Hyper-efficient composable application
platform that ships an integrated database,
cache, and message queue in the same
executable as your business logic. Deploys
across edge or core infrastructure and speaks
standard protocols (REST, GraphQL, SQL,
WebSockets) out of the box.

Typical Architecture

 Application and data services runin a single
system with an embedded ACID - compliant
database, cache, and queue

* Down to sub-millisecond, in-process operations
— no network hops

* Deployable anywhere, with native geo -
distributed clustering for scale and resilience

* No external services like Postgres, Redis, or
Kafka needed

Ideal Uses

* Enterprises or scale-ups with large catalogs,
global traffic, or interactive workloads (search,
personalization, streaming, and a strong desire
for low latency

« Teams demanding consistent high-performance
and predictable spend across regions

Core Offering

Fused compute + storage + cache + messaging
engine deployed to any location. No external
middleware, no queuing service, and no ORMs
are required—ijust one highly optimized binary
that can be clustered for true edge
performance.

| HEROKU

Runs applicationsinisolated Linux
containers (“dynos”) backed by AWS. It
offers a marketplace of add-ons (Postgres,
Redis, Kafka, etc.) to extend functionality
over network connections, which slows the
system down, and relies on AWS regions
for availability.

* Application dyno(s) run your business logic

» Heroku Postgres add-on acts as the
database

 Heroku Redis (KV) add-on provides caching
 Each service lives in its own container and

communicates over the network, introducing
extra latency and operational overhead

* Start-ups or teams that value “git push
heroku main” convenience over raw
performance

* Burst-y or moderate workloads that can live
with dyno sleep/autoscaling latency

* Apps that tolerate an ephemeral file system
and additive data-service costs

£
23
4@3

Paas for web & worker dynos; build-pipeline,
autoscaling, log drains; a-la-carte Postgres,
Redis, Kafka, and hundreds of marketplace
integrations.




Harper — The Better
Enterprise Solution.

Predictable, Cost-Effective Pricing

Heroku's layered pricing—dyno hours, add-ons,
and per-feature billing—makes budgeting
difficult at scale. Harper offers transparent
pricing based on estimated resource
requirements per workload, without surprise
charges for things like autoscaling, storage, or
log drains.

Unmatched Performance & Flexibility at
Massive Scale

Heroku apps share hardware and rely on
network calls between dynos and external

data stores, introducing latency and stressing
budgets at scale. Harper's fused stack eliminates
those hops, delivers sub-millisecond in-process
reads/writes, and can be deployed across clouds
or on-prem for regulatory needs that Heroku's
limited region set cannot meet. Harper offers
full control over deployment and infrastructure
with support for custom runtimes, networking,
and system configuration—things Heroku
restricts behind layers of abstraction or
premium plans.

Better Support

Instead of stitching Postgres + Redis + Kafka +
CDN add-ons together, Harper bundles ACID
storage, real-time cache, durable queueing, and
CDN-style data locality in one engine -simplifying
architecture and operations.

Full-Stack Solution — No Middleware or
Separate Data Systems

Heroku's tiered support depends on your plan
and the SLAs of individual add-ons, meaning
longer resolution times and more complexity
when things break. In contrast, Harper's
enterprise-first model includes premium support
with every managed deployment and its fused
architecture eliminates the need for external
services. With fewer moving parts and no
finger-pointing between dynos or add-ons,
issues are resolved faster and more effectively.

When performance and cost matter,
Harper'’s fused-stack outperforms Heroku's
multi-service architecture by orders of magnitude—
at a fraction of the price



