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CHAPTER

Artificial intelligence (Al) is increasingly becoming a pivotal elementin clinical decision-ma-
king, particularly in the realm of infectious diseases and antimicrobial stewardship. Re-
cent advancements have allowed for the integration of machine learning algorithms into
molecular diagnostic workflows, enabling clinicians to make more accurate, timely, and
personalized therapeutic decisions. This multidisciplinary approach—bridging medicine,
molecular biology, and data science—requires leadership not only in clinical practice but
also in institutional transformation and health informatics. Professionals engaged in this
field often hold dual expertise in both clinical microbiology and systems-level manage-
ment, reflecting the complex ecosystem needed to implement Al at scale. The role of
academic and private institutions, such as medical schools and diagnostic laboratories, is
fundamental in supporting this transformation. These centers serve as both data-gene-
rating environments and implementation hubs for Al-based stewardship tools. Thus, the
convergence of clinical, academic, and entrepreneurial efforts forms the cornerstone of
next-generation infectious disease management.

Artificial intelligence is not introduced into a vacuum; it must be aligned with global heal-
th strategies to have meaningful clinical and epidemiological impact. The World Health
Organization (WHO) has laid out a comprehensive blueprint to combat antimicrobial re-
sistance (AMR), which provides an essential context for the implementation of Al in clini-
cal practice. Among the key pillars outlined are the strengthening of surveillance systems
such as GLASS (Global Antimicrobial Resistance Surveillance System), the optimization of
antimicrobial use through national stewardship programs, and the promotion of infec-
tion prevention and control (IPC) protocols. Furthermore, the WHO emphasizes the im-
portance of enforcing appropriate regulation and access to antimicrobials, raising public
and professional awareness, investing in research and innovation, and adopting a One
Health approach that integrates human, animal, and environmental health. Al systems,
particularly those embedded within stewardship frameworks, can serve as accelerators



across all these domains by transforming raw microbiological and clinical data into actio-
nable insights at both the patient and policy levels. (WHO, 2025)

The optimization of antimicrobial use, as outlined by the WHO, is not only a policy ob-
jective but also a clinically imperative one. Central to this strategy is the application of
standardized tools such as the AWaRe classification, which organizes antibiotics into Ac-
cess, Watch, and Reserve categories to promote responsible prescribing. Al systems have
the potential to operationalize these guidelines in real time, integrating them into clini-
cal decision-making at the bedside. The WHO's AWaRe Antibiotic Book becomes more
than a reference—it becomes a programmable logic embedded into algorithms that
guide therapy according to drug class, local susceptibility patterns, and patient-specific
variables such as route of administration, dosage, and duration. Education and capacity
building among healthcare providers are vital to ensure adoption, but Al can also serve
as an educational tool, reinforcing correct prescribing behaviors through dynamic feed-
back. The integration of these platforms with surveillance systems such as GLASS enables
the continuous monitoring of antimicrobial use and resistance trends, thereby allowing
stewardship programs to be both data-driven and adaptable. Moreover, Al-driven in-
terventions are strengthened through partnerships with international networks such as
GARDP, the AMR Action Fund, and CARB-X, and are increasingly guided by a One Health
perspective that unites diverse disciplines under a shared goal of preserving antimicro-
bial efficacy. (WHO, 2025)

The roots of artificial intelligence trace back to 1956, when the Dartmouth Conference
formally introduced the concept as a new scientific field. Early Al research was driven by
bold optimism, with the first generation of neural networks—the Perceptron—attemp-
ting to simulate human learning through simple pattern recognition models. Despite the
technological limitations of the time, these foundational ideas laid the groundwork for
the current revolution in computational medicine. Al was envisioned not just as a techni-
cal tool, but as a philosophical shift toward machines capable of learning, reasoning, and
adapting—qualities now being harnessed to confront modern challenges in infectious
disease management. (Diana & Tecnologia, 2025)

Al in medicine relies on its core capabilities: learning from data and adapting to evolving
environments. These systems differ fundamentally from traditional software in that they
do not follow static rules; instead, they analyze patterns, generate probabilistic predic-
tions, and update themselves as new data becomes available. This learning capacity is
especially critical in microbiology, where pathogen resistance profiles and treatment res-
ponses vary across time, geography, and patient populations. Adaptability ensures that
Al tools remain clinically relevant even in the face of rapidly changing resistance trends,
emerging pathogens, and new antimicrobial agents.
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Machine learning, a subset of Al, provides the framework for predictive modeling in
clinical microbiology. It operates by training algorithms on large datasets to identify
patterns and infer associations. In antimicrobial stewardship, these models are fed with
data from susceptibility tests, demographic variables, clinical outcomes, and treatment
regimens. Predictive models then determine the likelihood of treatment success or re-
sistance emergence under various conditions. High-performing models can generalize
these predictions to new patients, offering tailored guidance even in the absence of full
clinical information. The clinical utility of such models depends on their ability to process
both structured (e.g., MIC values, lab results) and unstructured (e.g., physician notes, his-
torical behaviors) data.

There are three principal types of machine learning algorithms utilized in clinical settings.
Supervised learning, the most commonly applied, involves using labeled datasets to train
models to classify or predict outcomes such as resistance status or treatment response.
Unsupervised learning, by contrast, finds hidden patterns in data without pre-existing
labels, useful for identifying unknown clusters of resistance or transmission networks.
Reinforcement learning, inspired by behavioral psychology, involves models learning
through trial and error—receiving feedback after each decision to improve over time. In
a stewardship context, reinforcement learning could optimize dosing strategies or esca-
lation protocols in ICU environments.

The selection of machine learning methodology must consider both strengths and limi-
tations. Supervised learning is powerful and interpretable when large, high-quality labe-
led datasets are available. However, it is less robust in novel or poorly labeled situations.
Unsupervised learning offers greater flexibility in data exploration but may yield results
that are difficult to validate clinically. Hybrid models that incorporate elements of both
approaches, and are refined with human feedback, represent a promising path forward.
These models must be tested rigorously to ensure reproducibility, interpretability, and
patient safety.

The technical structure of Al models in medicine often involves deep neural networks—
multi-layered architectures designed to process complex relationships within high-di-
mensional data. A typical deep network includes an input layer that receives clinical va-
riables, multiple hidden layers that perform weighted computations, and an output layer
that generates predictions, such as antimicrobial recommendations. These layers are tra-
ined through iterative backpropagation to minimize prediction errors. Such architectures
are particularly suited for integrating diverse datasets (e.g., genetics, microbiology, de-
mographics), producing insights that may elude conventional analytical methods.

The clinical decision-making environment is inundated with multidimensional data. Each
patient interaction involves dozens of factors: pathogen species, resistance genes, an-



timicrobial mechanisms, prior allergies, site of infection, diagnostic code, age, and sex.
When combined with treatment variables—such as drug interactions, guideline constra-
ints, and FDA alerts—the number of potential permutations exceeds seventeen tetraka-
quadragintillion. No human can process this complexity in real time, but Al can. These
systems synthesize disparate variables to generate clinically actionable recommenda-
tions tailored to the unique microbial and patient profile, making Al a necessary tool
rather than a luxury.

Arkstone’s Machine Learning platform incorporates a Human-in-the-Loop (HTL) archi-
tecture to balance algorithmic precision with clinical judgment. Rather than removing the
clinician from the process, HTL models actively solicit and integrate physician input, par-
ticularly in ambiguous or high-risk cases. The model assigns weighted relevance to each
variable based on clinical context—prioritizing pathogen-resistance matches, alerting on
potential drug interactions, and accounting for patient-specific limitations. This results in
a customized, context-sensitive antimicrobial regimen that remains aligned with eviden-
ce-based guidelines while accommodating real-world complexity. (Figure 1)
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Figure 1. Schematic representation of the Arkstone model

Implementing an artificial intelligence model in medicine follows a multistep process
that begins with dataset acquisition and preprocessing. High-quality, annotated data are
first split into training and test subsets, often through multiple iterations to assess model
stability and prevent overfitting. One common technique, cross-validation, systematically
partitions the dataset to ensure robustness and generalizability. In repeated random tra-
in-test splits, data are randomly divided without fixed logic, whereas K-fold cross-valida-
tion divides data into K segments, rotating through them to validate performance across
subsets. More refined methods like stratified K-fold maintain class distribution across
folds, while leave-one-out cross-validation (LOOCV) tests the model on every individual
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case iteratively. External validation, where the model is applied to datasets from different
institutions, is essential to assess portability. Prospective validation examines model per-
formance in real-time clinical workflows, while retrospective validation compares model
predictions to past clinical decisions. These layers of validation ensure that an Al tool is
not just technically sound but clinically meaningful across diverse settings. More detailed
explanation you can see in the chapter before. (Chapter X)

The steps to implement a model in medicine can be seen in Figure 2.

e 5 STEPS TO 2 VALIDATE THE MODEL
IMPLEMENT A
MODEL IN
RESEARCH WITH THE 4 MEDICINE 3 IMPLEMENT THE MoDEL

Figure 2. Steps to implement a model based on Al in medicine

A practical application of Al in infectious disease care is demonstrated through Arksto-
ne's integration of molecular test results into therapeutic recommendations. By analyzing
the genetic profiles of pathogens and aligning them with antimicrobial susceptibility
patterns, the system produces targeted treatment options, often hours or days before
traditional phenotypic methods. This shift in temporal advantage not only accelerates
appropriate therapy but also curbs the use of broad-spectrum antibiotics, reducing re-
sistance pressure. Visual graphics accompanying the tool illustrate the simplified flow
of decision-making: molecular result input, algorithmic processing, and output in the
form of a personalized regimen. The system can account for molecular markers such as
CTX-M, NDM, or VIM, guiding clinicians in real time toward optimal therapies. A graphic
representation of this integration can see in Figure 3.

Artificial intelligence and machine learning must function not in isolation but within the
framework of established clinical guidelines. In infectious diseases, the IDSA (Infectious
Diseases Society of America) guidelines provide evidence-based standards for mana-
ging infections such as bacteremia, pneumonia, and urinary tract infections. Al platforms
trained on molecular (OneChoice®) and phenotypic data (OneChoice Fusion®) incorpo-
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Figure 3. Data transformation through the model created by Arkstone, from
a molecular blood culture result to report generation

rate these protocols into their decision logic, ensuring that recommendations align with
gold-standard care. Furthermore, integration with local antibiograms, drug availability
lists, and formulary restrictions allows models to adapt to institutional realities. Thus,
Al acts as a digital steward, transforming static guidelines into dynamic, individualized
treatment decisions.

The implementation of Al in medicine requires a multi-tiered strategy for validation, re-
finement, and integration. As detailed previously, data partitioning techniques such as
K-fold cross-validation and LOOCV help ensure robustness. Yet beyond technical accu-
racy, validation must include clinical sensibility. Models are evaluated not just for their
predictive strength but for their concordance with expert infectious disease recommen-
dations. For example, was the pathogen correctly identified as the cause of infection?
Did the Al recommend an effective drug at the correct dose and duration? Were relevant
pathogens overlooked? These questions frame the core of internal validation studies.
The reference by Frenkel et al. (Frenkel A, et al. 2025) presents a structured framework
to evaluate the trainability and clinical fidelity of an Al-powered decision support system.
The model’s ability to recall simple and complex patterns, as well as to replicate sound
therapeutic choices, is subjected to rigorous scrutiny across hundreds of cases.

The practical utility of the Al system is further exemplified by a head-to-head comparison
between OneChoice Molecular Result (AOCHMR) (based solely on molecular data) vs
Onechoice Fusion Results (AOCHFR) (which incorporates both molecular and phenotypic
data) in Bacteremic patients. ( Gomez de la Torre, J.C, et al. 2025). Time-motion gra-
phics display how AOCHMR accelerates decision-making by up to two days compared to
conventional workflows (Figure 4).
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Figure 4. Time difference between AOCHMR and AOCHFR.

This temporal advantage translates into earlier optimization of therapy as described in
Figure 5. and potentially reducing mortality, length of stay, and costs.

Figure 5. (a) Confusion matrix for antibiotic recommendations between
AOCHMR and AOCHFR; (b) Concordance in therapeutic recommendations
between AOCHMR

In a real-world cohort, the Al system’s recommendations were compared to final pres-
criptions in patients with confirmed infections. This analysis was conducted across mul-
tiple metrics, including mortality at 28 days, duration of hospitalization, adverse effects,
and drug interactions. The Al system demonstrated a capacity to reduce unnecessary
broad-spectrum use, thereby minimizing toxicities and resistance propagation. The da-



taset also allowed subgroup analyses by infection site, pathogen, and resistance mecha-
nism. These metrics offer compelling evidence for the system'’s clinical value, not only in
terms of accuracy but also in improving meaningful patient outcomes.

This ongoing retro-prospective study seeks to evaluate the OneChoice® Al report in a
Peruvian private hospital. Beginning in January 2021 and extending through March 2026,
this study involves over 200 patients hospitalized with microbiologically confirmed in-
fections. Molecular diagnostic data are processed through the Al engine, and the clinical
team evaluates the concordance between Al suggestions and actual therapeutic outco-
mes. Oversight is provided by the INSN institutional ethics committee, ensuring metho-
dological rigor. Although the study is in progress, preliminary results have demonstrated
promising alignment between Al-driven and physician-selected therapies. (Gomez de la
Torre, JC et al., 2025).

One of the clearest examples of the value of Al emerges in the management of urinary
tract infections. Traditional workflows rely on urine microscopy and culture, with turna-
round times of 48-72 hours. During this window, clinicians must prescribe empirically,
often without knowing the causative organism or resistance profile. Failure rates in em-
pirical therapy can reach 20-30%. By contrast, if we use the OneChoice® model using
machine learning predictions based on over 185,000 historical isolates to propose opti-
mal therapy from the outset, we may be able to reduce these risks of failure by predicting
the microorganism, antimicrobial resistance thanks to the model. Variables such as age,
gender, prior infection history, and comorbidities are factored in, generating predicti-
ve models for pathogen presence and resistance. These predictions reduce empirical
guesswork and may be allowed clinicians to tailor treatment even before final culture
results are available.

The implementation of the Al tool at the biggest public hospital in Pert further illustrates
how clinical models must be adapted to local conditions. The hospital’s antimicrobial
formulary lacks several advanced agents such as cefiderocol, daptomycin, and ceftolo-
zane-tazobactam. The Al engine is thus customized to exclude unavailable options while
adjusting recommendations based on drug accessibility and institutional restrictions. For
example, linezolid and levofloxacin are tightly restricted due to high tuberculosis preva-
lence. Surveillance practices, such as rectal swabs for CRE carriers, must also be integra-
ted into Al outputs. These nuances underscore the necessity of contextual adaptation for
successful Al deployment in diverse health systems.

On a global scale (Han, Ryan et al., 2024), Al is being tested across numerous clinical do-
mains through randomized controlled trials (RCTs). A scoping review published in The Lan-
cet Digital Health mapped the distribution of Al RCTs across over 20 countries and multiple
specialties, with European nations leading in implementation. Infectious diseases remain
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underrepresented, highlighting a critical opportunity for growth. As this field matures, the
application of Al to antimicrobial stewardship may shift from isolated pilots to multicenter,
multicountry implementations driven by standardized validation protocols.

The application of molecular technologies and machine learning in the diagnosis and
management of infectious diseases is transforming the clinical landscape. Rapid mole-
cular identification of pathogens accelerates the time to appropriate therapy, while Al
systems ensure that treatment decisions are not only fast but evidence-based and indi-
vidualized. The generalization of Al models across institutions enables scaling of these
benefits, reducing hospital length of stay and healthcare costs. The future of antimicro-
bial stewardship will rely increasingly on Al to navigate the growing complexity of micro-
biological data, drug resistance trends, and therapeutic options. Ongoing research must
continue to refine these tools, ensure equitable access, and validate their effectiveness in
diverse populations and care settings.
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