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Can you put a rabbit in a box...

...without opening it?



Goal

Add a new operation to each class in an existing class hierarchy
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Goal

Add a new operation to each class in an existing class hierarchy

The alternative to these approaches has been 

well established in the software development world
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Benefits

Decreases code complexity
Facilitates maintenance
Improves code stability

Simple to use

Drawbacks 

Requires advanced planning
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Visitor design pattern infrastructure

• An abstract class defines a general visit operation on a node.

• A concrete visitor gives an implementation to a visit 
operation according to the action the visitor needs to 
accomplish.

• Pre-processing and post-processing hooks.
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Visitor design pattern infrastructure

• An abstract class defines a general accept operation 
that in turn applies the corresponding visitor on every 
element of the structure that the adapter wraps.

• The following adapter wraps a single component:
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uvm_adapter
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Visitor design pattern infrastructure

• Invokes the accept method of an object of an adapter class.

• Provides the component to be visited as an argument.

• Provides the visitor object as an argument.
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Visitor design pattern infrastructure
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UVM library predefined adapters

• Traverses elements in a complex composite structure in a specific way.

• Applies a visitor operation upon each of the elements in a defined order:
– uvm_top_down_visitor_adapter
– uvm_bottom_up_visitor_adapter
– uvm_by_level_visitor_adapter
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UVM library predefined adapters

• An abstract uvm_structure_proxy class provides all 
children sub-elements of a certain element in a structure, 
facilitating traversal.

• The specialization class uvm_components_proxy 
provides all subcomponents for a given UVM component.
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Visitor Traversal
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UML class diagram
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UML sequence diagram
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Verification use-case examples

• Component configuration check visitor.

• Reset and clock generation check visitor.

• Add messages and improve the reporting system.
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Verification use-case examples

• Component configuration check visitor.

• Reset and clock generation check visitor.

– Check the components in the environment are provided 
with a proper clock and reset.

• Add messages and improve the reporting system.
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Verification use-case examples
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The Reporting System
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What prevents us from having a good messaging system?

• People are too lazy to add messages.

• Hard to anticipate places where to add messages.

• Having too many messages reduces code readability.

• Working in big teams (other people's code, vendor code).
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Verification use-case examples

• Component configuration check visitor.

• Reset and clock generation check visitor

• Add messages and improve the reporting system.

– Attach a visitor to certain environment events.

– Perform proper reporting on trigger event.
For example, attach a visitor to a queue in the scoreboard.
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Verification use-case examples
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Queue display visitor



 Output log - grep







• Visitors are an ideal way to externally and retroactively add functionality to UVM 
testbenches 

• Reporting system using a dedicated tool such as Cogita, making the concept even 
better.

• Particularly beneficial in large and complex SoCs, with large teams and many 3rd 
party IPs and VIPs
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Summary







Questions?


