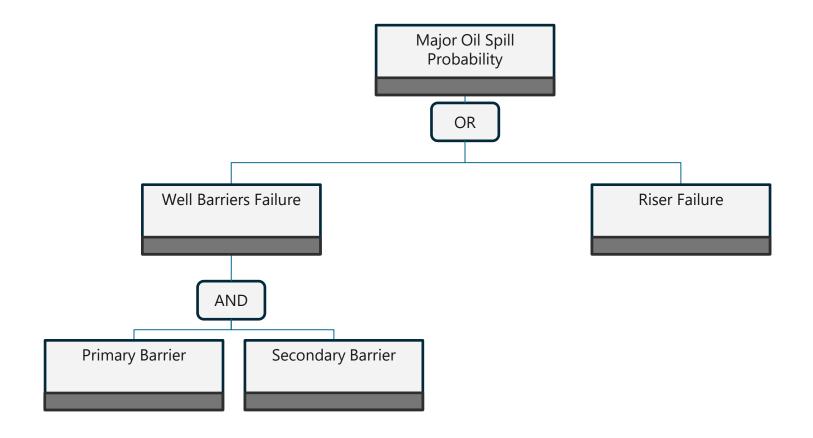
Major Spill Probability considering Riser + K-BOS:


 $\sum_{i}^{number\ of\ operations} Failure\ of\ KBOS\ *\ (Loss\ of\ well\ barriers_i + PFD\ Riser_i)$ 



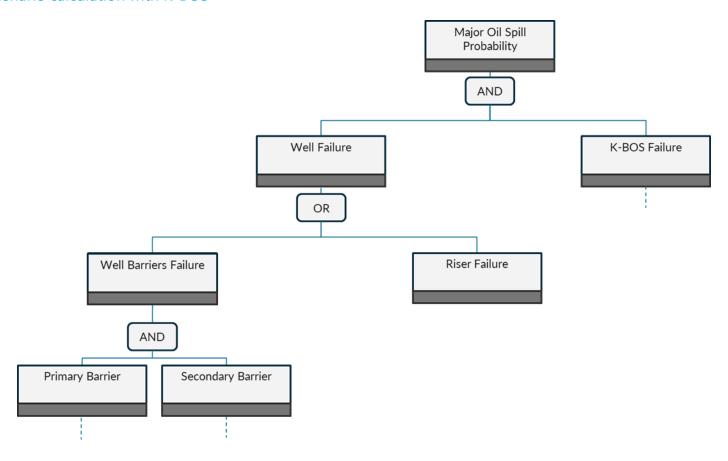
www.kwantis.com 6

### Results - Base case


Blowout scenarios with primary and secondary barriers considered in the risk analysis



Including K-BOS reduces between 3 and 4 orders of magnitude the probability of major oil spill


### FTA - Base case

FTA for Scenario calculation without K-BOS



# FTA – considering K-BOS E-SID

FTA for Scenario calculation with K-BOS



# Thank you

#### **ITALY**

Via Santa Sofia, 27 20122 Milano

#### FRANCE

71/73 rue Desnouettes 75015 Paris



COMPANY WITH
QUALITY SYSTEM
CERTIFIED BY DNV GL
= ISO 9001 =

