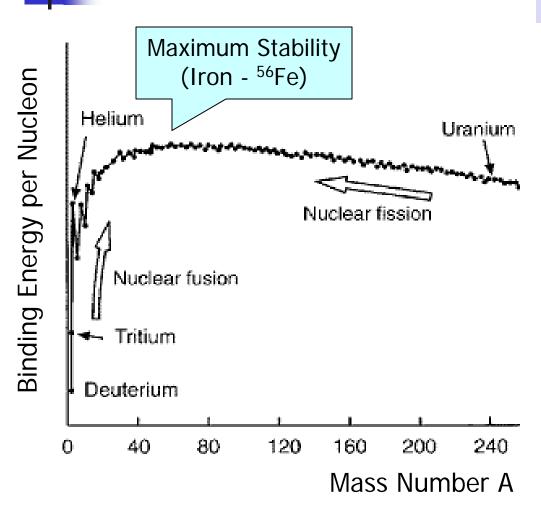
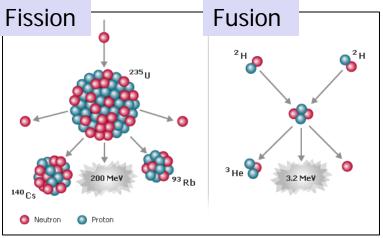
Nuclear Division Hong Kong Institution of Engineers



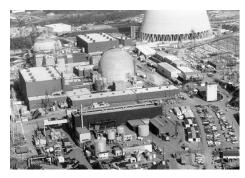

Technical Seminar

Filling the Gap of Nuclear Energy: Fission-Fusion Hybrid

Ir Dr. Herman Tsui

Two Forms of Nuclear Energy

http://encarta.msn.com


- Fission of 1 kg 235 U \Rightarrow ~23x10⁶ kWh
- D-T fusion to 1 kg helium
 ⇒ ~120x10⁶ kWh
- ➤ Combustion of 1 kg coal⇒ ~10 kWh

Evolution of Fission Power Systems

Generation I

Early Prototype Reactors

- Shippingport
- •Dresden,Fermi-I
- Magnox

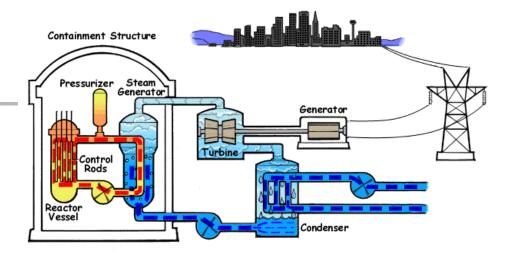
Generation II

Commercial Power Reactors

- •LWR: PWR/BWR
- CANDU
- •VVER/RBMK

Generation III

Advanced LWRs


- •System 80+ •AP1000
- •EPR •ABWR

Generation IV

- Enhanced Safety
- Improved Economics
- Minimized Wastes
- Proliferation Resistance

Gen I			Gen II			Gen III		Gen IV
1950	1960	1970	1980	1990	2000	2010	2020	2030

Mature technology but still faces three challenges:

- Safety: Possibility of reactor core meltdowns following emergency shutdowns (mitigated by Gen.III and Gen.IV reactors)
- Sustainability: Necessity to breed more radioactive fuel (mitigated by Gen. IV reactors)
- ➤ Waste Management: Accumulation of long lived nuclear waste requiring storage for as long as 100,000 years (mitigated by Gen.IV reactors)

Progress of Fusion Development

T3 Tokamak achieved the first high temperature (10⁷ °C) plasma in 1968

1932 - 1958

Fusion discovered

Lawson criteria ($n\tau_F \sim 10^{21} \text{ s/m}^3$)

→ Confinement or compression essential

1958

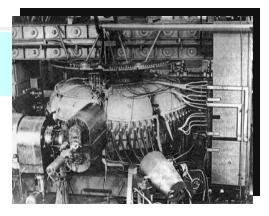
Fusion declassified

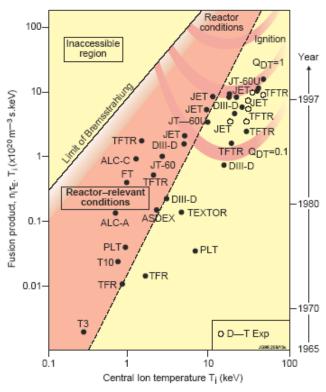
international collaboration & Many labs created

1968 - 1990

Tokamak breakthrough; global stability

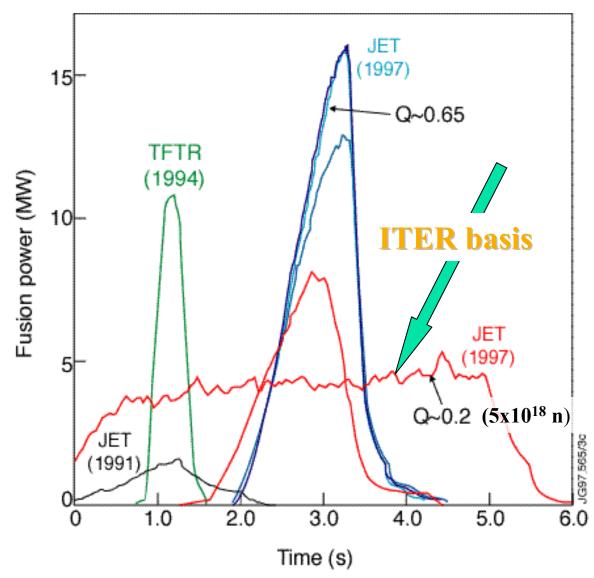
1990 - 2000 +

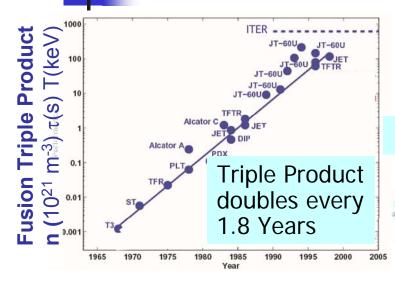

Scaling laws


Fusion for real

→ >10MW; 5x10¹⁸ neutrons; duration >>minutes

2000 to present

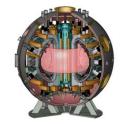

Start of a new era → ITER, DEMO ...



Fusion for Real: TFTR & JET

Fusion Power Development

ITER: 2019 - 2040



~ 1000 - 3500 m³

DEMO: 2040 - 2060

~ 2000 - 4000 MW_{th}

 $Q \sim 30$

JT60-SA
Supra conductors
SS operation

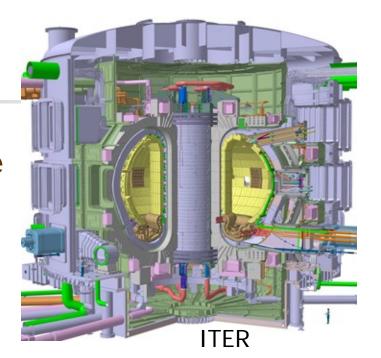
 $JET \sim 80 \text{ m}^3$ $D/T \sim 16 \text{ MW}_{th}$

+ many other facilities

~ 500 MW_{th}

800 m³

 $Q = P_{fusion}/P_{heat} = 10$


Modified from J Jacquinot, Geneva FEC 2008

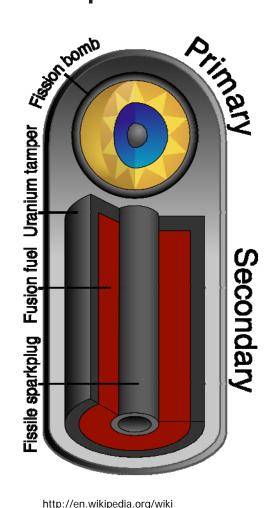
Fusion Power Advantages

- Practically inexhaustible fuel resource (D or Li).
- ➤ Wastes much easier managed, much less problematic than actinides and long-lived fission products.

- ➤ Inherently safe with no criticality risks. Contains minimal (100-1000g) fuel or radioactive inventory at any instant. Negligible after heat.
- No major proliferation concern fusion has no fissile fuel cycle and no involvement with any actinides, hence inspections are technically easy. Breakout threat minimized by zero inventory.

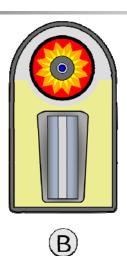
Nuclear Power Development A Possible Roadmap

- ➤ Near term deploying improved LWRs, developing advanced fast burner reactors to fission the long half-life transuranics (TRU) in the spent nuclear fuel discharged from LWRs, and further development of improved thermal reactors
- ➤ Intermediate term developing and deploying breeder reactors that can better utilize the uranium fuel resource and developing fusion physics and technology
- Longer term developing and deploying fusion power reactors.

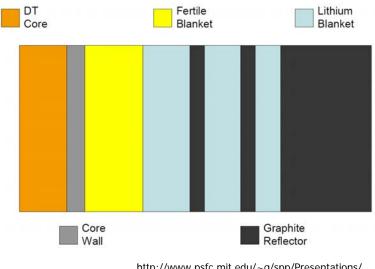

Fission-Fusion Hybrid Advantages

Fission is energy rich and neutron poor...

A perfect match!


- ➤ Low Q fusion core + Sub-critical fission blanket easily achievable plasma-related parameters
- > Neutrons from fusion core drive reactions in blanket
 - generate fission power
 - breed fissile fuel
- ➤ Good passive and inherent safety performances (sub-critical) large design margin because of subcritical features
- Avoidance of nuclear proliferation
- ➤ Benefit both fusion and fission fill in the gap, support fusion, solve fission spent fuel issue

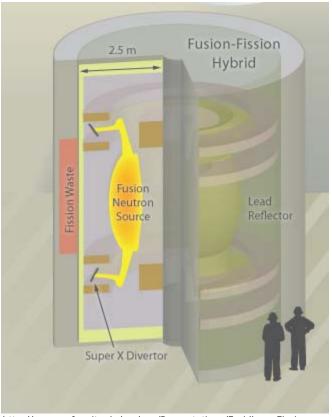
/Thermonuclear weapon



- A. Primary (fission bomb) at top, secondary (fusion fuel) at bottom, all suspended in polystyrene foam.
- B. High-explosive fires in primary, compressing plutonium core into supercriticality and ignite fission reaction.
- C. Fission in primary emits X-rays which are scattered along the inside of the casing, irradiating the polystyrene foam.
- D. Polystyrene foam becomes plasma, compressing secondary, and plutonium sparkplug begins to fission, supplying heat.
- E. Compressed and heated, lithium-6 deuteride fuel produces tritium and begins fusion reaction. The neutron flux causes the U238 tamper to fission. A fireball is starting to form.

Fission-Fusion Hybrid Reactor Addressing waste and proliferation problems

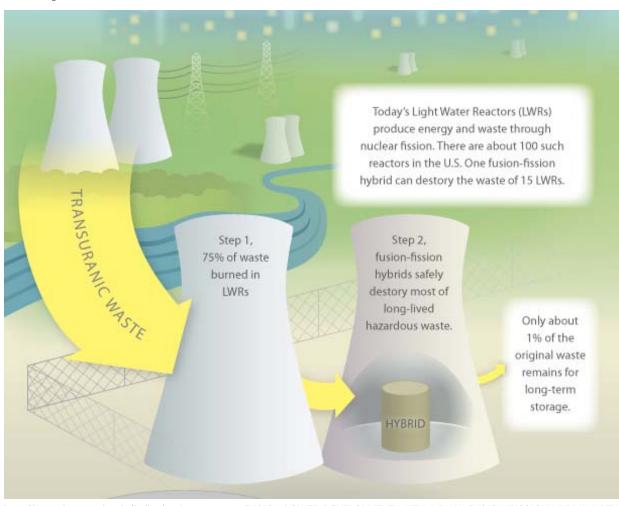
- Hybride consists of
 - below break-even fusion core
 - sub-critical fission blanket
- > Fusion core provides neutrons to
 - drive fission reactions in the blanket
 - convert fertile materials to fissile fuel (Th-232 / U-238) → (U-233 / Pu-239)


http://www.psfc.mit.edu/~g/spp/Presentations/ Freidberg-Fission-Fusion%20Hybrid%20rev1.ppt

- Transmute long lived radioactive byproducts in the hybrid blanket
- Hybrid-enabled fuel cycle:
 - 5 hybrids to support ~ 100 LWRs
 (vs 1 fission breeder to 1 fission reactor)
- > Hybrid operates with currently achievable fusion parameters: need $Q = 2 \sim 5$ instead of Q > 30 for full scale fusion reactor

Fission-Fusion Hybrid Operation Destruct Waste & Produce Fissile Fuel

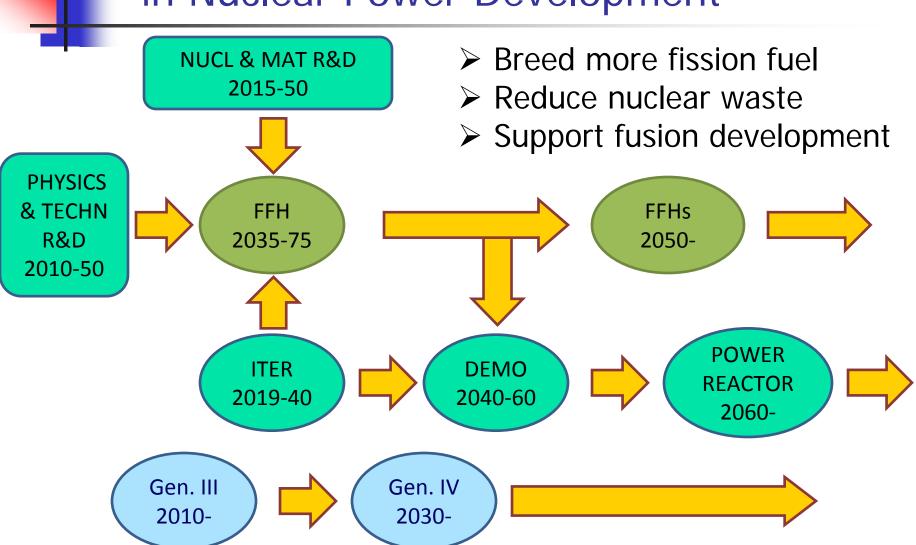
- One 200 MWe-equivalent (i.e. 500 MWt) tokamak fusion core
- Surround with a thorium-lithium blanket produces about 5,500 kg of U-233 plus 20 kg of tritium per year
- Separate the U-233 and combine it with U-238 to form fissile fuel for LWR
 - Sufficient to power two 800 MWe LWRs
 - Power gain = 8!
- ➤ Burn the resulting Pu and actinides in an onsite 300 MWe fast reactor.



http://www.psfc.mit.edu/~g/spp/Presentations/Freidberg-Fission-Fusion%20Hybrid%20rev1.ppt

- > Store short lived radioactive byproducts on site
- Transmute long lived radioactive byproducts in the hybrid blanket

Fission-Fusion Hybrid Fuel Cycle



http://www.frc.gatech.edu/Policy/epri.ppt#312,50,FUSION POWER DEVELOPMENT WITH A DUAL FUSION-FISSION HYBRID PATH

- Step 1 75% of waste burned in fission reactors while producing energy
- Step 2 Hybrid safely destroy most of long-lived hazardous waste
- ➤ 1% of the original waste remains for long terms storage

Possible Role of Hybrid in Nuclear Power Development

Thank You

Q&A