
• Application and data services run in a single 
system with an embedded ACID - compliant 
database, cache, and queue

• Down to sub-millisecond, in-process operations 
— no network hops

• Deployable anywhere, with native geo - 
distributed clustering for scale and resilience

• No external services like Postgres, Redis, or 
Kafka needed

• Enterprises or scale-ups with large catalogs, 
global traffic, or interactive workloads (search, 
personalization, streaming, and a strong desire 
for low latency

• Teams demanding consistent high-performance 
and predictable spend across regions

Fused compute + storage + cache + messaging 
engine deployed to any location. No external 
middleware, no queuing service, and no ORMs 
are required—just one highly optimized binary 
that can be clustered for true edge 
performance.

Hyper-efficient composable application 
platform that ships an integrated database, 
cache, and message queue in the same 
executable as your business logic. Deploys 
across edge or core infrastructure and speaks 
standard protocols (REST, GraphQL, SQL, 
WebSockets) out of the box.

Runs applications in isolated Linux 
containers (“dynos”) backed by AWS. It 
offers a marketplace of add-ons (Postgres, 
Redis, Kafka, etc.) to extend functionality 
over network connections, which slows the 
system down, and relies on AWS regions 
for availability.

• Application dyno(s) run your business logic

• Heroku Postgres add-on acts as the 
database

• Heroku Redis (KV) add-on provides caching

• Each service lives in its own container and 
communicates over the network, introducing 
extra latency and operational overhead

• Start-ups or teams that value “git push 
heroku main” convenience over raw 
performance

• Burst-y or moderate workloads that can live 
with dyno sleep/autoscaling latency

• Apps that tolerate an ephemeral file system 
and additive data-service costs

PaaS for web & worker dynos; build-pipeline, 
autoscaling, log drains; à-la-carte Postgres, 
Redis, Kafka, and hundreds of marketplace 
integrations.

Typical Architecture

Ideal Uses

Core Offering



Harper — The Better 
Enterprise Solution. 

Heroku’s layered pricing—dyno hours, add-ons, 
and per-feature billing—makes budgeting 
difficult at scale. Harper offers transparent 
pricing based on estimated resource 
requirements per workload, without surprise 
charges for things like autoscaling, storage, or 
log drains.

Predictable, Cost-Effective Pricing

Heroku apps share hardware and rely on 
network calls between dynos and external 
data stores, introducing latency and stressing 
budgets at scale. Harper’s fused stack eliminates 
those hops, delivers sub-millisecond in-process 
reads/writes, and can be deployed across clouds 
or on-prem for regulatory needs that Heroku’s 
limited region set cannot meet. Harper offers 
full control over deployment and infrastructure 
with support for custom runtimes, networking, 
and system configuration—things Heroku 
restricts behind layers of abstraction or 
premium plans.

Unmatched Performance & Flexibility at 
Massive Scale

Instead of stitching Postgres + Redis + Kafka + 
CDN add-ons together, Harper bundles ACID 
storage, real-time cache, durable queueing, and 
CDN-style data locality in one engine - simplifying 
architecture and operations.

Full-Stack Solution — No Middleware or 
Separate Data Systems

Heroku’s tiered support depends on your plan 
and the SLAs of individual add-ons, meaning 
longer resolution times and more complexity 
when things break. In contrast, Harper’s 
enterprise-first model includes premium support 
with every managed deployment and its fused 
architecture eliminates the need for external 
services. With fewer moving parts and no 
finger-pointing between dynos or add-ons, 
issues are resolved faster and more effectively.

Better Support

When performance and cost matter, 
Harper’s fused-stack outperforms Heroku’s 

multi-service architecture by orders of magnitude—
at a fraction of the price


