
CHAPTER
12

Artificial Intelligence Applied 
to Antimicrobial Stewardship 
Programs: Step-by-step 
Guidance and Real-Life 
Experience. 
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Artificial intelligence (AI) is increasingly becoming a pivotal element in clinical decision-ma-
king, particularly in the realm of infectious diseases and antimicrobial stewardship. Re-
cent advancements have allowed for the integration of machine learning algorithms into 
molecular diagnostic workflows, enabling clinicians to make more accurate, timely, and 
personalized therapeutic decisions. This multidisciplinary approach—bridging medicine, 
molecular biology, and data science—requires leadership not only in clinical practice but 
also in institutional transformation and health informatics. Professionals engaged in this 
field often hold dual expertise in both clinical microbiology and systems-level manage-
ment, reflecting the complex ecosystem needed to implement AI at scale. The role of 
academic and private institutions, such as medical schools and diagnostic laboratories, is 
fundamental in supporting this transformation. These centers serve as both data-gene-
rating environments and implementation hubs for AI-based stewardship tools. Thus, the 
convergence of clinical, academic, and entrepreneurial efforts forms the cornerstone of 
next-generation infectious disease management.

Artificial intelligence is not introduced into a vacuum; it must be aligned with global heal-
th strategies to have meaningful clinical and epidemiological impact. The World Health 
Organization (WHO) has laid out a comprehensive blueprint to combat antimicrobial re-
sistance (AMR), which provides an essential context for the implementation of AI in clini-
cal practice. Among the key pillars outlined are the strengthening of surveillance systems 
such as GLASS (Global Antimicrobial Resistance Surveillance System), the optimization of 
antimicrobial use through national stewardship programs, and the promotion of infec-
tion prevention and control (IPC) protocols. Furthermore, the WHO emphasizes the im-
portance of enforcing appropriate regulation and access to antimicrobials, raising public 
and professional awareness, investing in research and innovation, and adopting a One 
Health approach that integrates human, animal, and environmental health. AI systems, 
particularly those embedded within stewardship frameworks, can serve as accelerators 
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across all these domains by transforming raw microbiological and clinical data into actio-
nable insights at both the patient and policy levels. (WHO, 2025)

The optimization of antimicrobial use, as outlined by the WHO, is not only a policy ob-
jective but also a clinically imperative one. Central to this strategy is the application of 
standardized tools such as the AWaRe classification, which organizes antibiotics into Ac-
cess, Watch, and Reserve categories to promote responsible prescribing. AI systems have 
the potential to operationalize these guidelines in real time, integrating them into clini-
cal decision-making at the bedside. The WHO's AWaRe Antibiotic Book becomes more 
than a reference—it becomes a programmable logic embedded into algorithms that 
guide therapy according to drug class, local susceptibility patterns, and patient-specific 
variables such as route of administration, dosage, and duration. Education and capacity 
building among healthcare providers are vital to ensure adoption, but AI can also serve 
as an educational tool, reinforcing correct prescribing behaviors through dynamic feed-
back. The integration of these platforms with surveillance systems such as GLASS enables 
the continuous monitoring of antimicrobial use and resistance trends, thereby allowing 
stewardship programs to be both data-driven and adaptable. Moreover, AI-driven in-
terventions are strengthened through partnerships with international networks such as 
GARDP, the AMR Action Fund, and CARB-X, and are increasingly guided by a One Health 
perspective that unites diverse disciplines under a shared goal of preserving antimicro-
bial efficacy. (WHO, 2025)

The roots of artificial intelligence trace back to 1956, when the Dartmouth Conference 
formally introduced the concept as a new scientific field. Early AI research was driven by 
bold optimism, with the first generation of neural networks—the Perceptron—attemp-
ting to simulate human learning through simple pattern recognition models. Despite the 
technological limitations of the time, these foundational ideas laid the groundwork for 
the current revolution in computational medicine. AI was envisioned not just as a techni-
cal tool, but as a philosophical shift toward machines capable of learning, reasoning, and 
adapting—qualities now being harnessed to confront modern challenges in infectious 
disease management. (Diana & Tecnología, 2025) 

AI in medicine relies on its core capabilities: learning from data and adapting to evolving 
environments. These systems differ fundamentally from traditional software in that they 
do not follow static rules; instead, they analyze patterns, generate probabilistic predic-
tions, and update themselves as new data becomes available. This learning capacity is 
especially critical in microbiology, where pathogen resistance profiles and treatment res-
ponses vary across time, geography, and patient populations. Adaptability ensures that 
AI tools remain clinically relevant even in the face of rapidly changing resistance trends, 
emerging pathogens, and new antimicrobial agents. 
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Machine learning, a subset of AI, provides the framework for predictive modeling in 
clinical microbiology. It operates by training algorithms on large datasets to identify 
patterns and infer associations. In antimicrobial stewardship, these models are fed with 
data from susceptibility tests, demographic variables, clinical outcomes, and treatment 
regimens. Predictive models then determine the likelihood of treatment success or re-
sistance emergence under various conditions. High-performing models can generalize 
these predictions to new patients, offering tailored guidance even in the absence of full 
clinical information. The clinical utility of such models depends on their ability to process 
both structured (e.g., MIC values, lab results) and unstructured (e.g., physician notes, his-
torical behaviors) data.

There are three principal types of machine learning algorithms utilized in clinical settings. 
Supervised learning, the most commonly applied, involves using labeled datasets to train 
models to classify or predict outcomes such as resistance status or treatment response. 
Unsupervised learning, by contrast, finds hidden patterns in data without pre-existing 
labels, useful for identifying unknown clusters of resistance or transmission networks. 
Reinforcement learning, inspired by behavioral psychology, involves models learning 
through trial and error—receiving feedback after each decision to improve over time. In 
a stewardship context, reinforcement learning could optimize dosing strategies or esca-
lation protocols in ICU environments.

The selection of machine learning methodology must consider both strengths and limi-
tations. Supervised learning is powerful and interpretable when large, high-quality labe-
led datasets are available. However, it is less robust in novel or poorly labeled situations. 
Unsupervised learning offers greater flexibility in data exploration but may yield results 
that are difficult to validate clinically. Hybrid models that incorporate elements of both 
approaches, and are refined with human feedback, represent a promising path forward. 
These models must be tested rigorously to ensure reproducibility, interpretability, and 
patient safety.

The technical structure of AI models in medicine often involves deep neural networks—
multi-layered architectures designed to process complex relationships within high-di-
mensional data. A typical deep network includes an input layer that receives clinical va-
riables, multiple hidden layers that perform weighted computations, and an output layer 
that generates predictions, such as antimicrobial recommendations. These layers are tra-
ined through iterative backpropagation to minimize prediction errors. Such architectures 
are particularly suited for integrating diverse datasets (e.g., genetics, microbiology, de-
mographics), producing insights that may elude conventional analytical methods.

The clinical decision-making environment is inundated with multidimensional data. Each 
patient interaction involves dozens of factors: pathogen species, resistance genes, an-
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timicrobial mechanisms, prior allergies, site of infection, diagnostic code, age, and sex. 
When combined with treatment variables—such as drug interactions, guideline constra-
ints, and FDA alerts—the number of potential permutations exceeds seventeen tetraka-
quadragintillion. No human can process this complexity in real time, but AI can. These 
systems synthesize disparate variables to generate clinically actionable recommenda-
tions tailored to the unique microbial and patient profile, making AI a necessary tool 
rather than a luxury. 

Arkstone’s Machine Learning platform incorporates a Human-in-the-Loop (HTL) archi-
tecture to balance algorithmic precision with clinical judgment. Rather than removing the 
clinician from the process, HTL models actively solicit and integrate physician input, par-
ticularly in ambiguous or high-risk cases. The model assigns weighted relevance to each 
variable based on clinical context—prioritizing pathogen-resistance matches, alerting on 
potential drug interactions, and accounting for patient-specific limitations. This results in 
a customized, context-sensitive antimicrobial regimen that remains aligned with eviden-
ce-based guidelines while accommodating real-world complexity. (Figure 1)

Figure 1. Schematic representation of the Arkstone model

Implementing an artificial intelligence model in medicine follows a multistep process 
that begins with dataset acquisition and preprocessing. High-quality, annotated data are 
first split into training and test subsets, often through multiple iterations to assess model 
stability and prevent overfitting. One common technique, cross-validation, systematically 
partitions the dataset to ensure robustness and generalizability. In repeated random tra-
in-test splits, data are randomly divided without fixed logic, whereas K-fold cross-valida-
tion divides data into K segments, rotating through them to validate performance across 
subsets. More refined methods like stratified K-fold maintain class distribution across 
folds, while leave-one-out cross-validation (LOOCV) tests the model on every individual 
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case iteratively. External validation, where the model is applied to datasets from different 
institutions, is essential to assess portability. Prospective validation examines model per-
formance in real-time clinical workflows, while retrospective validation compares model 
predictions to past clinical decisions. These layers of validation ensure that an AI tool is 
not just technically sound but clinically meaningful across diverse settings. More detailed 
explanation you can see in the chapter before. (Chapter X)

The steps to implement a model in medicine can be seen in Figure 2. 

Figure 2. Steps to implement a model based on AI in medicine 

STEPS TO
IMPLEMENT A

MODEL IN
MEDICINE

1

25

34

BUILD THE MODEL

VALIDATE THE MODEL

IMPLEMENT THE MODEL 
AS A PILOT

RESEARCH WITH THE 
MODEL

GENERALIZATION OF 
THE MODEL

A practical application of AI in infectious disease care is demonstrated through Arksto-
ne’s integration of molecular test results into therapeutic recommendations. By analyzing 
the genetic profiles of pathogens and aligning them with antimicrobial susceptibility 
patterns, the system produces targeted treatment options, often hours or days before 
traditional phenotypic methods. This shift in temporal advantage not only accelerates 
appropriate therapy but also curbs the use of broad-spectrum antibiotics, reducing re-
sistance pressure. Visual graphics accompanying the tool illustrate the simplified flow 
of decision-making: molecular result input, algorithmic processing, and output in the 
form of a personalized regimen. The system can account for molecular markers such as 
CTX-M, NDM, or VIM, guiding clinicians in real time toward optimal therapies. A graphic 
representation of this integration can see in Figure 3.

Artificial intelligence and machine learning must function not in isolation but within the 
framework of established clinical guidelines. In infectious diseases, the IDSA (Infectious 
Diseases Society of America) guidelines provide evidence-based standards for mana-
ging infections such as bacteremia, pneumonia, and urinary tract infections. AI platforms 
trained on molecular (OneChoice®) and phenotypic data (OneChoice Fusion®) incorpo-
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rate these protocols into their decision logic, ensuring that recommendations align with 
gold-standard care. Furthermore, integration with local antibiograms, drug availability 
lists, and formulary restrictions allows models to adapt to institutional realities. Thus, 
AI acts as a digital steward, transforming static guidelines into dynamic, individualized 
treatment decisions.

The implementation of AI in medicine requires a multi-tiered strategy for validation, re-
finement, and integration. As detailed previously, data partitioning techniques such as 
K-fold cross-validation and LOOCV help ensure robustness. Yet beyond technical accu-
racy, validation must include clinical sensibility. Models are evaluated not just for their 
predictive strength but for their concordance with expert infectious disease recommen-
dations. For example, was the pathogen correctly identified as the cause of infection? 
Did the AI recommend an effective drug at the correct dose and duration? Were relevant 
pathogens overlooked? These questions frame the core of internal validation studies. 
The reference by Frenkel et al. (Frenkel A, et al. 2025) presents a structured framework 
to evaluate the trainability and clinical fidelity of an AI-powered decision support system. 
The model’s ability to recall simple and complex patterns, as well as to replicate sound 
therapeutic choices, is subjected to rigorous scrutiny across hundreds of cases.

The practical utility of the AI system is further exemplified by a head-to-head comparison 
between OneChoice Molecular Result (AOCHMR) (based solely on molecular data) vs 
Onechoice Fusion Results (AOCHFR) (which incorporates both molecular and phenotypic 
data) in Bacteremic patients. ( Gomez de la Torre, J.C, et al. 2025). Time-motion gra-
phics display how AOCHMR accelerates decision-making by up to two days compared to 
conventional workflows (Figure 4). 

Figure 3. Data transformation through the model created by Arkstone, from 
a molecular blood culture result to report generation 
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This temporal advantage translates into earlier optimization of therapy as described in 
Figure 5. and potentially reducing mortality, length of stay, and costs. 

Figure 4. Time difference between AOCHMR and AOCHFR. 

Method
AOCHMR AOCHFR

Figure 5. (a) Confusion matrix for antibiotic recommendations between 
AOCHMR and AOCHFR; (b) Concordance in therapeutic recommendations 
between AOCHMR

a b

In a real-world cohort, the AI system’s recommendations were compared to final pres-
criptions in patients with confirmed infections. This analysis was conducted across mul-
tiple metrics, including mortality at 28 days, duration of hospitalization, adverse effects, 
and drug interactions. The AI system demonstrated a capacity to reduce unnecessary 
broad-spectrum use, thereby minimizing toxicities and resistance propagation. The da-
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taset also allowed subgroup analyses by infection site, pathogen, and resistance mecha-
nism. These metrics offer compelling evidence for the system’s clinical value, not only in 
terms of accuracy but also in improving meaningful patient outcomes.

This ongoing retro-prospective study seeks to evaluate the OneChoice® AI report in a 
Peruvian private hospital. Beginning in January 2021 and extending through March 2026, 
this study involves over 200 patients hospitalized with microbiologically confirmed in-
fections. Molecular diagnostic data are processed through the AI engine, and the clinical 
team evaluates the concordance between AI suggestions and actual therapeutic outco-
mes. Oversight is provided by the INSN institutional ethics committee, ensuring metho-
dological rigor. Although the study is in progress, preliminary results have demonstrated 
promising alignment between AI-driven and physician-selected therapies. (Gomez de la 
Torre, JC et al., 2025).

One of the clearest examples of the value of AI emerges in the management of urinary 
tract infections. Traditional workflows rely on urine microscopy and culture, with turna-
round times of 48–72 hours. During this window, clinicians must prescribe empirically, 
often without knowing the causative organism or resistance profile. Failure rates in em-
pirical therapy can reach 20–30%. By contrast, if we use the OneChoice® model using 
machine learning predictions based on over 185,000 historical isolates to propose opti-
mal therapy from the outset, we may be able to reduce these risks of failure by predicting 
the microorganism, antimicrobial resistance thanks to the model. Variables such as age, 
gender, prior infection history, and comorbidities are factored in, generating predicti-
ve models for pathogen presence and resistance. These predictions reduce empirical 
guesswork and may be allowed clinicians to tailor treatment even before final culture 
results are available.

The implementation of the AI tool at the biggest public hospital in Perú further illustrates 
how clinical models must be adapted to local conditions. The hospital’s antimicrobial 
formulary lacks several advanced agents such as cefiderocol, daptomycin, and ceftolo-
zane-tazobactam. The AI engine is thus customized to exclude unavailable options while 
adjusting recommendations based on drug accessibility and institutional restrictions. For 
example, linezolid and levofloxacin are tightly restricted due to high tuberculosis preva-
lence. Surveillance practices, such as rectal swabs for CRE carriers, must also be integra-
ted into AI outputs. These nuances underscore the necessity of contextual adaptation for 
successful AI deployment in diverse health systems.

On a global scale (Han, Ryan et al., 2024), AI is being tested across numerous clinical do-
mains through randomized controlled trials (RCTs). A scoping review published in The Lan-
cet Digital Health mapped the distribution of AI RCTs across over 20 countries and multiple 
specialties, with European nations leading in implementation. Infectious diseases remain 
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underrepresented, highlighting a critical opportunity for growth. As this field matures, the 
application of AI to antimicrobial stewardship may shift from isolated pilots to multicenter, 
multicountry implementations driven by standardized validation protocols.

The application of molecular technologies and machine learning in the diagnosis and 
management of infectious diseases is transforming the clinical landscape. Rapid mole-
cular identification of pathogens accelerates the time to appropriate therapy, while AI 
systems ensure that treatment decisions are not only fast but evidence-based and indi-
vidualized. The generalization of AI models across institutions enables scaling of these 
benefits, reducing hospital length of stay and healthcare costs. The future of antimicro-
bial stewardship will rely increasingly on AI to navigate the growing complexity of micro-
biological data, drug resistance trends, and therapeutic options. Ongoing research must 
continue to refine these tools, ensure equitable access, and validate their effectiveness in 
diverse populations and care settings.
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