
VS. Macrometa

38% of devs say they
are more likely to use a
database that is on-prem
and cloud.

- 451 Research

Overview

Harper DB
SEO & Web Performance

Operational Analytics
Data Platform & Dashboards

IoT & Industrial Systems
Monitoring & Detection

Customer Interaction Data
Gaming (Document,

streaming, and key value
database use cases)

Graph database use cases

Macrometa

Based on functional requirements, the ideal use cases for HarperDB and Macrometa may look nearly identical.
But those are only the functional requirements. Once you consider the real-world impact of developer experience,
throughput, latency, scalability, and TCO (non-functional requirements), the use case overlap evaporates.

HarperDB handles 140,000 transactions per second (TPS) per node and scales linearly.
Macrometa can handle 300 TPS globally across their entire 170 node network. In comparison, HarperDB on
170 nodes can handle 23,800,000 TPS or 79,300x the transaction volume of Macrometa .

Such high performance on a single node means companies need significantly fewer servers,
saving enterprises millions per year.

HarperDB is a future-proof investment. With HarperDB, you have the flexibility of a fully
managed serverless FaaS architecture with the flexibility to deploy anywhere. Macrometa restricts
data storage and computeing to the cloud, limiting your technology runway. In a world moving
towards a Web3 paradigm, today’s technology investments must be able to adapt. HarperDB’s
platform allows enterprises to shift seamlessly between the cloud, edge, and decentralized
peer-to-peer networks, giving you a runway to the future.

Keep developers happy and develop solutions in less time.
Macrometa is particular. They require developers to learn their proprietary hybrid SQL
-Java language to write queries. They need developers to rework their CI/CD pipeline,
adjust their version tools, and work around limitations on NPM packages.

On the other hand, HarperDB simplifies existing workflows. With HarperDB, you
get to keep using your existing CI/CD pipeline, GitHub actions, NPM packages,
IDE, and more. Oh, and want to write a query? Just use good old fashion SQL or
NoSQL, you choose.

Best Fit Use Cases

HarperDB Macrometa

DBaaS
FaaS

Performance
On-prem latency

Cloud latency
Read volume
Write volume

Topology
Cloud agnostic

On-prem
Container friendly

Configurable geolocation

Database

Database types

ANSI-standard SQL
Universal indexing
ACID compliance

Eventual consistency
Non-blocking writes

Replication
Configurable replication (via pub/sub)

Can keep subset of data local
Self-healing mesh network

Function Development
Natively supported languages

Use existing developer tools and workflows
Start and manage background processes

Use NPM packages

Integation/Interfaces
Microsoft PowerBI

Tableau
ODBC
JDBC
HTTP

WebSocket
MQTT

Deployment
Easily integrate into existing CI/CD pipeline

Easily leverage GitHub actions

2 ms
50 ms

120,000/sec/node
20,000/sec/node

No on-prem
50 ms

300 total
transactions/second

No
No
No

No
No
No

No
No
No
No

No

JavaScript & Python
No
No
No

Document/ Streaming/
Key Value

Document/ Dynamo/
Key Value/ Graph

No
No

@node
@cluster

@node
@cluster

JavaScript & Python

No
No

