
Extending UVM components Functionality 
by using the Visitor design pattern

Darko M. Tomušilović 
Vtool LTD

© Accellera Systems Initiative 1





Can you put a rabbit in a box...

...without opening it?



Goal

Add a new operation to each class in an existing class hierarchy

© Accellera Systems Initiative 4



Goal

Add a new operation to each class in an existing class hierarchy

Common Solutions

© Accellera Systems Initiative 5



Goal

Add a new operation to each class in an existing class hierarchy

Common Solutions

Add code that will perform each operation

into each class in the environment

© Accellera Systems Initiative 6



Goal

Add a new operation to each class in an existing class hierarchy

Common Solutions

Add code that will perform each operation

into each class in the environment

© Accellera Systems Initiative 7



Goal

Add a new operation to each class in an existing class hierarchy

Common Solutions

Add code that will perform each operation

into each class in the environment

Create derived classes that will 

perform newly added operations

© Accellera Systems Initiative 8



Goal

Add a new operation to each class in an existing class hierarchy

Common Solutions

Add code that will perform each operation

into each class in the environment

Create derived classes that will 

perform newly added operations

© Accellera Systems Initiative 9



Goal

Add a new operation to each class in an existing class hierarchy

The alternative to these approaches has been 

well established in the software development world

© Accellera Systems Initiative 10



Goal

Add a new operation to each class in an existing class hierarchy

The Visitor design pattern

© Accellera Systems Initiative 11



Goal

Add a new operation to each class in an existing class hierarchy

The Visitor design pattern

© Accellera Systems Initiative 12

Benefits

Decreases code complexity
Facilitates maintenance
Improves code stability

Simple to use

Drawbacks 

Requires advanced planning



Goal

Add a new operation to each class in an existing class hierarchy

The Visitor design pattern

© Accellera Systems Initiative 13

Benefits

Decreases code complexity
Facilitates maintenance
Improves code stability

Simple to use

Drawbacks 

Requires advanced planning



Visitor design pattern infrastructure

© Accellera Systems Initiative 14

Block diagram



Visitor design pattern infrastructure

© Accellera Systems Initiative 15

Block diagram



Visitor design pattern infrastructure

© Accellera Systems Initiative 16

Block diagram



Visitor design pattern infrastructure

© Accellera Systems Initiative 17

Block diagram



Visitor design pattern infrastructure

© Accellera Systems Initiative 18

Block diagram



Visitor design pattern infrastructure

© Accellera Systems Initiative 19

Block diagram



Visitor design pattern infrastructure

© Accellera Systems Initiative 20

Block diagram



Visitor design pattern infrastructure

• An abstract class defines a general visit operation on a node.

• A concrete visitor gives an implementation to a visit 
operation according to the action the visitor needs to 
accomplish.

• Pre-processing and post-processing hooks.

© Accellera Systems Initiative 21

uvm_visitor



Visitor design pattern infrastructure

© Accellera Systems Initiative 22

uvm_visitor



Visitor design pattern infrastructure

• An abstract class defines a general accept operation 
that in turn applies the corresponding visitor on every 
element of the structure that the adapter wraps.

• The following adapter wraps a single component:

© Accellera Systems Initiative 23

uvm_adapter



Visitor design pattern infrastructure

© Accellera Systems Initiative 24

uvm_adapter



Visitor design pattern infrastructure

• Invokes the accept method of an object of an adapter class.

• Provides the component to be visited as an argument.

• Provides the visitor object as an argument.

© Accellera Systems Initiative 25

Context



Visitor design pattern infrastructure

© Accellera Systems Initiative 26

Context



UVM library predefined adapters

• Traverses elements in a complex composite structure in a specific way.

• Applies a visitor operation upon each of the elements in a defined order:
– uvm_top_down_visitor_adapter
– uvm_bottom_up_visitor_adapter
– uvm_by_level_visitor_adapter

© Accellera Systems Initiative 27



UVM library predefined adapters

• An abstract uvm_structure_proxy class provides all 
children sub-elements of a certain element in a structure, 
facilitating traversal.

• The specialization class uvm_components_proxy 
provides all subcomponents for a given UVM component.

© Accellera Systems Initiative 28



Visitor Traversal

© Accellera Systems Initiative 29



UML class diagram

© Accellera Systems Initiative 30



UML sequence diagram

© Accellera Systems Initiative 31



Verification use-case examples

• Component configuration check visitor.

• Reset and clock generation check visitor.

• Add messages and improve the reporting system.

© Accellera Systems Initiative 32



Verification use-case examples

• Component configuration check visitor.

– Check that every component in the environment is properly configured.

• Reset and clock generation check visitor.

• Add messages and improve the reporting system.

© Accellera Systems Initiative 33



Verification use-case examples

© Accellera Systems Initiative 34

Component configuration check visitor



Verification use-case examples

• Component configuration check visitor.

• Reset and clock generation check visitor.

• Add messages and improve the reporting system.

© Accellera Systems Initiative 35



Verification use-case examples

• Component configuration check visitor.

• Reset and clock generation check visitor.

– Check the components in the environment are provided 
with a proper clock and reset.

• Add messages and improve the reporting system.

© Accellera Systems Initiative 36



Verification use-case examples

© Accellera Systems Initiative 37

Reset check visitor



Verification use-case examples

• Component configuration check visitor.

• Reset and clock generation check visitor.

• Add messages and improve the reporting system.

© Accellera Systems Initiative 38



The Reporting System

© Accellera Systems Initiative 39

What prevents us from having a good messaging system?

• People are too lazy to add messages.

• Hard to anticipate places where to add messages.

• Having too many messages reduces code readability.

• Working in big teams (other people's code, vendor code).





Verification use-case examples

• Component configuration check visitor.

• Reset and clock generation check visitor.

• Add messages and improve the reporting system.

© Accellera Systems Initiative 41



Verification use-case examples

• Component configuration check visitor.

• Reset and clock generation check visitor

• Add messages and improve the reporting system.

– Attach a visitor to certain environment events.

– Perform proper reporting on trigger event.
For example, attach a visitor to a queue in the scoreboard.

© Accellera Systems Initiative 42



Verification use-case examples

© Accellera Systems Initiative 43

Queue display visitor



 Output log - grep







• Visitors are an ideal way to externally and retroactively add functionality to UVM 
testbenches 

• Reporting system using a dedicated tool such as Cogita, making the concept even 
better.

• Particularly beneficial in large and complex SoCs, with large teams and many 3rd 
party IPs and VIPs

© Accellera Systems Initiative 47

Summary







Questions?


