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Abstract

Bacteremia is a life-threatening condition contributing significantly to sepsis-related mor-
tality worldwide. With delayed appropriate antibiotic therapy, mortality increases by 20%
regardless of antimicrobial resistance. This study evaluated the perceived clinical utility
of Artificial Intelligence (Al)-powered Clinical Decision Support Systems (CDSSs) (One-
Choice and OneChoice Fusion) among specialist physicians managing bacteremia cases. A
cross-sectional survey was conducted with 65 unique specialist physicians from multiple
medical specialties who were presented with clinical vignettes describing patients with
bacteremia and 90 corresponding AI-CDSS recommendations. Participants assessed the
perceived helpfulness of Al decision-making, the impact of Al recommendations on their
own clinical judgment, and the concordance between Al recommendations and their own
clinical judgment, as well as the validity of changing therapy based on CDSS recommenda-
tions. The study encompassed a diverse range of bacterial pathogens, with Escherichia coli
representing 38.7% of the isolates and 30% being extended-spectrum (3-lactamase (ESBL)
producers. Findings show that 97.8% [(95% CI: 92.2-99.7%)] of physicians reported that
Al facilitated decision-making and substantial concordance (87.8% [95% CI: 79.2-93.7%;
Cohen’s k = 0.76]) between Al recommendations and physicians’ therapeutic recommen-
dations. Stratification by pathogen revealed the highest concordance for Escherichia coli
bacteremia (96.6%, 28/29 cases). Implementation analysis revealed a meaningful clinical
impact, with 68.9% [(95% CI: 58.3-78.2%)] of cases resulting in Al-guided treatment modi-
fications. These findings indicate that Al-powered CDSSs effectively bridge critical gaps
in infectious disease expertise and antimicrobial stewardship, providing clinicians with
evidence-based therapeutic recommendations that can be integrated into routine practice
to optimize antibiotic selection, particularly in settings with limited access to infectious
disease specialists. For optimal clinical integration, we recommend that clinicians utilize

Life 2025, 15, 1756

https://doi.org/10.3390/1ife15111756


https://doi.org/10.3390/life15111756
https://doi.org/10.3390/life15111756
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0003-4566-2027
https://orcid.org/0009-0002-3194-8614
https://orcid.org/0000-0002-9584-039X
https://orcid.org/0000-0003-1811-4682
https://orcid.org/0009-0008-5079-989X
https://orcid.org/0009-0001-7816-0931
https://orcid.org/0009-0001-8054-5670
https://orcid.org/0000-0002-8049-7787
https://doi.org/10.3390/life15111756
https://www.mdpi.com/article/10.3390/life15111756?type=check_update&version=1

Life 2025, 15,1756

2 of 14

AI-CDSS recommendations as an adjunct to clinical judgment rather than a replacement,
particularly in complex cases involving immunocompromised hosts or polymicrobial in-
fections. Future research should prioritize prospective clinical trials that evaluate direct
patient outcomes to establish evidence of broader clinical effectiveness and applicability
across diverse healthcare settings.

Keywords: artificial intelligence; clinical decision support systems; bacteremia; antimicro-
bial stewardship; machine learning

1. Introduction

Bacteremia represents a life-threatening medical illness with substantial global health
implications, contributing significantly to sepsis-related mortality worldwide. Recent
epidemiological analyses from the Global Burden of Disease Study revealed that sepsis
accounts for an estimated 48.9 million incident cases annually and results in 11.0 million
deaths globally, representing 19.7% of all global deaths [1]. Clinical outcomes vary sub-
stantially by pathogen, with marked differences in mortality rates across bacterial species.
While Escherichia coli bacteremia demonstrates relatively lower 30-day mortality (12.1%),
other pathogens show significantly higher rates, including Staphylococcus aureus (22.8%),
Pseudomonas species (24.7%), and Enterococcus species (23.6%). The most striking mor-
tality rates are observed with Clostridium species (41.9%), Candida species (32.0%), and
Bacteroides fragilis (25.3%), representing more than a three-fold difference compared to E.
coli [2-4]. These substantial variations in mortality underscore the critical importance of
pathogen-specific risk stratification and targeted therapeutic approaches in bloodstream
infections. Similarly, Escherichia coli bloodstream infections, despite being among the most
common pathogens with incidence rates of 50-60 cases per 100,000 population, carry 30-day
case-fatality rates of approximately 10-15% [2]. These epidemiological data points under-
score the critical need for optimized therapeutic interventions in managing bacteremia.

Providing rapid and appropriate antibiotic treatment is crucial for effectively managing
bacteremia and has a significant impact on patient outcomes, regardless of the presence of
antimicrobial resistance. Extensive studies of healthcare databases have demonstrated the
critical effect of antibiotic timing. Delays in administering appropriate antibiotics increase
in-hospital mortality by 20%. These delays also prolong hospital stays by 70% and raise
total inpatient costs by 65%. Importantly, these effects occur regardless of antimicrobial re-
sistance status [3]. Patients with multidrug-resistant bloodstream infections face additional
challenges; for example, extended-spectrum (-lactamase-producing Enterobacterales have
a higher mortality rate (adjusted hazard ratio, 1.63; 95% CI, 1.13-2.35). Deaths attributable
to third-generation cephalosporin-resistant Escherichia coli infections in the European Union
and European Economic Area (EU/EEA) increased dramatically from 2139 in 2007 to ap-
proximately 8750 in 2015—equivalent to 1.7 deaths per 100,000 population—representing
more than a four-fold rise over this eight-year period [5]. Evidence from meta-analyses em-
phasizes the importance of prompt, appropriate treatment, with molecular rapid diagnostic
testing significantly reducing mortality risk (OR 0.66, 95% CI 0.54-0.80) and decreasing the
time to effective therapy by approximately 5 h (95% CI —8.60 to —1.45 h) [6].

Integrating artificial intelligence (AI) and machine learning (ML) into clinical decision
support systems (CDSSs) marks a transformative shift in the management of infectious dis-
eases, significantly improving diagnostic accuracy and treatment precision. These systems
have shown notable clinical benefits, including sepsis prediction algorithms that reduce
mortality by 30-60% in quasi-experimental studies and 58% in randomized controlled
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trials. They also enable blood culture collection and antibiotic administration roughly 2.8 h
earlier than traditional methods [7]. Thanks to Al’s ability to analyze complex clinical data
and provide real-time, patient-specific guidance, ML-based CDSS tools are valuable for
antimicrobial stewardship, especially in resource-limited settings where infectious disease
specialists may be scarce [7,8].

Arkstone’s machine learning-based clinical decision support system has shown ex-
cellent performance across various internal validation tests. Using methods such as k-
fold cross-validation, random subsampling, and holdout validation, the system achieved
100% accuracy in differentiating between trained and untrained single data points in
1110 tests involving 111 bacterial species and resistance genes [9]. Further evaluation
with 1401 real lab results from 66 labs in 55 regions confirmed perfect precision and re-
call (1.0 for both), with no false positives or negatives [9]. Human-in-the-loop validation
also found a 0% significant discrepancy rate compared to clinical guidelines, with only
15.53% minor discrepancies mainly related to antibiotic choices or dosing, confirming the
system’s consistency with established infectious disease standards [9].

Further analysis comparing Al-driven therapeutic suggestions for bacteremia treat-
ment has confirmed the usefulness of molecular-based decision-support systems. The
assessment of Arkstone’s OneChoice platform revealed strong agreement between recom-
mendations based solely on molecular data and those incorporating phenotypic susceptibil-
ity results (Cohen’s Kappa, 0.80), which included guidance on antibiotic selection, dosage,
and treatment duration, with recommendations provided approximately 29 h earlier (me-
dian, 16.81 versus 46.32 h) [10]. For Escherichia coli bacteremia, the most common pathogen
accounting for 41% of cases, the agreement on recommendations was 95%, highlighting the
accuracy of Al-assisted antimicrobial decisions [10].

Despite advances and proven analytical accuracy, the practical utility of these decision
support tools in real-world clinical settings remains unclear. This study aimed to explore
how specialist physicians perceive the clinical utility of an Al-powered CDSS (OneChoice
and OneChoice Fusion). The study focuses on physicians’ interpretation of the CDSS recom-
mendation, its impact on the selection of therapy, and whether the CDSS recommendation
aligns with their own clinical judgment in routine practice.

2. Materials and Methods
2.1. Study Design and Setting

This study employed a cross-sectional survey design to evaluate the perceived clinical
utility of Al-powered CDSSs among specialist physicians managing cases of bacteremia.
The investigation was conducted at Roe Laboratory, Lima, Peru, and involved healthcare
professionals from multiple medical specialties, some with expertise in infectious disease
management and others without. The study protocol was designed to assess real-world
clinical recommendations by CDSSs and determine if physicians presented with the same
clinical vignette would recommend the same treatment.

2.2. Study Population and Participants

A total of 65 unique specialist physicians were enrolled in this study, using purposive
sampling, and participated in 90 survey evaluations, with some physicians evaluating
multiple clinical vignettes. Physicians were selected based on their active clinical practice
in managing patients with positive blood culture results and their specialization in relevant
medical disciplines. All participants possessed clinical experience in interpreting blood
culture results and making antimicrobial therapy treatment decisions.
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2.2.1. Inclusion Criteria

(1) Board-certified specialists in relevant medical disciplines; (2) active clinical practice
involving bacteremia management; (3) willingness to participate in the survey evaluation;
and (4) familiarity with blood culture interpretation and antimicrobial prescribing practices.

2.2.2. Exclusion Criteria

(1) Physicians without active clinical practice; (2) incomplete survey responses; and
(3) specialists without experience in antimicrobial therapy decision-making.

2.3. Clinical Decision Support Systems Evaluated

Two Al-powered CDSSs developed by Arkstone Medical Solutions were evaluated in
this study.

2.3.1. OneChoice System

The OneChoice system is an Al-driven platform that generates therapeutic recom-
mendations based exclusively on molecular diagnostic data, along with patient-specific
information obtained from blood culture identification panels. The system utilizes ML
algorithms trained on extensive real-life clinical databases to provide real-time, pathogen-
specific antimicrobial guidance that could incorporate patient-specific clinical information,
including hepatic failure status, renal function, and other relevant clinical parameters
(Supplement S1).

2.3.2. OneChoice Fusion System

The OneChoice Fusion system is an enhanced version of the AI-CDSS that integrates
both molecular diagnostic results and conventional phenotypic susceptibility testing data,
along with patient-specific information to generate refined therapeutic recommendations.
This system combines rapid molecular identification with traditional antimicrobial suscep-
tibility testing profiles to optimize treatment suggestions (Supplement S2).

2.4. Data Collection and Survey Methodology

Data collection was conducted using a structured survey instrument administered to
participating physicians in accordance with a standardized protocol. The clinical scenarios
presented in the survey were developed from anonymized real-world bacteremia cases
obtained from Roe Laboratory’s microbiology database. Each case reflected authentic
pathogen identifications and susceptibility profiles representative of routine clinical prac-
tice. A multidisciplinary panel composed of infectious disease physicians and clinical
microbiologists selected and refined these vignettes to ensure clinical relevance, diversity
of organisms, and accuracy of diagnostic data. All cases were de-identified before inclusion
to protect patient confidentiality. Each participant was presented with authentic positive
blood culture cases and corresponding AI-CDSS recommendations in a sequential manner.

2.4.1. Phase 1

Participants received initial molecular blood culture identification results accompanied
by OneChoice system recommendations for antimicrobial therapy.

2.4.2. Phase 2

Subsequently, conventional susceptibility testing results were provided alongside
OneChoice Fusion system recommendations.

The survey instrument evaluated multiple dimensions of clinical utility, includ-
ing: (1) perceived helpfulness of Al-generated information; (2) impact on therapeutic
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decision-making processes; (3) concordance between Al recommendations and physician
clinical judgment; and (4) implementation of therapy changes based on Al guidance.

2.5. Microbiological Characteristics and Pathogen Distribution

The study encompassed a diverse spectrum of bacterial pathogens commonly en-
countered in cases of clinical bacteremia. The pathogen distribution included Escherichia
coli (38.7% of isolates), representing the most frequently identified organism, followed by
Pseudomonas aeruginosa (13.3%) and Salmonella typhi (4%). Notably, 30% of bacterial isolates
were confirmed as producers of CTX-M extended-spectrum beta-lactamase, reflecting the
contemporary antimicrobial resistance patterns encountered in clinical practice.

2.5.1. Molecular Testing

Positive blood culture samples underwent rapid molecular analysis using the Fil-
mArray Blood Culture Identification (BCID) Panel (BioFire Diagnostics, LLC, Salt Lake
City, UT, USA) or Xpert® MRSA /SA Blood Culture (Cepheid LLC, Sunnyvale, CA, USA),
based on Gram stain results. The assays were conducted according to the manufacturer’s
instructions, with specific attention to reagent preparation, sample volume (200 nL), and
assay run conditions (temperature and duration). Extended-spectrum {3-lactamase geno-
types, specifically CTX-M, were identified using the FilmArray BCID Panel, which employs
multiplex PCR technology to directly detect resistance genes in positive blood culture
broths. The assay specifically detects CTX-M group resistance determinants with high
sensitivity and specificity as validated by the manufacturer.

2.5.2. Phenotypic Testing

Organisms isolated from positive blood cultures were identified on various agar media,
including Blood Agar, Chocolate Agar, MacConkey Agar, and Sabouraud Agar. Microbial
identification was performed using the MALDI-TOF mass spectrometry system, which
was calibrated daily to ensure accuracy. Antimicrobial susceptibility testing (AST) was
performed using the VITEK 2.0 automated system, in accordance with the Clinical and
Laboratory Standards Institute (CLSI) [11] guidelines and interpretive criteria. AmpC
[-lactamase Detection: AmpC f3-lactamase production was identified through phenotypic
testing using cefoxitin screening. Inducible AmpC (iAmpC) was noted when relevant organ-
isms demonstrated phenotypic patterns consistent with inducible resistance mechanisms.

Multidrug resistance (MDR) was defined, according to the criteria established by
Magiorakos et al. (2012), as acquired non-susceptibility to at least one agent in three or
more antimicrobial categories relevant to the tested bacterial species [12].

2.6. Data Analysis

Survey responses were analyzed using descriptive statistics to characterize participant
demographics, clinical specialties, and response patterns. Categorical variables were ex-
pressed as frequencies and percentages. The utility and impact assessments were quantified
through response rate calculations and preference evaluations.

Statistical analyses were performed to determine the proportion of respondents who
found Al systems helpful, the percentage reporting that Al facilitated decision-making, the
concordance rate between Al recommendations and physician choices, and the frequency
of therapy modifications guided by Al. All proportions are reported with 95% Clopper-
Pearson (exact binomial) confidence intervals to provide precise estimates of uncertainty.

Adjustment for Clustering: Given that 65 physicians completed 90 surveys, with
some physicians potentially contributing multiple responses, we accounted for potential
clustering effects in our analysis. We estimated the intraclass correlation coefficient (ICC)
at approximately 0.10-0.15, typical for healthcare survey data where responses may be
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correlated within providers. To address this non-independence, we calculated both unad-
justed and cluster-adjusted confidence intervals. The cluster-adjusted confidence intervals
are slightly wider, reflecting the reduced effective sample size due to within-physician
correlation. All primary confidence intervals reported account for this clustering structure.

Cohen’s kappa (k) with 95% confidence intervals was calculated to assess agreement
between Al recommendations and physician therapeutic choices beyond chance, with val-
ues >0.60 indicating substantial agreement and >0.80 indicating almost perfect agreement
according to Landis and Koch criteria.

Stratified analyses were performed by medical specialty and pathogen type to explore
variations in concordance rates across clinician groups and clinical scenarios.

2.7. Ethical Considerations

The Faculty of Health Sciences Ethics Committee at the Universidad Privada de Tacna
approved the study protocol. This study was conducted in accordance with the principles
outlined in the Declaration of Helsinki for ethical medical research. All survey responses
were anonymized to protect participant identity, and participation was entirely voluntary
with implied consent obtained through survey completion.

2.8. Data and Materials Availability

All survey instruments, data collection protocols, and analytical methodologies em-
ployed in this study are available upon reasonable request to facilitate replication and
further research. The AI-CDSSs evaluated (OneChoice and OneChoice Fusion) are propri-
etary systems developed by Arkstone Medical Solutions, with technical specifications and
algorithmic details subject to intellectual property considerations. Aggregated survey data
supporting the study conclusions will be made available through appropriate data-sharing
mechanisms while maintaining participant confidentiality.

3. Results

3.1. Participant Demographics and Clinical Characteristics
3.1.1. Specialist Physician Distribution

A total of 65 unique specialist physicians participated in this cross-sectional survey,
completing 90 total survey evaluations of clinical vignettes. Medicine specialists comprised
the largest group, at 33.0% (n = 31), followed by pediatric specialists at 11.7% (n = 11),
nephrology specialists at 8.5% (n = 8), and infectious disease specialists at 6.4% (n = 6).
Urology and geriatrics specialists each represented 5.3% (n = 5). Pulmonology specialists
made up 4.3% (n = 4). Both gastroenterology and intensive care medicine specialists
constituted 3.2% (n = 3) each. Additionally, 19.1% (n = 14) of participants came from each
of several other specialties, including hematology, neurosurgery, surgical medicine, general
surgery, gynecology-obstetrics, cardiology, neurology, oncology, and family and community
medicine. This varied specialty participation provided a broad range of clinical expertise
relevant to the management of bacteremia (Figure 1a).

3.1.2. Bacteremia Pathogen Characteristics

The microbiological analysis of positive blood cultures revealed a diverse range of
pathogens typical of modern clinical bacteremia. Escherichia coli was the most common,
making up 38.7% (n = 29) of all isolates, followed by Pseudomonas aeruginosa at 13.3%
(n = 10). Enterobacter cloacae accounted for 5.3% (n = 4), while Enterococcus faecalis and
Salmonella typhi each constituted 4.0% (n = 3). The Salmonella typhi cases were identified
during the study period (2023-2024) and reflect the endemic burden of typhoid fever in
Peru, where the disease remains a significant public health concern, particularly in areas
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with limited access to safe water and sanitation. Multiple organisms were found, each at
2.7% (n = 2), including Proteus species / Proteus mirabilis, Haemophilus influenzae, Streptococ-
cus species/ Streptococcus gallolyticus, and Morganella morganii. Less common pathogens
included Klebsiella pneumoniae and Candida tropicalis, each accounting for 1.3% (n = 1).
Additional minor pathogens included Serratia marcescens, Bacteroides fragilis, Staphylococcus
species, the Acinetobacter/ Enterobacter cloacae complex, Citrobacter freundii, and organisms
within the Enterobacteriaceae complex, reflecting the complexity of microbiological profiles
observed in current bacteremia cases (Figure 1b).

a) Medical Specialty

Oncology

b) Pathogen detected in Bacteremia

cloacae, K.

Néurok;gy _

Cardiology —

\ \

Internal medicine

Haemophilus influenzae

cinetobacter, E. cloacae _—

‘Serratia Marcescens

Morganella morganii
27%

Nephrology

General Surgery

AmpC
6.4%
iAmpC
26%
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;;;siroen(erology b
Medical surgeon
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Neurosurgery

2
Gynecology and Obstetrics

c) Was the isolation MDR?

Escherichia coli
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Stenotrophomonas maltophilia
5.3%
Klebsiella pneumoniae
13%

Salmonella typhi
0%

Streptococcus sp.,S gallolyticus
27%

Haemophilus Influenzae
27%

Infectious Diseases Enterobacter cloacae
3 5.3% Candida tropicalis
1.3%

Urology Proteus sp , Proteus mirabilis

Geriatrics Emerococcustoecals aeruginosa
53% 0% 13.3%

d) Onechoice vs Onechoice Fusion

Onechoice Fusion

Onechoice
615%

Figure 1. Medical Specialties of the Participants and Pathogens Detected in Bacteremia Episodes.
(a) Distribution of medical specialties among 65 participating physicians. (b) Pathogen distribution
among 90 bacteremia cases. (¢) Antimicrobial resistance patterns including ESBL CTX-M (30.0%),
AmpC (6.3%), and non-MDR isolates (61.3%). (d) Percentage of surveys associated with OneChoice
vs OneChoice Fusion by participants.

3.1.3. Antimicrobial Resistance Patterns

Analysis of antimicrobial resistance showed a notable prevalence of resistance within
the study group. Most isolates (61.3%, n = 55) did not display multidrug resistance; however,
the production of CTX-M extended-spectrum beta-lactamase (ESBL) was seen at 30.0% (n
=27). AmpC beta-lactamase was found in 6.3% (n = 6) of isolates, and inducible AmpC
resistance mechanisms were present in 2.5% (n = 2). This corresponds to an ESBL prevalence
of 29.5% among all typed isolates, reflecting the contemporary challenge of antimicrobial
resistance in our clinical setting. This pattern highlights the clinical complexity of managing
bacteremia today and suggests that Al-guided treatment recommendations could improve
antimicrobial choice for both susceptible and resistant pathogens (Figure 1c).
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(a) Was the information
useful for decisions?

(d) Did Al recommendation match
your therapeutic choice
87.8% (95% Cl: 79.2%-93.4%)

Yes

100%
Yes

(90/90)

No

3.2. Clinical Utility Assessment of the OneChoice System
3.2.1. Perceived Helpfulness and Decision-Making Impact

The evaluation of the OneChoice system’s utility showed strong acceptance among
physicians. All respondents (100%, n = 90; 95% CI: 96.0-100%) found the information help-
ful for clinical decisions. Its influence on therapeutic choices was also notable, with 97.8%
(n = 88; 95% CI: 91.5-99.7%; cluster-adjusted 95% CI: 87.0-99.9%) of participants stating
that it aided their decision-making. Most physicians, 96.7% (n = 87 [95% CI: 90.8-99.2%]),
rated the Al-generated guidance as adequate for a thorough clinical assessment. These
results highlight high user satisfaction and perceived clinical value across the entire group
of doctors (Figure 2a—c).

(b) Did it facilitate (c) Was it adequate for
therapeutic decisions? clinical assessment
97.8% (95% Cl: 91.5%-99.7%) 96.7% (95% Cl: 90.8%-99.2%)

No

Yes Yes
(e) Did you make therapy (f) Did you interact with
changes based on Al the QR code feature?
68.9% (95% Cl: 58.4%-78.1%) (54.4%)

No
45.6% No
54.4%
Yes °
68.9%
Yes

Figure 2. Clinical Utility Assessment of AlI-CDSS (OneChoice and OneChoice Fusion Physician
Survey Responses (n = 90 surveys from 65 unique physicians). Questions asked to specialist doctors
who received positive molecular or conventional blood culture results, accompanied by OneChoice
and OneChoice Fusion (CDSSs). (a—c) Perceived utility assessments showing that 100% found
information helpful, 97.8% said that it facilitated decision-making, and 96.7% found it adequate for
assessment. (d,e) Concordance (87.8%) and implementation (68.9%) rates. (f) QR code interaction
adoption (54.4%).

3.2.2. Clinical Concordance and Implementation Patterns

Assessment of clinical concordance between Al recommendations and physician
therapeutic preferences showed strong alignment in decision-making. The concordance
rate between OneChoice recommendations and physicians’ choices was 87.8% (n = 79
[95% CI: 79.2-93.4%; cluster-adjusted 95% CI: 75.0-94.5%]), indicating a high level of agree-
ment between Al guidance and clinical judgment. Cohen’s kappa coefficient (k = 0.76,
95% CI: 0.63-0.89) demonstrated substantial agreement beyond chance, confirming that the
concordance reflects accurate alignment rather than random agreement. Analysis of imple-
mentation revealed a meaningful clinical effect, with 68.9% (n = 62 [95% CI: 58.4-78.1%;
cluster-adjusted 95% CI: 55.0-80.0%]) of cases resulting in treatment changes, according to
OneChoice data. Additionally, physician confidence in Al recommendations was evident,
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with 85.6% (n = 77 [95% CI: 76.6-92.1%]) of participants willing to follow OneChoice’s
advice in routine practice. This demonstrates high trust in the system’s suggestions and a
readiness to incorporate Al guidance into standard patient care (Figure 2d,e).

3.2.3. Stratified Analysis by Specialty and Pathogen

Stratification by medical specialty revealed essential variations in concordance rates.
Non-infectious disease specialists demonstrated consistently high concordance, with inter-
nal medicine (89.7%, 26/29), pediatrics (90.0%, 9/10), nephrology (100%, 8/8), geriatrics
(100%, 5/5), urology (100%, 5/5), and pulmonology (100%, 4/4) all showing substantial
agreement with Al recommendations. In contrast, infectious disease specialists demon-
strated lower concordance (33.3%, 2/6), reflecting their advanced expertise and considera-
tion of complex clinical factors beyond the CDSS input parameters.

Analysis of discordant cases (n = 11, 12.2%) revealed several distinct patterns. Infec-
tious disease specialists accounted for 4 of 11 discordant cases, often preferring broader-
spectrum coverage or alternative agents based on institutional antibiograms or patient-
specific risk factors not captured in the CDSS input.

Pathogen-stratified analysis revealed that concordance was highest for Escherichia coli
bacteremia (96.6%, 28/29), the most prevalent pathogen in our cohort, supporting the Al
system’s particular accuracy for this common clinical scenario. Salmonella typhi (100%, 3/3),
Enterobacter cloacae (100%, 3/3), and Stenotrophomonas maltophilia (100%, 3/3) also showed
complete concordance, though sample sizes were smaller. Lower concordance rates were
observed for Enterococcus faecalis (33.3%, 1/3) and Serratia marcescens (0%, 0/2)

3.3. Comparative Analysis: OneChoice Versus OneChoice Fusion
Digital Engagement and Interactive Features

Physicians adopted the interactive features of AI-CDSS platforms to a moderate degree.
Specifically, 54.4% (n = 49) of participants actively used the QR code interaction, which
enhanced their engagement with Al-generated reports and recommendations. The other
45.6% (n = 41) relied on core system functions without interactive features, indicating
that while digital enhancements can improve the user experience for some clinicians,
the essential AI-CDSS functions remain valuable even without interactive options. This
suggests the system design effectively supports different levels of technological engagement
among healthcare professionals (Figure 2f).

4. Discussion

The results of this cross-sectional survey provide compelling evidence for the practical
application and acceptance of Al-driven CDSS in the management of bacteremia. Results
demonstrated near-universal acceptance among physicians and high concordance with
their own clinical judgment. The complete recognition (100%) of OneChoice’s clinical value
by physicians surpasses the often mixed reception of other healthcare Al applications. Re-
cent systematic reviews of Al-based decision-making systems in healthcare have revealed
heterogeneous outcomes across various medical fields, with consistent benefits observed in
areas such as depression treatment and pain management. Effects in other clinical sectors,
however, remain diverse [13]. The finding that 97.8% of physicians found therapeutic
decision-making easier is consistent with broader evidence on the use of machine learning
in infectious diseases, where approximately 40% of systems are developed for intensive
care settings and 25% for infectious disease consultations. These systems demonstrate tan-
gible clinical benefits, including sepsis prediction algorithms that have reduced mortality
rates by 30-60% in quasi-experimental studies and 58% in randomized controlled trials [8].
The high congruence rate (87.8%) between OneChoice’s recommendations and physicians’
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therapeutic decisions indicates a strong correlation between Al-generated recommendation
and physicians’ own clinical judgment. Notably, stratification by specialty revealed that
non-infectious disease specialists demonstrated concordance rates of 89-100%, while infec-
tious disease specialists showed lower concordance (33.3%), suggesting that the AI-CDSS
may be particularly valuable for clinicians without specialized infectious disease training.
This finding aligns with evidence from other clinical domains, where Al decision support
tools have been shown to reduce disparities in diagnostic and therapeutic accuracy between
general practitioners and specialists. In a previous study, we demonstrated the high corre-
lation (80%) between recommendations that relied solely on molecular lab result data and
recommendations that incorporated both phenotypic data and molecular data. Therefore,
it is easy to postulate that this tool can be used throughout a patient’s clinical course.

The impressive 68.9% implementation rate of treatment changes based on OneChoice’s
recommendations underscores a significant clinical impact that extends beyond simple
acceptance, demonstrating that Al-driven guidance leads to tangible therapeutic adjust-
ments. This rate is critical when considered in the context of the global challenges that
antimicrobial stewardship programs face. In Latin America, data indicates that merely
46% of hospitals in Central and South America have adopted antimicrobial stewardship
programs, with major obstacles including a shortage of dedicated pharmacists (63%), the
lack of treatment guidelines tailored to local epidemiological data (33%), and insufficient
microbiology lab capabilities (12%). The Al-driven CDSS assessed in our study directly
addresses these resource challenges. It offers standardized, evidence-based recommenda-
tions. These recommendations can be customized to fit local epidemiological patterns and
resistance profiles. This is particularly important given that 30-50% of the population in
many Latin American nations depends on underfunded public healthcare systems [14].
The proven effectiveness of this system is especially pertinent when juxtaposed with find-
ings that show infectious disease consultations, although linked to decreased mortality
in Gram-negative bloodstream infections (adjusted hazard ratio 0.82, 95% CI 0.77-0.88),
display significant variability across hospitals (2.7-76.1%) due to constraints in resources
and specialist availability [13].

These findings hold significant clinical relevance, as highlighted by the current in-
ternational guidelines from the Surviving Sepsis Campaign. These guidelines clearly
acknowledge that machine learning outperforms traditional screening methods like SIRS
(AUROC 0.70), MEWS (AUROC 0.50), and SOFA (AUROC 0.78) in identifying sepsis [15].
Moreover, the guidelines emphasize the urgent need for prompt antimicrobial treatment,
with observational studies indicating that each hour of delay is associated with a 1.04-fold
increase in the odds of in-hospital mortality [15]. The fusion of Al-driven clinical deci-
sion support systems with swift molecular diagnostics, as exemplified by the OneChoice
platform, which offers therapeutic guidance 29 h sooner than traditional phenotypic meth-
ods [10], suggests a revolutionary leap forward in managing bacteremia. A 2017 systemic
review found that rapid molecular diagnostic testing significantly reduces mortality risk
and shortens time to effective therapy by about 5.03 h [6]. Conversely, delaying appropri-
ate antibiotic treatment results in a roughly 20% increase in in-hospital mortality, a 70%
increase in hospital length of stay, and a 65% increase in total inpatient costs, irrespective of
antimicrobial resistance status [3].

Our research aligns with the growing body of evidence on Al technologies specifically
designed to address antimicrobial resistance. Recent studies indicate that Al-powered
diagnostic tools can process vast amounts of data with greater precision than humans, en-
abling quicker, more precise diagnoses through the use of Convolutional Neural Networks
(CNNSs) for microscopic image analysis and machine learning algorithms for genomic
data analysis [16,17]. Current machine learning applications in antimicrobial resistance
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encounter significant hurdles, particularly the scarcity of high-quality, well-annotated, and
standardized data, which is critical for training accurate and dependable Al models [16,17].

Furthermore, emerging evidence suggests that Al-powered clinical decision support
systems can help bridge expertise gaps between specialists and generalists in infectious
disease management. Studies have shown that Al systems demonstrate particular value
for non-infectious disease specialists, with the most pronounced improvements observed
in respiratory and internal medicine specialties [18]. Machine learning algorithms for
antimicrobial selection have achieved coverage rates comparable to those of clinicians
(85.9% vs. 84.3%), while enabling more targeted antibiotic therapy [19]. This standardiza-
tion potential is particularly relevant given the significant variability in infectious disease
consultation availability across hospitals (2.7-76.1%), suggesting that systems like One-
Choice may help democratize specialized knowledge and support equitable antimicrobial
stewardship across diverse healthcare environments [20].

Nevertheless, despite these promising results, certain limitations in Al performance
must be acknowledged. Predictive algorithms for multidrug-resistant bacteremia still
show only moderate discrimination (AUROC =~ 0.70) and can generate clinically relevant
false-negative results, a problem exacerbated in low-incidence or resource-limited settings
where blood-culture contamination and low positivity rates add further uncertainty [21,22].
In our study, the 12.2% rate of discordant cases—mostly Pseudomonas aeruginosa and
Enterococcus faecalis—illustrate how current models may underperform when key patient-
level factors such as immunosuppression, renal impairment, or prior multidrug-resistant
colonization are not incorporated [23]. A central challenge for future refinement is therefore
to enhance the integration of contextual clinical information while preserving algorithmic
generalizability across institutions, given that external validations frequently reveal perfor-
mance degradation when models are applied to populations with distinct epidemiology or
data infrastructures [24]. Indeed, independent evaluation of other clinical Al tools, such as
the Epic Sepsis Model (AUROC 0.63 versus 0.76-0.83 initially reported), underscores this
risk and highlights the need for continuous recalibration [25]. In addition, algorithmic bias
and limited transparency persist as barriers to clinician trust and equitable care delivery, em-
phasizing the importance of explainability and robust bias-mitigation strategies [26]. Future
iterations of AI-CDSS should therefore prioritize the inclusion of critical patient-specific
variables, adopt multicenter validation frameworks such as SPIRIT-AI and CONSORT-AI
to demonstrate external validity, and implement continuous-learning mechanisms capable
of updating recommendations in response to evolving local resistance patterns [27,28].

When interpreting our findings, several limitations are worth noting. First, this
cross-sectional survey design relies on physician self-reported perceptions and intended
behaviors rather than directly observed clinical practices, introducing potential response
bias and social desirability bias. Physicians may have overestimated their agreement with
Al recommendations or their willingness to modify therapy based on CDSS guidance.
Second, the study offers insights into physicians’ perceptions but does not directly assess
outcomes, clinical effectiveness, or actual implementation rates in practice. Third, although
the study population is diverse in terms of medical specialties, the research was conducted
at a single institution in Lima, Peru, which may limit its generalizability to other healthcare
environments with varying resources, patient demographics, or resistance patterns. Fourth,
the potential for clustering effects due to multiple surveys completed by individual physi-
cians may affect the precision of our estimates. However, we have addressed this through
cluster-adjusted confidence intervals.

The 12.2% discordance rate between Al recommendations and physician choices high-
lights specific scenarios where the current Al model may benefit from further refinement.
Specifically, cases involving Enterococcus species, complex polymicrobial infections, and
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immunocompromised hosts showed higher discordance rates, suggesting that the Al model
would benefit from enhanced training data in these clinical contexts.

Furthermore, systematic reviews of Al healthcare applications have shown that only
42% of studies reported adverse events, and none reported an increase in adverse events
due to Al interventions, underscoring the need for more thorough safety monitoring in
future implementations [29]. The acceptance and clinical utility of Al-powered CDSS for
managing bacteremia, as shown in this study, lay the groundwork for further research
and implementation. Future research should focus on prospective clinical trials that evalu-
ate patient outcomes, such as mortality rates, hospital stay durations, and antimicrobial
stewardship metrics, to complement the encouraging data on physician acceptance pre-
sented here. Future investigations should focus on tackling the significant challenges in
Al applications for antimicrobial resistance, particularly issues related to data quality and
standardization that hinder the creation of accurate and reliable AI models [17].

5. Conclusions

This cross-sectional survey demonstrates exceptional clinical utility and physician
acceptance of Al-powered CDSS in bacteremia management, with unanimous recognition
(100%) of clinical value and substantial concordance (87.8%; Cohen’s k = 0.76) between Al
recommendations and physician therapeutic choices. Pathogen-stratified analysis revealed
the highest concordance for Escherichia coli bacteremia (96.6%), the most common pathogen
encountered. The meaningful implementation of treatment modifications in 68.9% of cases
indicates that these systems effectively bridge critical gaps in infectious disease expertise
and antimicrobial stewardship resources, particularly relevant given the 30% prevalence of
extended-spectrum (3-lactamase-producing organisms in our study population. These find-
ings, combined with evidence that Al-powered systems can provide therapeutic guidance
approximately 29 h earlier than conventional approaches while maintaining clinical appro-
priateness, position machine learning-based clinical decision support as a transformative
tool for improving outcomes in bacteremia management.

For optimal clinical integration, we recommend that clinicians utilize AI-CDSS rec-
ommendations as an adjunct to clinical judgment rather than a replacement, particularly
in complex cases involving immunocompromised hosts or polymicrobial infections. The
AI-CDSS is especially valuable in settings with limited access to infectious disease con-
sultation, for after-hours decision support, and as an educational tool for trainees and
non-specialist physicians managing bacteremia. Future implementations should focus on
developing mechanisms to provide real-time feedback and continuously improve recom-
mendation accuracy. Areas requiring model enhancement include coverage of Pseudomonas
and Enterococcus species, as well as the management of polymicrobial infections.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/1ife15111756 /s1, Supplement S1: Onechoice Report; and Supplement S2:
Onechoice Fusion report.

Author Contributions: Conceptualization, J.C.G.d.1.T. and A.F,; methodology, ].C.G.d.L.T., YH.;
M.H.-Z,; software, ].C.G.d.1.T., Y.H.; validation, ].C.G.d.1.T., A.R., C.C.-L., G.G., EK. and Y.H.; formal
analysis, ].C.G.d.1.T,, JJ.L., JM.V.-R. and M.H.-Z,; investigation, ].C.G.d.LT, J.C.,, AF, YH, LE,,
E.K.,, LS. and A.R;; resources, ].C.G.d.l.T,, Y.H., C.C.-L.J.C,, R.B,, LLE., LS., EK., G.G., and M.H.-Z,;
data curation, J.C.G.d.1T, J.C,, RB,, LE, G.G,, LS., EK.,, S.V.O. and C.C.-L.; writing—original draft
preparation, J].C.G.d.LT, G.G,, LS. and C.C.-L. writing—review and editing, ].C.G.d.1T,, A.E, J.C,
RB,AR,ILE,EK,SVO,]S.,S.A, JMV.-R. and M.H.-Z,; visualization, ].C.G.d.L.T., and M.H.-Z.;
supervision, A.F. and A.R.; project administration, ].C.G.d.L.T. and A.F,; funding acquisition, A.F. All
authors have read and agreed to the published version of the manuscript.


https://www.mdpi.com/article/10.3390/life15111756/s1
https://www.mdpi.com/article/10.3390/life15111756/s1

Life 2025, 15, 1756 13 of 14

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and was approved by the Institutional Review Board of the Universidad Privada de
Tacna(protocol code: FACSA-CEI/172-10-2025, date of approval: 18 October 2025).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data analyzed in this manuscript, as well as its definitions, can be
requested at any time.

Acknowledgments: We thank all personnel at Arkstone Medical Solutions and Roe Clinical Labora-
tory who have been actively working.

Conflicts of Interest: Ari Frenkel is Chief Science Officer of Arkstone Medical Solutions, the company
that produces the OneChoice report evaluated in this study. JC Gémez de la Torre works as the
Director of Molecular Informatics at Arkstone Medical Solutions and as the Medical Director at Roe
Lab in Perd. Yoshie Huguchi works at Roe Laboratory. At the same time, Alicia Rendon, Carlos
Chavez L., and Miguel Hueda Zavaleta serve as Quality Assurance Managers at Arkstone Medical
Solutions. These affiliations may be perceived as potential conflicts of interest. However, the study’s
design, data collection, analysis, interpretation, manuscript preparation, and the decision to publish
the results were conducted independently, with no undue influence from the authors” affiliations or
roles within the company.

References

1.

10.

11.

Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer,
S.; et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study.
Lancet 2020, 395, 200-211. [CrossRef]

Kern, W.V,; Rieg, S. Burden of bacterial bloodstream infection: A brief update on epidemiology and significance of multidrug-
resistant pathogens. Clin. Microbiol. Infect. 2020, 26, 151-157. [CrossRef] [PubMed]

Bonine, N.G.; Berger, A.; Altincatal, A.; Wang, R.; Bhagnani, T.; Gillard, P.; Lodise, T. Impact of Delayed Appropriate Antibiotic
Therapy on Patient Outcomes by Antibiotic Resistance Status From Serious Gram-negative Bacterial Infections. Am. J. Med. Sci.
2019, 357, 103-110. [CrossRef]

Verway, M.; Brown, K.A.; Marchand-Austin, A.; Diong, C.; Lee, S.; Langford, B.; Schwartz, K.L.; MacFadden, D.R.; Patel, S.N.;
Sander, B.; et al. Prevalence and mortality associated with bloodstream organisms: A population-wide retrospective cohort study.
J. Clin. Microbiol. 2022, 60, €02429-21. [CrossRef] [PubMed]

Cassini, A.; Diaz Hogberg, L.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar,
M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with
antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet
Infect. Dis. 2019, 19, 56-66. [CrossRef]

Timbrook, T.T.; Morton, J.B.; McConeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The Effect of Molecular Rapid
Diagnostic Testing on Clinical Outcomes in Bloodstream Infections: A Systematic Review and Meta-analysis. Clin. Infect. Dis.
2017, 64, 15-23. [CrossRef]

Peiffer-Smadja, N.; Rawson, TM.; Ahmad, R.; Buchard, A.; Georgiou, P.; Lescure, FEX.; Birgand, G.; Holmes, A.H. Machine
learning for clinical decision support in infectious diseases: A narrative review of current applications. Clin. Microbiol. Infect.
2020, 26, 584-595. [CrossRef]

Al Kuwaiti, A.; Nazer, K.; Al-Reedy, A.; Al-Shehri, S.; Al-Muhanna, A.; Subbarayalu, A.V.; Al Muhanna, D.; Al-Muhanna, FA. A
Review of the Role of Artificial Intelligence in Healthcare. J. Pers. Med. 2023, 13, 951. [CrossRef] [PubMed]

Frenkel, A.; Rendon, A.; Chavez-Lencinas, C.; Gomez De la Torre, J.C.; MacDermott, J.; Gross, C.; Allman, S.; Lundblad, S.; Zavala,
I.; Gross, D.; et al. Internal Validation of a Machine Learning-Based CDSS for Antimicrobial Stewardship. Life 2025, 15, 1123.
[CrossRef]

Gomez de la Torre, J.C.; Frenkel, A.; Chavez-Lencinas, C.; Rendon, A.; Céceres, J.A.; Alvarado, L.; Hueda-Zavaleta, M. Al-Based
Treatment Recommendations Enhance Speed and Accuracy in Bacteremia Management: A Comparative Study of Molecular and
Phenotypic Data. Life 2025, 15, 864. [CrossRef]

Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 35th ed.; CLSI sup-
plement M100; Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2025; ISBN 978-1-68440-262-5; 978-1-68440-263-2.


https://doi.org/10.1016/S0140-6736(19)32989-7
https://doi.org/10.1016/j.cmi.2019.10.031
https://www.ncbi.nlm.nih.gov/pubmed/31712069
https://doi.org/10.1016/j.amjms.2018.11.009
https://doi.org/10.1128/jcm.02429-21
https://www.ncbi.nlm.nih.gov/pubmed/35254101
https://doi.org/10.1016/S1473-3099(18)30605-4
https://doi.org/10.1093/cid/ciw649
https://doi.org/10.1016/j.cmi.2019.09.009
https://doi.org/10.3390/jpm13060951
https://www.ncbi.nlm.nih.gov/pubmed/37373940
https://doi.org/10.3390/life15071123
https://doi.org/10.3390/life15060864

Life 2025, 15, 1756 14 of 14

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Magiorakos, A.P; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, ].F.; Kahlmeter, G.;
Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert
proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268-281. [CrossRef]

Ong, SW.X,; Luo, J.; Fridman, D.J.; Lee, S.M.; Johnstone, ]J.; Schwartz, K.L.; Diong, C.; Patel, S.N.; MacFadden, D.R.; Langford,
B.J; et al. Association between infectious diseases consultation and mortality in hospitalized patients with Gram-negative
bloodstream infection: A retrospective population-wide cohort study. Clin. Microbiol. Infect. 2024, 30, 789-796. [CrossRef]
Fabre, V.; Cosgrove, S.E.; Secaira, C.; Tapia Torrez, ].C.; Lessa, EC.; Patel, T.S.; Quiros, R. Antimicrobial stewardship in Latin
America: Past, present, and future. Infect. Control Hosp. Epidemiol. 2022, 43, 78-84. [CrossRef] [PubMed]

Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, ER.; Mcintyre, L.; Ostermann, M.;
Prescott, H.C.; et al. Surviving Sepsis Campaign International Guidelines for the Management of Sepsis and Septic Shock 2021.
Intensive Care Med. 2021, 47, 1181-1247. [CrossRef] [PubMed]

Anahtar, M.N.; Yang, ].H.; Kanjilal, S. Applications of Machine Learning to the Problem of Antimicrobial Resistance: An Emerging
Model for Translational Research. J. Clin. Microbiol. 2021, 59, €0126020. [CrossRef] [PubMed]

Branda, F,; Scarpa, F. Implications of Artificial Intelligence in Addressing Antimicrobial Resistance: Innovations, Global Chal-
lenges, and Healthcare’s Future. Antibiotics 2024, 13, 502. [CrossRef]

Howard, A.; Aston, S.; Gerada, A.; Reza, N.; Bincalar, J.; Mwandumba, H. Antimicrobial learning systems: An implementation
blueprint for artificial intelligence to tackle antimicrobial resistance. Lancet Digit. Health 2024, 6, E79-E86. [CrossRef]

Schwalbe, N.; Wahl, B. Artificial intelligence and the future of global health. Lancet 2020, 395, 1579-1586. [CrossRef]

Jin, C.; Chen, W,; Cao, Y.; Xu, Z.; Tan, Z.; Zhang, X.; Deng, L.; Zheng, C.; Zhou, J.; Shi, H.; et al. Development and evaluation of an
artificial intelligence system for COVID-19 diagnosis. Nat. Commun. 2020, 11, 5088. [CrossRef]

Liang, Q.; Ding, S.; Chen, J.; Chen, X,; Xu, Y.; Xu, Z.; Huang, M. Prediction of carbapenem-resistant gram-negative bacterial
bloodstream infection in intensive care unit based on machine learning. BMC Med. Inform. Decis. Mak. 2024, 24, 123. [CrossRef]
Bhavani, S.V.; Lonjers, Z.; Carey, K.A.; Richey, M.E.; Buehler, K.C.; Shih, A.; Pinsky, M.R. The development and validation of a
machine learning model to predict bacteremia and fungemia in hospitalized patients using electronic health record data. Crit.
Care Med. 2020, 48, €988-e994. [CrossRef]

Pinsky, M.R,; Bedoya, A.; Bihorac, A.; Ozrazgat-Baslanti, T.; Moriyama, B.; Kaplan, A. Use of artificial intelligence in critical care:
Opportunities and obstacles. Crit. Care 2024, 28, 17. [CrossRef]

Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial
intelligence. BMC Med. 2019, 17, 195. [CrossRef] [PubMed]

Wong, A.; Otles, E.; Donnelly, ].P.; Krumm, A.; McCullough, ].; DeTroyer-Cooley, O.; Pestrue, J.; Phillips, M.; Konye, J.; Penoza, C.;
et al. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Intern.
Med. 2021, 181, 1065-1070. [CrossRef]

Zhang, J.; Zhang, Z. Ethics and governance of trustworthy medical artificial intelligence. BMC Med. Inform. Decis. Mak. 2023, 23,
176. [CrossRef]

Rivera, S.C.; Liu, X.; Chan, A.-W.; Denniston, A K.; Calvert, M.J.; SPIRIT-AI and CONSORT-AI Working Group. Guidelines for
clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. Nat. Med. 2020, 26, 1351-1363.
[CrossRef] [PubMed]

Pianykh, O.S.; Langs, G.; Dewey, M.; Enzmann, D.R.; Herold, C.J.; Schoenberg, S.O.; Brink, J.A. Continuous learning Al in
radiology: Implementation principles and early applications. Radiology 2020, 297, 6-14. [CrossRef] [PubMed]

Wilhelm, C.; Steckelberg, A.; Rebitschek, F.G. Benefits and harms associated with the use of Al-related algorithmic decision-
making systems by healthcare professionals: A systematic review. BMJ Open 2023, 13, €069395. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1111/j.1469-0691.2011.03570.x
https://doi.org/10.1016/j.cmi.2024.03.025
https://doi.org/10.1017/ash.2022.47
https://www.ncbi.nlm.nih.gov/pubmed/36483374
https://doi.org/10.1007/s00134-021-06506-y
https://www.ncbi.nlm.nih.gov/pubmed/34599691
https://doi.org/10.1128/JCM.01260-20
https://www.ncbi.nlm.nih.gov/pubmed/33536291
https://doi.org/10.3390/antibiotics13060502
https://doi.org/10.1016/S2589-7500(23)00221-2
https://doi.org/10.1016/S0140-6736(20)30226-9
https://doi.org/10.1038/s41467-020-18685-1
https://doi.org/10.1186/s12911-024-02504-4
https://doi.org/10.1097/CCM.0000000000004556
https://doi.org/10.1186/s13054-024-04860-z
https://doi.org/10.1186/s12916-019-1426-2
https://www.ncbi.nlm.nih.gov/pubmed/31665002
https://doi.org/10.1001/jamainternmed.2021.2626
https://doi.org/10.1186/s12911-023-02103-9
https://doi.org/10.1038/s41591-020-1037-7
https://www.ncbi.nlm.nih.gov/pubmed/32908284
https://doi.org/10.1148/radiol.2020200038
https://www.ncbi.nlm.nih.gov/pubmed/32840473
https://doi.org/10.1016/j.lanepe.2024.101145

	Introduction 
	Materials and Methods 
	Study Design and Setting 
	Study Population and Participants 
	Inclusion Criteria 
	Exclusion Criteria 

	Clinical Decision Support Systems Evaluated 
	OneChoice System 
	OneChoice Fusion System 

	Data Collection and Survey Methodology 
	Phase 1 
	Phase 2 

	Microbiological Characteristics and Pathogen Distribution 
	Molecular Testing 
	Phenotypic Testing 

	Data Analysis 
	Ethical Considerations 
	Data and Materials Availability 

	Results 
	Participant Demographics and Clinical Characteristics 
	Specialist Physician Distribution 
	Bacteremia Pathogen Characteristics 
	Antimicrobial Resistance Patterns 

	Clinical Utility Assessment of the OneChoice System 
	Perceived Helpfulness and Decision-Making Impact 
	Clinical Concordance and Implementation Patterns 
	Stratified Analysis by Specialty and Pathogen 

	Comparative Analysis: OneChoice Versus OneChoice Fusion 

	Discussion 
	Conclusions 
	References

