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Abstract

Background: Antimicrobial stewardship programs (ASPs) are essential in combating an-
timicrobial resistance (AMR); however, limited resources hinder their implementation.
Arkstone, a biotechnology company, developed a machine learning (ML)-driven clinical
decision support system (CDSS) to guide antimicrobial prescribing. While Al (artificial
intelligence) applications are increasingly used, each model must be carefully validated.
Methods: Three components of the ML system were assessed: (1) A prospective observa-
tional study tested its ability to distinguish trained from novel data using various validation
techniques and BioFire molecular panel inputs. (2) An anonymous retrospective analysis
of internal infectious disease lab results evaluated the recognition of novel versus trained
complex datasets. (3) A prospective observational validation study reviewed clinical
recommendations against standard guidelines by independent clinicians. Results: The
system achieved 100% accuracy (F1 = 1) in identifying 111 unique novel data points across
1110 tests over nine training sessions. It correctly identified all 519 fully trained and
644 novel complex datasets. Among 644 clinician-trained reports, there were no major
discrepancies in recommendations, with only 100 showing minor differences. Conclusions:
This novel ML system demonstrated high accuracy in distinguishing trained from novel
data and produced recommendations consistent with clinical guidelines. These results
support its value in strengthening CDSS and ASP efforts.

Keywords: machine learning; antimicrobial stewardship; antibiotic resistance; clinical
decision support

1. Introduction

Machine learning (ML), a subset of artificial intelligence (Al), has rapidly transformed
diverse sectors, including healthcare, by enabling systems to learn from data, identify
patterns, and make decisions with minimal human intervention [1,2]. In clinical settings,
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ML-based clinical decision support systems (CDSSs) are increasingly used to aid in di-
agnosis, treatment planning, and antimicrobial stewardship [3-5]. A critical element in
the deployment of these ML models is the rigorous validation process, which ensures the
model’s reliability, generalizability, and accuracy when presented with new and complex
data. This process is important, as models trained on limited data can overfit, capturing
noise rather than relevant patterns, leading to poor performance when exposed to new
data [6]. Furthermore, a lack of structured data review processes in some ML systems raises
concerns about the accuracy of their recommendations, particularly in healthcare settings
where critical variables might not be included in the analysis [7].

The potential of ML-driven CDSSs to improve patient care and public health is consid-
erable, yet there are significant barriers to widespread adoption; one of these is the lack of
comprehensive validation techniques [8] and confidence in an accurate working model. As
previous attempts to implement ML-based systems in healthcare have shown, challenges
such as poor data integration, concerns about data privacy, limited clinical applicability,
and inaccurate recommendations have led to the discontinuation of various clinical support
systems such as IBM Watson for Oncology [9-11] and DeepMind Health’s Streams [12-14].
These experiences highlight the need for robust, ethical, and clinically focused validation
approaches to ensure the safe and effective integration of ML into clinical practice [15].
In addition, due to the rapid pace of evolving technology, formal validation methods are
lacking, with limited data on the ideal validation process and evidence that ML processes
are accurate [16]. Lastly, because of the uniqueness of the ML model in this study, to our
knowledge, there are no studies evaluating its capabilities and its validation methods.
Therefore, it is essential that we examine and test the capabilities of this system [17,18].

Arkstone, a biotechnology company, has developed a unique ML model for real-time,
patient-specific infectious disease guidance integrated with laboratory results. This system
provides clinicians with actionable recommendations aligned with clinical guidelines,
intending to improve antimicrobial stewardship and reduce antibiotic overuse.

This study aimed to internally validate the system by evaluating its performance in
training data and the system’s ability to recall the trained data and distinguish it from
new data accurately. By analyzing the ML model, the integration of these tools into
clinical practice can be achieved confidently. In addition, this study will evaluate the
model’s robustness, accuracy, and generalizability for clinical use across diverse settings
by evaluating the accuracy of the clinical recommendations themselves, which requires
human input (human-in-the-loop (HITL) machine learning). This study aims to provide
evidence to support the use of similar tools that enhance infectious disease knowledge and
antimicrobial stewardship, particularly in resource-limited environments.

2. Materials and Methods
2.1. Model Description

Data enters the ML model via results sent by laboratories. This typically occurs in real
time via an HL7 or API interface but can also be achieved through manual uploads. The
data sent includes patient demographics, laboratory findings (organisms, antibiotic suscep-
tibility, and resistance genes), sample sources, diagnostic codes, allergies, and pregnancy
status. Within seconds to minutes, a concise, single-page PDF is generated that provides
recommendations on the appropriate antimicrobial, if applicable (Supplement S1).

For scalable and effective processing of data, a unique machine learning model was de-
veloped that incorporates multiple validation techniques simultaneously, including applied
K-fold cross-validation, random subsampling, and holdout validation (Supplement S2 and
Supplement S3). The combination of methods, also called Antimicrobial Intelligence, is
applied in real time (prospective validation), leveraging live data streams. A key compo-
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nent of this is the system’s inability to suggest new treatment options as well as to provide
recommendations for untrained data sets. The system, therefore, relies on HITL processes
on multiple levels to ensure the data is trained accurately. This step is critical at every stage
of data training, ensuring that expert oversight is consistently applied. In addition to re-
quiring human approval to train data, HITL is required and repeated by different infectious
disease experts to ensure consistency and accuracy on how the data is trained, minimizing
the risk of human error and bias. Furthermore, once the data is finally trained by multiple
infectious disease experts, it does not stay in this status indefinitely. Data that has been
rigorously trained previously gets pushed back into a status requiring it to be trained again,
ensuring that data is repeatedly and periodically retrained so that information is up to date
and error-free. This also allows for updates to medical recommendations that may have
changed since initial training. This hybrid model that incorporates both human oversight
and set algorithms ensures its adaptability to new and ever-evolving data.

The validation process is divided into three key elements that will be evaluated sepa-
rately: (1) evaluation of the system’s ability to distinguish and recall trained from new single
data points; (2) evaluation of the system’s ability to distinguish and recall trained from
new complex data sets (Figure 1, where single data points refer to individual data points
such as a gene, organism, allergy, or diagnosis, and complex data sets correspond to groups
of single data points, such as those from a lab result that includes multiple data points
combined together); and (3) evaluation of the accuracy of the clinical recommendations
output by the system.

Data entered by laboratories
HL7/API/manual inputted

e AN

Untrained /unknown data Already trained /known
/ data \
Supervised ML/HITL Supervised ML/HITL
training on the novel training on the trained
data data

Figure 1. Simplified diagram of processes in Akstone machine learning.

2.2. Data Sources and Preparation

Data were obtained from the Arkstone laboratory results database. The data set
included positive and negative microbiology results, as well as demographic data such
as patient age and sex, ICD-10-CM codes, allergies, pregnancy status, source of specimen,
organism, sensitivity information, and resistance gene information. Diagnostic modalities
included molecular or standard culture techniques. Prior to analysis, all data were de-
identified according to HIPAA (Health Insurance Portability and Accountability Act of
1996) guidelines. Data were pre-processed to ensure consistency in format and coding.

2.3. Study Design

This validation study consisted of two components: a prospective observational phase
and a retrospective analysis of real-world data from Arkstone’s database. This study
was conducted in three sequential phases, each designed to evaluate different aspects
of the machine learning system’s clinical performance. The research team accessed the
data set remotely from their respective locations, without intervening in clinical care or
altering the existing workflow of the system. Researchers reviewing reports were not the
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same individuals involved in formulating the initial clinical recommendations to avoid
confirmation bias.

The primary objective of this study was to evaluate the internal validation process
of the machine learning (ML) model through three critical components: (a) recognition
of novel versus trained data: this component assessed the model’s ability to distinguish
between previously unseen (untrained) data and data used during the model’s training
process; (b) recognition of complex datasets: this involved evaluating the system’s perfor-
mance in classifying large and heterogeneous datasets composed of multiple data points
from various sources; and (c) human-in-the-loop (HITL) component: this assessed the
accuracy of treatment recommendations generated by the system which requires human
input via the HITL process.

2.4. Ethical Considerations and Data Availability

The study protocol was approved by the Institutional Ethics Committee of the Fac-
ulty of Health Sciences at the Private University of Tacna (FACSA-CEI/224-12-2024). All
procedures complied with the Declaration of Helsinki and HIPAA guidelines. This study
involved no risk to patients, and informed consent was not required, as all data were
either retrospective, anonymized, or publicly available. The data set consisted of publicly
accessible BioFire panel results and fully de-identified internal laboratory submissions. No
protected health information (PHI) was accessed or disclosed (Supplement S2).

2.5. Procedures
2.5.1. Element 1: Evaluation of the System’s Ability to Distinguish and Recall Trained from
New Single Data Points

Element 1 involved a retrospective observational approach to evaluate the system’s
ability to generate accurate recommendations based on individual data points, using multi-
ple validation techniques. New data, also known as untrained data, refers to information
the system has not previously encountered. Recognizing untrained data and subsequently
training the system to identify it in future encounters are critical. Data input into the system
was sourced from FDA-approved molecular diagnostic BioFire panels published on the
BioFire website (https://www.biofiredx.com/products/the-filmarray-panels/ [accessed
on 15 April 2025]). Panels do not contain any patient information but contain data regarding
the type of panel, source of specimen, organism targets, and resistance gene targets. This
was to ensure standardized nomenclature of panel types, organisms, and resistance genes.
The new data encompassed six different standardized infectious disease panels (Table 1).

Table 1. FDA-approved BioFire panels.

Panel

Sample Type Number of Targets Key Individual Targets

Respiratory 2.1 (RP2.1)

The respiratory pathogens included Adenovirus (AdV);
seasonal Coronaviruses (229E, HKU1, NL63, and OC43);
Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2); Human Metapneumovirus (hMPV);
Human Rhinovirus/Enterovirus (HRV/EV); Influenza
A Virus (Flu A) with subtypes A/H1, A/H3, and

Nasopharyngeal swab 22 A/H1-2009; Influenza B Virus (Flu B); Parainfluenza

Virus (PIV) types 1, 2, 3, and 4; and Respiratory
Syncytial Virus (RSV).

The bacterial targets were Bordetella Parapertussis,
Bordetella Pertussis, Chlamydia Pneumoniae

(C. pneumoniae), and Mycoplasma Pneumoniae

(M. pneumoniae).
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Table 1. Cont.

Panel

Sample Type

Number of Targets

Key Individual Targets

Blood Culture (BCID2)

Positive blood culture

43

The Gram-negative bacteria included the following:
Acinetobacter calcoaceticus—baumannii complex, Bacteroides
fragilis, Enterobacterales, Enterobacter cloacae complex,
Escherichia coli (E. coli), Klebsiella aerogenes, Klebsiella
oxytoca, Klebsiella pneumoniae group, Proteus spp.,
Salmonella spp., Serratia marcescens, Haemophilus
influenzae, Neisseria meningitidis, Pseudomonas aeruginosa
(P. aeruginosa), and Stenotrophomonas maltophilia.

The Gram-positive bacteria included the following;:
Enterococcus faecalis, Enterococcus faecium, Listeria
monocytogenes, Staphylococcus spp., including
Staphylococcus aureus (S. aureus), Staphylococcus
epidermidis, and Staphylococcus lugdunensis; and
Streptococcus spp., including Streptococcus agalactiae,
Streptococcus pneumoniae (S. pneumoniae), and
Streptococcus pyogenes.

Yeasts included the following: Candida albicans, Candida
auris, Candida glabrata, Candida krusei, Candida
parapsilosis, Candida tropicalis, and Cryptococcus spp. (C.
neoformans / C. gattii).

Resistance genes detected included the following:
carbapenemases (IMP, KPC, OXA-48-like, NDM, VIM),
colistin resistance (mcr-1), extended-spectrum
beta-lactamases (ESBLs), such as CTX-M, methicillin
resistance (mecA/C and MRE]J for MRSA), and
vancomycin resistance (vanA/B).

Gastrointestinal (GI)

Stool in Cary-Blair
medium

22

The bacterial pathogens included the following:
Campylobacter spp. (C. jejuni, C. coli), Clostridioides
(Clostridium difficile (toxin A /B), Plesiomonas
shigelloides, Salmonella spp., Vibrio spp. (V.
parahaemolyticus, V. vulnificus, V. cholerae), Vibrio cholerae,
Yersinia enterocolitica, and diarrheagenic Escherichia

coli/ Shigella pathotypes: Enteroaggregative E. coli (EAEC),
Enteropathogenic E. coli (EPEC), Enterotoxigenic E. coli
(ETEC; 1t/st), Shiga toxin-producing E. coli (STEC;
stx1/stx2), E. coli O157, and Shigella/Enteroinvasive E.
coli (EIEC).

The viral targets included the following: Adenovirus
F40/41, Astrovirus, Norovirus GI/GII, Rotavirus A, and
Sapovirus (genogroups I, II, IV, and V).

Parasitic pathogens included the following:
Cryptosporidium spp., Cyclospora cayetanensis, Entamoeba
histolytica, and Giardia lamblia.

Meningitis/Encephalitis
(ME)

CSF

21

The bacterial pathogens included the following:
Escherichia coli K1, Haemophilus influenzae, Listeria
monocytogenes, Neisseria meningitidis, Streptococcus
agalactiae, and Streptococcus pneumoniae.

The viral targets were Cytomegalovirus (CMV),
Enterovirus (EV), Herpes Simplex Virus type 1 (HSV-1),
Herpes Simplex Virus type 2 (HSV-2), Human
Herpesvirus 6 (HHV-6), Human Parechovirus (HPeV),
and Varicella-Zoster Virus (VZV).

The yeast panel included the following: Cryptococcus
spp. (C. neoformans/C. gattii).
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Table 1. Cont.

Panel

Sample Type Number of Targets Key Individual Targets

Pneumonia (PN)

The semi-quantitative bacterial pathogens included the
following: Acinetobacter calcoaceticus-baumannii
complex, Enterobacter cloacae complex, Escherichia coli
(E. coli), Haemophilus influenzae, Klebsiella aerogenes,
Klebsiella oxytoca, Klebsiella pneumoniae group, Moraxella
catarrhalis, Proteus spp., Pseudomonas aeruginosa (P.
aeruginosa), Serratia marcescens, Staphylococcus aureus (S.
aureus), Streptococcus agalactiae, Streptococcus pneumoniae
(S. pneumoniae), and Streptococcus pyogenes.
The qualitative atypical bacteria included the following;:
Chlamydia pneumoniae, Legionella pneumophila, and
BAL/sputum 33 Mycoplasma pneumoniae.
Viruses included the following: Adenovirus,
Coronavirus, Human metapneumovirus (hMPV),
Human rhinovirus/enterovirus (HRV/EV), Influenza A
virus (Flu A), Influenza B virus (Flu B), Parainfluenza
virus (PIV), and Respiratory syncytial virus (RSV).
Antimicrobial resistance genes detected included the
following: carbapenemases (IMP, KPC, NDM,
OXA-48-like, VIM), extended-spectrum beta-lactamase
(ESBL) genes such as CTX-M, and methicillin resistance
markers mecA/C and MRE] for methicillin-resistant
Staphylococcus aureus (MRSA).

Joint infection (JT)

Gram-positive bacteria included the following:
Anaerococcus prevotii/vaginalis, Clostridium perfringens,
Cutibacterium avidum / granulosum, Enterococcus faecalis,
Enterococcus faecium, Finegoldia magna, Parvimonas micra,
Peptoniphilus spp., Peptostreptococcus anaerobius,
Staphylococcus aureus, Staphylococcus lugdunensis,
Streptococcus spp., Streptococcus agalactiae, Streptococcus
pneumoniae, and Streptococcus pyogenes.

Gram-negative bacteria included the following;:
Bacteroides fragilis, Citrobacter spp., Enterobacter cloacae
complex, Escherichia coli, Haemophilus influenzae, Kingella
kingae, Klebsiella aerogenes, Klebsiella pneumoniae group,
Morganella morganii, Neisseria gonorrhoeae, Proteus spp.,
Pseudomonas aeruginosa, Salmonella spp., and

Serratia marcescens.

Yeasts included the following: Candida spp., particularly
Candida albicans.

Detected resistance genes included the following:
carbapenemases (KPC, NDM, IMP, OXA-48-like, VIM),
extended-spectrum beta-lactamases (ESBL, CTX-M),
methicillin resistance (mecA/C and MRE], indicative of
MRSA), and vancomycin resistance (vanA/B).

Sinovial liquid 39

The data were selected based on the fact that these panels are among the few FDA-
approved comprehensive molecular panels currently available. Additionally, the microbes
and resistance markers tested by these panels are considered industry standard. Panel
information was uploaded into the system and accessed remotely, from Boca Raton, and
repeatedly analyzed on subsequent days.

To ensure the system recognized the uploaded data as novel and untrained, each data
point was enclosed in brackets. The data set was then collectively input into the system
(Table 2), which successfully identified it as entirely new, as bracketed data is never present
in the system’s training inputs before. This approach helps prevent overfitting and bias
and avoids introducing data already known to the model. Once the data was established
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as new and untrained, the data was then categorized according to each panel (Table 2)
as designed by the panel manufacturer and entered into the system again. Here, too, the
system identified all the variables entered into the system correctly as untrained data. This
was expected since training did not occur between training sessions 1 and 2.

Table 2. Summary of processes in element 1.

N data points from BioFire’s six different panels
N unique data points noted after redundancies across the panels
Brackets were placed around data points to ensure no overfitting, and they are new to
the system.

Training Session 1: All unique data points were entered as a single data set.
System performance: The system identified all data as new.

Training Session 2: The data points were divided into BioFire’s corresponding
diagnostic panels (respiratory, blood, CNS, joint, etc.). System performance:
The system identified all data as new within their respective panels.

The data set was then split into randomized groups, referred to as K-folds, for
cross-validation.
Training session 3: K-fold 1 was used for training and then tested against the data in the

remaining untrained K-folds.

System performance: Only the data from K-fold 1 was recognized as trained; all other
data remained untrained.

Training sessions 4-7: The process described in session 3 was repeated independently

for K-folds 2, 3, 4, and 5.

System performance: In each case, the system identified only the data from the trained

K-fold as trained. All remaining K-folds were unrecognized (i.e., untrained).

Training session 8: Random untrained data points were introduced into the previously

trained K-folds and tested.

System performance: The system recognized only the previously trained data, while the

newly introduced data was initially untrained and subsequently learned.

Training session 9: All data were reintroduced into the system collectively as a single

data set.

System performance: The system recognized all data points as previously trained.

The panels were then randomized, and the data were split multiple times to form
new data sets containing unique random variables (random subsampling). These new
data sets were distributed into six groups: five of these groups became the folds for K-fold
cross-validation (Table 2), and the sixth data set was used for holdout validation (Table 3).
After training on one fold, the data sets from all six panels were re-entered into the system
for analysis (Table 2). Once all the sets were analyzed, all the data were again introduced
back into the system in its entirety for evaluation (Table 2).

Table 3. Randomized data set, grouped into sets.

Data Set

# Variables

Description of Variables

K fold 1

K fold 2

21

19

Staphylococcus aureus, Clostridium perfringens, Cryptosporidium, Varicella zoster virus
(VZV), Cryptococcus (C. neoformans/C. gattii), Shigella/Enteroinvasive E. coli (EIEC),
Neisseria gonorrhoeae, Vibrio (V. parahaemolyticus/ V. vulnificus / V. cholerae), Human
metapneumovirus, Klebsiella oxytoca, Enterococcus faecalis, Parainfluenza virus 1, Candida
parapsilosis, Klebsiella aerogenes, Enterobacter cloacae complex, Haemophilus influenzae,
Adenovirus F40/41, Coronavirus 229E, IMP, mcr-1.

Influenza A virus A/H3, Clostridioides (Clostridium) difficile (toxin A/ B), Streptococcus
agalactiae, Adenovirus, Bordetella pertussis, Candida krusei, Herpes simplex virus 2
(HSV-2), Serratia marcescens, Cytomegalovirus (CMV), Parainfluenza virus 2, Moraxella
catarrhalis, Staphylococcus lugdunensis, Human herpesvirus 6 (HHV-6), Bacteroides fragilis,
Campylobacter (C. jejuni/C. coli/C. upsaliensis), Candida albicans, Enteroaggregative E. coli
(EAEC), Coronavirus OC43, OXA-48-like
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Table 3. Cont.

Data Set # Variables  Description of Variables

Human rhinovirus/enterovirus, Vibrio cholerae, Mycoplasma pneumoniae, Influenza B
virus, Legionella pneumophila, Chlamydia pneumoniae, Candida tropicalis, KPC, Plesiomonas
K fold 3 18 shigelloides, Shiga-like toxin-producing E. coli (STEC) stx1/stx2, Enteropathogenic E. coli
(EPEC), Cyclospora cayetanensis, Enterobacterales, Anaerococcus prevotii/vaginalis,
Cutibacterium avidum /granulosum, Parainfluenza virus 3, VIM, NDM
Streptococcus pyogenes, Enterococcus faecium, Influenza A virus A/H1, Rotavirus A,
Staphylococcus epidermidis, Human parechovirus (HPeV), Klebsiella pneumoniae group,
Neisseria meningitidis, Candida auris, Bordetella parapertussis, Peptostreptococcus anaerobius,
Coronavirus NL63.
Norovirus G1/Gll, Candida glabrata, Escherichia coli, Peptoniphilus, Acinetobacter
calcoaceticus—baumannii complex, Streptococcus spp., Pseudomonas aeruginosa, Escherichia
K fold 5 14 coli K1, Herpes simplex virus 1 (HSV-1), E. coli O157, Parainfluenza virus 4, Streptococcus
pneumoniae, Coronavirus HKU1, Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2).
Influenza A virus A/H1-2009, Influenza A virus, Proteus spp., Stenotrophomonas
maltophilia, Respiratory syncytial virus, Listeria monocytogenes, Staphylococcus spp.,
Astrovirus, Sapovirus (I, IL, IV, and V), Enterotoxigenic E. coli (ETEC) It/ st, Entamoeba
Holdout 27 histolytica, Giardia lamblia, Yersinia enterocolitica, Enterovirus (EV), Coronavirus,
Citrobacter, Kingella kingae, Morganella morganii, Candida spp., Finegoldia magna,
Parvimonas micra, CTX-M, mecA/C, vanA/ B, ESBL, Klebsiella pneumonia
group, Salmonella.

k-fold 4 12

2.5.2. Element 2: Evaluation of the System’s Ability to Distinguish and Recall Trained from
New Complex Datasets

An anonymous retrospective analysis was conducted using internal data submitted
by various laboratories containing infectious disease results. Data within each lab result
includes many variables sent by the lab, such as patient demographics, allergies, organisms,
resistance genes, pregnancy status, diagnostic codes, and more. The research team accessed
the data remotely from their respective locations. These results were randomly selected by
choosing a random 24 h period (all results from Thursday, 1 August 2024, were used).

Patient-specific information was withheld from the researchers and was inaccessible.
A team of three infectious disease specialists independently reviewed each laboratory result
and evaluated the accuracy of how the system classified it (trained or untrained). Each
result was reviewed by at least two members of the team, and discrepancies in classification
were resolved through discussion until consensus was reached. The reviewers were not
involved in the initial training of the data to avoid biases.

Data is considered untrained by the system if either a single variable is new or if a data
set has a new combination of trained data (regardless of whether the individual data points
have been trained). Fully trained data sets require not only each data point within the data
set to be seen by the system, but also at least two complete training sessions involving the
same data set configuration, in line with the criteria defined for “Auto-approve” status
(Table 4). This means that the system must process the same combination of data points a
minimum of two times before the data set is considered fully trained.

Table 4. Definition of status.

Auto-Match High Confidence

Auto-Approve . . . New
Fully Trained Data I;f:;iilﬁglgéﬁdlgzaa Untﬁ;ae%rlzit: dSets Untrained Data Sets and
Points and Data Sets f P - Untrained Data Points
Trained Data Points Data Points

Cforﬁpéeied ftiﬂttraﬁgng Oneidre:t‘i, set trIa;nin;g @ >90 percent like
Required training 3 ? ? p ptol Stéti ;ess © ai lC N tp Cted previously trained data Data sets and points
session ata sets (at least two OWEVET, at |€ast one sets where data points require full training

data set training more training session is

sessions) required are trained completely
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2.5.3. Element 3: Evaluation of Human In-the-Loop Component and the Accuracy of
Clinical Recommendations

A prospective evaluation of the recommendations generated by human-enhanced
models (HITL) was conducted during the training process. The primary objective was to
assess the appropriateness of recommendations that involved human intervention, which
could lead to inaccurate recommendations. To assess this, the issued reports were evaluated
by an independent team of infectious disease experts who reviewed them and determined,
based on current clinical practice guidelines (IDSA, CDC) and recommendations from
regulatory agencies (FDA, CLSI), and of course their own clinical experience and judgment,
whether the issued reports showed major or minor discrepancies. This was assessed using
a structured six-question questionnaire:

- Were the microbes being treated as pathogens accurately identified? [18]

- Does the antibiotic recommended in OneChoice have activity against the microbe that
is presumed to be the pathogen?

- Was the recommended dose accurate?

- Was the recommended duration of treatment accurate?

- Was the preferred therapy the optimal therapy?

- Were there organisms that should have been addressed but were not?

Based on their responses, reviewers categorized discrepancies in HITL-trained outputs
as either major or minor: (a) major discrepancies—failure to identify a pathogen that
required treatment or recommending antibiotics that were ineffective against the identified
microbe(s); (b) minor discrepancies—incorrect antibiotic dosage or treatment duration
(outside FDA- or guideline-based ranges), a suboptimal choice when a better preferred
or alternative therapy was available. This review process aimed to ensure the integrity of
HITL-influenced recommendations and identify opportunities for further refinement of
the system.

2.6. Data Analysis

Data analysis was performed using the STATA 17 statistical package.

For element 1: To evaluate the system’s ability to distinguish between trained vs.
untrained data, the following metrics were calculated: (a) accuracy—proportion of data
points correctly classified as trained or untrained; (b) precision—proportion of instances
that were correctly identified as trained data; (c) recall—ability of the trained model to
correctly identify previously trained data points; and (d) F1 score: the harmonic mean of
precision and recall.

For element 2: To evaluate the system’s ability to distinguish between trained vs.
untrained complex data sets, the following metrics were calculated: (a) true positive
rate (TPR)—proportion of fully trained data sets correctly identified; (b) true negative
rate (TNR)—proportion of untrained datasets correctly identified; (c) false positive rate
(FPR)—proportion of untrained datasets incorrectly classified as trained; and (d) false
negative rate (FNR)—proportion of fully trained datasets incorrectly classified as untrained.

For element 3: To evaluate the accuracy of HITL in providing accurate clinical recom-
mendations, the percentage of reports with major and minor discrepancies was calculated.

3. Results

3.1. Element 1: Evaluation of the System’s Ability to Distinguish and Recall Trained from New
Single Data Points

From the six panels (Table 1), there were initially 192 data points. However, after
removing duplicate variables that spanned across multiple panels, 111 unique variables
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remained. Each panel was fully input into the system. Since this was novel data, the system
correctly identified all these variables as new (Table 2).

The proportion of true positive results (correctly identified as trained) to the total
predicted positives (all instances predicted as trained) is a measure of precision (Table 5).
True positives were calculated by reintroducing previously trained data sets (used in the
K-fold and holdout sessions) and evaluating whether the system recognized them correctly
as trained. Similarly, the proportion of true positives to the total actual positives (all actual
trained data points) is a measure of recall. This is collectively assessed using the F1 score.

Table 5. Proportion of true positive results to total expected positives.

. . False Positive False Negatives
True Positives True Negative R o
Folds (Identified (Identiﬁe%‘l New %dentlﬁed New (_Identlﬁed
Trained Data) Data) ata as Trained Trained Data as
Data) New Data)
Fold 1 21 21 0 0
Fold 2 19 19 0 0
Fold 3 18 18 0 0
Fold 4 12 12 0 0
Fold 5 14 14 0 0
Holdout 27 27 0 0
Total 111 111 0 0

TP: true positives, TN: true negatives, FP: false positives, FN: false negatives.

The proportion of true positive results (i.e., correctly identified as trained) relative to
the total number of instances predicted as trained represents the system’s precision (Table 6).
Similarly, the ratio of true positives to all actual trained data points reflects the system’s
recall. Together, these metrics demonstrate the system’s flawless performance in accurately
distinguishing between trained and untrained data under the evaluated conditions.

Table 6. Performance metric based on confusion matrix results.

Metric Formula Result
Precision TP/TP + FP 111/(111 + 0) = 1.00 (100%)
Recall (Sensitivity) TP/TP + FN 111/(111 + 0) = 1.00 (100%)
2 x Precision x Recall/ _ o
F1 Score Precision + Recall) 2x1x1/(1+1)=1.00(100%)
Positive Predictive Value TP/(TP + FP) 111/(111 + 0) = 1.00 (100%)
Negative Predictive Value TN/(TN + FN) 111/(111 + 0) = 1.00 (100%)

TP: true positives, TN: true negatives, FP: false positives, FN: false negatives.

3.2. Element 2: Evaluation of the System’s Ability to Distinguish and Recall Trained from New
Complex Data Sets

A total of 1401 real laboratory results were analyzed from the systems database
(Supplement S2). These results were randomly selected by choosing a 24 h period at
random. The data set was diverse, encompassing results from 66 laboratories located
in 55 different regions across 24 states and 1 international site. This data included the
following: 176 specified provider locations (12%), 936 unspecified practice locations (62%),
198 specified facility locations (13%), and 200 non-specified facility locations (13%). A
total of 65% of the clinical samples analyzed were urine specimens, representing the most
frequent sample type. This was followed by wound (13%), respiratory (8%), and vaginal
samples (5%). Other less frequent sources included rectal (3%), throat (2%), nail (2%), oral
(1%), urogenital, epidermal, and unknown sources (all <1%) (Figure 2).

Among the 1401 results analyzed, 238 (16.98%) were confirmed as true negatives—these
were negative reports containing no relevant pathogen or antimicrobial concern and were
correctly identified by the system as such (untrained). The remaining 1163 reports (83.02%)
were classified as positive. Of these, 519 (44.62%) were identified by the system as fully
trained, while 644 (55.38%) required additional training and were classified as untrained.
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These 644 reports included clinical data that had not yet been fully processed or seen by the
system. Thus, in the classification framework, the 238 true negatives refer to reports with
no pathogen requiring interpretation, while the 644 are untrained clinical reports requiring
interpretation but are not yet trained in the system (Table 7).

= Urine

= Wound
Respiratory

® Vaginal

m Rectal

m Throat

= Others

Figure 2. Types of samples submitted for analysis.

Table 7. Classification performance of the system on 1401 diagnostic reports.

Classification Outcome Count Description
True Positives (TP) 519 Fully trained reports correctly identified as trained
True Negatives (TN) 238 Negative reports without relevant pathogens
False Positives (FP) 0 No untrained reports were incorrectly identified as trained
False Negatives (FN) 0 No trained reports were misclassified as untrained
Untrained (correctly flagged) 644 Reports requiring training correctly identified as untrained
Total reports 1401

Performance Metrics:

- Precision: TP/(TP + FP) = 519/(519 + 0) = 1.0 (100%)
- Recall: TP/(TP + FN) = 519/(519 + 0) = 1.0 (100%)

These results indicate that the system achieved perfect accuracy in distinguishing
between fully trained and untrained datasets under real-world conditions.

3.3. Element 3. Evaluation of the HITL Component in the Accuracy of Clinical Recommendations

Among the 1401 results analyzed, 238 (16.98%) were confirmed as negative and 1163
(83.02%) as positive. Of the positive results, 519 (44.62%) corresponded to fully trained
data (Table 8. Additionally, 233 (20.03%) had been trained once but required further
reinforcement. Specifically, 164 cases (14.10%) required one additional training session, 61
(5.24%) required two sessions, 7 (0.60%) required three, and 1 case (0.09%) required four
sessions. A total of 267 cases (22.95%) were classified as partially untrained, defined as
datasets with greater than 90% similarity to data previously seen by the system. Among
these, 186 (15.99%) required two training sessions, 41 (3.52%) required three, 19 (1.63%)
required four, 6 cases each (0.43%) required five or six sessions, respectively, and 11 (0.94%)
required five training sessions. In contrast, 97 cases (8.34%) were classified as completely
untrained, having less than 90% similarity to any known data set. These required more
intensive training: 63 cases (5.42%) required two sessions, 15 (1.29%) required three, 12
(1.03%) required four, 4 (0.34%) required five, 2 (0.17%) required six, and 1 case (0.09%)
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required seven sessions. (Table 8). Additionally, 47 had untrained individual variables.
Once trained, they were redistributed to one of the preceding categories.

Table 8. Number of steps with human intervention required before fully trained.

Number of Trainings

Variable n % 1 2 3 4 5 6 7
Total 1401 100.00
Negative 238 16.98
Positive 1163 83.02
Complete trained data 519 44.63
Trained once but required additional training 233 20.03 164 61 7 1
Partially untrained data 267 22.95 186 41 19 5 11 5
Completely untrained data 97 8.34 63 15 12 4 2 1

Of the 644 reports that required training, all were reviewed by a clinical team with
expertise in infectious disease. According to the consensus of the reviewers, no major
discrepancies were identified. Minor discrepancies were observed in 100 (15.53%) of the
644 reports. Specifically, 11 (1.71%) reports involved the system recommending a different
antibiotic than what was typically preferred; 35 (5.44%) reports suggested that an alter-
native antibiotic or combination could have been considered; 34 (5.28%) reports included
recommendations where the dose or administration interval lacked formal FDA approval
or varied across clinical references; and 20 (3.11%) reports did not address organisms
of questionable pathogenicity (Table 9). Overall, these findings indicate a high level of
consistency between the system’s recommendations and accepted clinical standards, with
only minor variations that reflect the complexity and nuance of clinical decision-making.

Table 9. Frequency of major discrepancies and minor discrepancies.

Discrepancy Frequency %

Major discrepancy

No discrepancy 644 100.00
A known pathogen has NOT been addressed 0 0
The recommended antibiotic has NO activity against the

microbe detected 0 0
Minor discrepancy
No discrepancy 544 84.47
An alternative to OneChoice could have been recommended 11 1.71
Among the alternative recommendations, another antibiotic or 35 544
a combination of antibiotics could have been recommended )
Dosing and length of therapy are not consistent with the FDA 34 598
guidelines or other literature '
Microbes that should have been targeted were NOT addressed 20 3.11
Total 100 15.53

4. Discussion

This study provides a robust assessment of the internal validation of this novel ML
system, demonstrating its ability to accurately differentiate between trained and untrained
data, both at the level of individual data points and in complex data sets. To our knowledge,
this is the only system currently deploying such validation techniques.

It is important to note that once a data point is trained on the system, it remains
trained even if it appears in larger data sets. This eliminates the need to retrain the system
on the same data point in subsequent data sets. Furthermore, unlike traditional K-fold
cross-validation, where training occurs on all but one fold, in this study, the data was
trained on a single fold and tested against the other untrained folds. This approach was
necessary due to the large volume of data and the nature of the system: once a data point is
trained, it cannot be untrained. This method was more efficient and effective in terms of
time, allowing for more training sessions within the constraints of the system.
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The system shows high accuracy in recognizing new data by distinguishing untrained
from trained individual data points using multiple validation techniques (K-fold cross-
validation, random subsampling, and holdout validation). It also accurately classifies
complex data sets, with over 1000 real-world laboratory data points from diverse sources,
which highlights its ability to generalize and avoid overfitting to the training data. Also,
the diversity of real-world data with data from 66 laboratories in 55 regions, across multiple
states and one international location, ensures the system’s adaptability to diverse clinical
settings and reduces the possibility of bias [19].

The use of multiple validation techniques (K-fold cross-validation, random subsam-
pling, and holdout validation) in this study mitigates the risks of overfitting and improves
the generalizability of the model [7,20]. In the system studied, the HITL component for
multi-stage data training enables the participation of clinical experts, prevents error propa-
gation, and ensures compliance with current medical guidelines [4]. This is a key strength,
particularly in the context of high-stakes clinical decision-making [21,22].

The critical importance of HITL validation is highlighted by the detection of
100 minor discrepancies out of 644 reviewed reports. This finding reinforces that, al-
though ML algorithms are powerful tools capable of processing large volumes of data
and identifying patterns, the nuanced clinical judgment of infectious disease specialists
remains essential to ensure patient safety and optimize treatment strategies [3,23]. The
nature of these discrepancies is particularly telling: while the automated system excels at
data analysis, it lacks the ability to account for complex clinical subtleties and evolving
scientific insights. For instance, the system relies on external references, such as FDA
guidelines or the published literature, for dosing and administration intervals. Although
generally accurate, these references may not always reflect the most current evidence or
account for patient-specific factors, which clinicians are uniquely positioned to evaluate.
Additionally, the system provides generalized recommendations and is not designed to
handle rare or atypical clinical scenarios, further emphasizing the necessity of expert
oversight. These results suggest that the HITL process successfully mitigated potential
errors or suboptimal recommendations, underscoring the vital role of human oversight in
Al-supported clinical care [22,24]. This is especially significant in the realm of antimicrobial
stewardship, where inappropriate antibiotic prescribing can contribute to the growing
threat of antimicrobial resistance [22,25].

The methodology and findings of this study can be contrasted with previous attempts
to validate ML-based CDSSs; for example, IBM Watson for Oncology, while initially promis-
ing, failed due to inaccurate recommendations and integration challenges, ultimately
leading to its discontinuation [26,27]. This highlights the crucial need for robust validation
processes, as demonstrated in the present study. The Mayo Clinic Predictive Analytics
project faced data complexity and integration issues, which halted its progress [23]. The
Pedjiatric Alert System employed cross-validation techniques; however, this system suffered
from limitations due to data sparsity, which impacted the effectiveness of its model [28].
The use of large, diverse datasets and HITL helps overcome this.

This study demonstrates a robust validation process, which emphasizes real-time
application and human oversight. It also highlights the advantage of having a system
that is not intended to be used for the “discovery” of new findings but instead focuses on
adhering to existing guidelines and best practices. The system was carefully trained by
infectious disease experts and periodically re-evaluated. This method ensures both the
accuracy and up-to-date nature of the database and algorithms. The system was designed
to assume that error is possible and, therefore, never allows data to be trained indefinitely.

Limitations of this study include that data curation, particularly for complex data sets,
was restricted to a single-day period. Although the sample was geographically diverse,
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limiting the sample to a single day could introduce some bias into the data sample, possibly
related to the capabilities of the quality control team on that particular day. Furthermore,
while HITL is essential, the manual review process introduces the potential for bias and
variability in data interpretation [7,29]. Automating some components of the HITL process
could improve consistency. Also, despite the perfect performance metrics reported, the pos-
sibility of data leakage or oversimplification (e.g., binary classification as “seen” vs. “new”
cannot be excluded. This may lead to overfitting and limit generalizability, highlighting the
need for future external validation. Furthermore, the model’s architecture, hyperparameter
settings, and handling of class imbalance were not disclosed in full due to proprietary
constraints. Lastly, this study did not assess downstream clinical outcomes—such as mor-
tality, length of hospital stay, or antibiotic consumption—which are essential to evaluate
the real-world effectiveness and impact of the CDSS. Future prospective studies will be
necessary to address this limitation.

The system’s unique approach to antimicrobial guidance is an innovative system,
notable for its reliance on established treatment guidelines and avoidance of novel treatment
suggestions, thereby prioritizing safety and adherence to proven practices. To meet these
goals, this first study demonstrates that the first two steps of the process work robustly,
laying the groundwork to demonstrate that the system works efficiently, and if subsequent
steps follow suit, this will lead to appropriate and useful recommendations in the real
world. This is a preliminary study that focuses primarily on the technical performance
of the system in identifying trained versus untrained data, and final results and clinical
outcomes are not yet included. Therefore, the impact of the system on patient care and
antimicrobial stewardship requires further study.

This study provides valuable insights into the design and validation of ML-based
CDSSs for antimicrobial stewardship. The combination of robust statistical validation
techniques with a comprehensive HITL process represents a promising strategy for ensuring
the accuracy and clinical relevance of Al-driven recommendations. The findings suggest
that such systems can potentially contribute to improved antimicrobial prescribing practices
and, ultimately, better patient outcomes.

Future research should focus on external validation and evaluating the performance of
the model in diverse clinical settings and patient populations to assess its generalizability
and identify potential biases [20,30,31]. In addition, prospective clinical trials through
randomized controlled trials to evaluate the impact of the CDSS on antimicrobial use,
patient outcomes, and healthcare costs may be of benefit [4,22,32]. Lastly, expanding HITL
evaluation by collecting more detailed data on the types of discrepancies identified during
the HITL process can further refine the model and identify areas where clinician training
may be needed. Integration with Electronic Health Records (EHRs) may facilitate seamless
data flow and improve the clinician workflow [26,33-35].

By continuing to refine and validate these systems, we can harness the power of Al to
support clinicians in making informed decisions about antimicrobial therapy, contributing
to the fight against antimicrobial resistance and improving patient care.

5. Conclusions

This study demonstrates the robust performance of a novel ML model in accurately
distinguishing between trained and new data, achieving 100% accuracy. This result was
validated using various methodologies, including K-fold cross-validation, random subsam-
pling, and holdout validation. The system also successfully identified complex data sets as
trained or untrained with high reliability. The integration of HITL validation improved
model adaptability and quality control, reinforcing the value of clinical oversight in Al
systems. However, HITL can also introduce some variability in data interpretation. There-
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fore, ongoing review is important to ensure alignment with the most up-to-date clinical
practice recommendations and to optimize HITL interventions. These findings suggest that
advanced ML models can be trained effectively and consistently to support clinical decision
support (CDS) systems. Although the system demonstrated excellent performance, with
100% accuracy in avoiding major discrepancies and 84% agreement for minor discrepancies
with clinical interpretation, future research should focus on its external validity, as this tool
only interprets, to the best of its ability, the complex molecular data on bacteria and their
resistance genes. Further studies should focus on its use in routine clinical practice and its
utility as a tool for antimicrobial stewardship.
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