
SOLUTION BRIEF

Challenges with Common
GraphQL Deployments

Why Harper Is Built for
Modern GraphQL

GraphQL streamlines data access, but its dynamic, payload- based
requests break traditional CDN caching, resulting in latency,
increased costs, and backend strain. Harper solves this with
a fused, edge-native runtime that combines database, cache,
application logic, and messaging functions into a single process.
By resolving queries closer to users with cached data, Harper
reduces egress and boosts performance. And with
an incremental adoption path—from full-query
caching to field-level routing—teams can see
immediate gains without major rewrites.

GraphQL

Most GraphQL platforms leave teams juggling too
many moving parts - external databases, distributed
caches, middleware, polling infrastructure—just to
make a single query fast and fresh. Harper changes
that by fusing the pieces together and bringing
them to the edge.

Deployed at the edge near every user, Harper’s
fused runtime streamlines query resolution with
one lightweight process. This architecture
eliminates the traditional tradeoffs between
speed, scale, and simplicity.

1. Caching Breaks: GraphQL’s POST-based, single
- endpoint architecture bypasses traditional
path and header-based CDN caching, often
resulting in zero cache hits.

2. Latency Stacks: Each field in a resolver chain
may trigger separate cross- network calls,
thereby delaying time-to-first-byte (TTFB)
and negatively impacting Core Web Vitals.

3. Origin Strain: Without a caching layer, every
query hits backend databases or microservices
directly, driving up compute costs, database
load, and operational strain.

4. Freshness Lags: Most GraphQL caching
solutions lack native Change Data Capture
(CDC) or event streaming capabilities, making
it challenging to keep data fresh without
relying on expensive polling or brittle
revalidation workarounds.

Contact Sales at
hello@harperdb.io.

Incremental Adoption Path

Whether you're looking to reduce origin traffic, accelerate
personalized UIs, or simplify GraphQL operations at scale, Harper
meets you where you are. Start with whole-query caching for instant
gains, or move straight into field-level control, real-time updates, and
edge-native logic.

Harper can replace your existing GraphQL resolver, allowing you to
maintain your current API contract while gaining performance and
flexibility from the start. It’s a lightweight switch with minimal impact
on clients and a clear path to deeper optimization over time.

Start small. Scale fast. Modernize GraphQL without disrupting
your users.

Getting Started Is Easy

Origin
Offload

Egress
Costs

Whole Query
Caching

Partial Query
Caching

Real-Time CDC Full Edge-Native
Delivery

Use Cases

1 2 3 4

Resolve and cache full
query responses at the
edge for instant latency
gains and origin offload
— no schema changes
required.

Cache and serve reusable
parts of a query, fetching
only uncached fields to
reduce origin load and
improve performance.

Keep caches fresh
automatically with change
data capture —no polling
or manual invalidation
needed.

Run functions, transform
APIs, and process data
at the edge to simplify
architecture and reduce
backend load.

Product detail pages,
search results, landing
pages, or any high - read,
low-churn query pattern.

Dynamic UIs with nested
data (e.g. user dashboards,
personalized content,
carts), or federated
schemas where different
teams own different fields.

Inventory systems, pricing
updates, user state or
notification feeds,
anything that needs fresh
data.

Search interfaces,
multi-format API gateways,
auth checks, personalized
content, mobile lookups,
or A/B testing logic.

$$$ $$ $

