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Abstract: Background: Bloodstream infections continue to pose a serious global health
threat due to their high morbidity and mortality, further worsened by rising antimicrobial
resistance and delays in starting targeted therapy. This study assesses the accuracy and
timeliness of therapeutic recommendations produced by an artificial intelligence (AI)-
driven and machine-learning (ML) clinical decision support system (CDSS), comparing
results based on molecular diagnostics alone with those that combine molecular and
phenotypic data (standard cultures). Methods: In a prospective cross-sectional study
conducted in Lima, Peru, 117 blood cultures were analyzed using FilmArray/GeneXpert
for molecular identification and MALDI-TOF/VITEK 2.0 for phenotypic profiling. The
AI/ML-based CDSS provided treatment recommendations in two formats, which were
assessed for concordance and turnaround time. Results: Therapeutic recommendations
showed 80.3% consistency between data types, with 86.3% concordance in pathogen and
resistance detection. Notably, molecular-only recommendations were delivered 29 h earlier
than those incorporating phenotypic data. Escherichia coli was the most frequently isolated
pathogen, with a 95% concordance in suggested therapy. A substantial agreement was
observed in treatment consistency (Kappa = 0.80). Conclusions: These findings highlight
the potential of using AI-powered CDSS in conjunction with molecular diagnostics to
accelerate clinical decision-making in bacteremia, supporting more timely interventions
and improved antimicrobial stewardship. Further research is warranted to assess scalability
and impact across diverse clinical settings.

Keywords: bacteremia; bloodstream infection; antimicrobial stewardship; artificial
intelligence; clinical decision support systems; machine learning; molecular diagnostic;
rapid diagnostic testing

1. Introduction
Bloodstream infections (BSIs) represent a significant global health challenge, contribut-

ing substantially to morbidity, mortality, and increased healthcare costs [1,2]. The incidence
of BSIs is often linked to conditions such as sepsis, septic shock, and multi-organ failure,
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leading to approximately 11 million deaths annually worldwide, with a disproportionate
burden in resource-limited settings [3,4]. In locations such as Peru, the escalating preva-
lence of antimicrobial resistance (AMR) further exacerbates the challenges of managing
BSIs, rendering treatment more complex and significantly increasing mortality rates [5].

Timely and appropriate antimicrobial therapy is crucial for managing BSIs, as de-
lays can increase mortality rates [6,7]. Traditional diagnostic methods, relying on blood
cultures and phenotypic susceptibility testing, typically require 48–72 h for pathogen iden-
tification and susceptibility determination [8,9]. This delay often hinders the ability to
initiate early, targeted therapy, leading to poorer patient outcomes. Recent advances in
diagnostic technologies offer promising solutions to this problem, with rapid molecular
diagnostic platforms, such as FilmArray (BioFire Diagnostics, LLC, Salt Lake City, UT, USA)
and GeneXpert (Cepheid, Sunnyvale, CA, USA), significantly reducing the time needed
for pathogen identification and clinically relevant resistance gene detection compared to
traditional methods [10–13].

Artificial intelligence (AI) and machine learning (ML) are now being integrated into
clinical decision support systems (CDSS) to address limitations in solely molecular-based
diagnostics and traditional methods [14–16]. AI’s ability to analyze complex datasets
and provide actionable insights has been demonstrated in various infectious disease con-
texts [17–20]. However, the comparative performance of CDSS based solely on molecular
data versus those incorporating integrated molecular and phenotypic data remains un-
derexamined due to limited studies. While systems like Arkstone’s OneChoice Molecular
report (AOCHMR), which generates therapeutic recommendations based on molecular
diagnostic data, have shown promise, the extent to which they align with gold standards
has not been evaluated [21,22].

This study addresses the knowledge gap by evaluating the precision of therapeutic
recommendations generated by the AOCHMR compared to Arkstone’s OneChoice Fusion
report (AOCHFR), which combines molecular and phenotypic data. Specifically, we seek to
quantify the diagnostic accuracy and therapeutic concordance between these two approaches,
within a cohort of patients with bacteremia in Lima, Peru. This will involve a prospec-
tive, cross-sectional analysis of 117 patients with bacteremia, where pathogen identification
and antimicrobial susceptibility were determined using FilmArray/GeneXpert and MALDI-
TOF/VITEK 2.0, respectively. AI and ML technologies were used to analyze the molecular
data, including a validated machine learning algorithm. The study was conducted in a private
clinical lab. By evaluating the efficacy and reliability of rapid molecular-based diagnostics,
we hope to provide insight on how to enhance clinical practice, strengthen antimicrobial
stewardship efforts, build clinicians’ confidence in rapidly generated results, and accelerate
access to appropriate therapies in settings with high rates of antimicrobial resistance. Peru’s
healthcare landscape, marked by a high burden of antimicrobial resistance and limited re-
sources, provides a critical setting for evaluating the impact of these diagnostic strategies [5].
Findings provided by this study may lead to implementations of CDSS and diagnostic models
elsewhere that can significantly reduce the time to optimal therapy [23].

2. Materials and Methods
2.1. Study Design and Setting

This study was designed as a prospective, observational, cross-sectional analysis to
evaluate the precision of therapeutic recommendations generated by two distinct systems:
AOCHMR, which uses molecular results to provide treatment guidance to clinicians,
and AOCHFR, which similarly offers guidance but incorporates both phenotypic and
molecular results. The study was conducted at a private clinical laboratory in Lima, Peru,
from August 2024 to December 2024. A cross-sectional design was chosen to assess the
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agreement between the two diagnostic approaches within a defined timeframe, enabling a
direct comparison under consistent laboratory conditions.

2.2. Study Population

Participants in this study were patients diagnosed with bacteremia, identified by
at least one positive blood culture for a known pathogenic organism. Selection criteria
included adults aged 18 years and older, presenting with clinical signs consistent with
bloodstream infection. Patients were excluded if they had invalid phenotypic identification
or antibiogram results using MALDI-TOF or VITEK 2.0, or if they lacked preliminary
AOCHMR or final AOCHFR recommendations (scenarios where no recommendations
were provided). The study aimed to minimize selection bias by including consecutive
patients meeting the inclusion criteria during the study period.

2.3. Data Acquisition and Description

Blood samples were collected from patients with suspected bacteremia and processed for
blood cultures. The initial positive blood culture bottles, corresponding to the earliest positivity
alarm, were selected for analysis. The study employed two principal testing methodologies:

Molecular Testing: Positive blood culture samples underwent rapid molecular analysis
using the FilmArray Blood Culture Identification (BCID) Panel (BioFire Diagnostics, LLC,
Salt Lake City, UT, USA) or Xpert® MRSA/SA Blood Culture (Cepheid LLC, Sunnyvale,
CA, USA), selected based on Gram stain results. The assays were conducted according
to the manufacturer’s instructions, with specific attention to reagent preparation, sample
volume (200 µL), and assay run conditions (temperature and duration).

Phenotypic Testing: Organisms from positive blood cultures were isolated on agar me-
dia, including Blood Agar, Chocolate Agar, McConkey Agar, and Sabouraud Agar. Micro-
bial identification was performed using the Matrix-assisted laser desorption ionization-time
of flight mass spectrometry (MALDI-TOF MS, Bruker, Billerica, MA, USA) (bioMérieux)
system, calibrated daily to ensure accuracy. Antimicrobial susceptibility testing (AST) was
conducted using the VITEK 2.0 (bioMérieux SA, Lyon, France) automated system, with the
results integrated to generate AOCHFR recommendations.

2.4. Study Procedures and Tools/Instruments/Materials/Equipment Molecular Testing Procedures

1. Sample Preparation: A 200 µL aliquot of positive blood culture was prepared for
analysis. The sample was mixed with a lysis buffer to release nucleic acids.

2. FilmArray/GeneXpert Assay: The prepared sample was loaded into the FilmArray
or GeneXpert cartridge and inserted into the instrument. The system performed
automated nucleic acid extraction, amplification, and detection, providing results
within approximately 2 h.

3. Pathogen Identification and Resistance Detection: The system identified pathogens
and detected antimicrobial resistance genes, generating an AOCHMR with therapeutic
recommendations based solely on molecular findings.

Phenotypic Testing Procedures

1. Culture and Isolation: Positive blood culture samples were streaked onto agar plates and
incubated at 37 ◦C for 18–24 h. Colonies were examined for morphological characteristics.

2. MALDI-TOF Identification: A single colony was applied to a MALDI-TOF target plate,
overlaid with a matrix solution, and analyzed by the mass spectrometer. The system
matched the obtained spectra to a reference database for organism identification.

3. VITEK 2.0 AST: Isolated organisms were suspended in saline to a McFarland standard
of 0.5 and loaded into the VITEK 2.0 system for AST. The system provided results
within 8–12 h, which were used to refine AOCHFR therapeutic recommendations.
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2.5. Data Preparation

Data from molecular and phenotypic testing were compiled into a centralized database
(Supplement S1 in Supplementary Materials). Each patient’s results were anonymized using
numeric codes to maintain confidentiality. Data cleaning involved verifying the consistency
of test results, checking for missing values, and resolving discrepancies between molecular
and phenotypic findings.

2.6. Data Analysis

Statistical analyses were conducted using Stata v17 software (StataCorp., College
Station, TX, USA). Categorical variables, such as gender and concordance measures, were
reported as frequencies and percentages. Continuous variables, including age, number of
bottles taken, time to the first alert, AOCHMR time, AOCHFR time, and time difference,
were summarized using median and interquartile range (IQR).

The results generated an AOCHMR (Supplement S2), which included therapeutic
recommendations based solely on molecular findings (Figure 1).

Figure 1. Workflow and time comparison: AOCHMR vs. AOCHFR.

Results were integrated to generate AOCHFR (Supplement S3), which included re-
fined therapeutic recommendations based on phenotypic and molecular data (Figure 1).
Both AOCHMR and AOCHFR provided primary therapeutic recommendations that were
considered optimal and preferred (called OneChoice), and secondary recommendations
(called Alternative Treatment Options).

2.7. Statistical Techniques

1. Concordance Analysis**: Cohen’s Kappa was used to measure the agreement between
the therapeutic recommendations of AOCHMR and AOCHFR. This analysis provided
insight into the consistency and reliability of the molecular-only versus combined
molecular and phenotypic approaches.

2. Regression Analysis: Poisson regression was employed to analyze factors influencing
concordance between AOCHMR and AOCHFR recommendations. This included
controlling for potential confounders such as age, gender, number of positive vials,
time differences, and specific bacteriological factors. Poisson regression was chosen
based on its suitability for modeling count data and the presence of overdispersion in
the outcome variable.
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3. Time Comparison: A paired non-parametric test (Mann–Whitney U) was conducted
to evaluate the time efficiency of AOCHMR versus AOCHFR recommendations. The
time difference in hours between the two systems was analyzed to provide insights
into the potential clinical advantages of each diagnostic approach.

2.8. Ethical Considerations

The Faculty of Health Sciences Ethics Committee at the Universidad Privada de Tacna
approved the study protocol. Given the study’s reliance on secondary analysis of de-
identified data, the requirement for patient consent was waived. All patient data were
anonymized using numeric codes to ensure confidentiality and compliance with ethical
standards. The ethical considerations were guided by principles of respect for persons,
beneficence, and justice, ensuring that the research adhered to high ethical standards while
minimizing risks to participants. We used Generative AI to make Figures 2–4.

3. Results
A total of 117 patients with bacteremia were enrolled in this study to evaluate the con-

cordance between therapeutic recommendations generated by AOCHMR and AOCHFR.
The median age of the study population was 67 years, with an interquartile range (IQR) of
45 to 79 years, and there was a slightly higher proportion of males (58.12%) compared to
females (41.88%). On average, two blood culture bottles were taken per patient (IQR: 2–4),
with a median of two bottles testing positive (IQR: 1–2). The median time to the first alert
for bacterial growth was 13 h (IQR: 11–16), as detailed in Table 1, which comprehensively
summarizes the study population’s demographic, clinical, and bacteriological character-
istics and a time-to-result analysis. This table is critical for understanding the baseline
characteristics of the cohort and the efficiency of the diagnostic methods employed.

Table 1. Demographics, clinical and bacteriological findings, and time-to-result analysis in patients with
bacteremia by concordance of primary therapeutic recommendations between AOCHMR and AOCHFR.

Variable Total
(n = 117)

Non-Concordance
(n = 23)

Concordance
(n = 94) p-Value

Demographics and Clinical Characteristics

- Age (years) 1 67 (45–79) 69 (45–79) 65.5 (46–80) 0.898 a

- Male gender (%) 68 (58.12) 13 (56.52) 55 (58.51) 0.862 b

- Blood culture bottles collected per patient 1 2 (2–4) 2 (2–4) 2 (2–4) 0.999 a

- Positive blood culture bottles per patient 1 2 (1–2) 2 (1–2) 2 (1–2) 0.822 a

- Time to first alert (hours) 1 13 (11–16) 13 (12–16) 13 (11–16) 0.439 a

Bacteriological and Molecular Results -

- Bacteria detected by molecular method (%) 117 (100.0) 23 (100.0) 94 (100.0)

- Bacteria detected by conventional culture (%) 117 (100.0) 23 (100.0) 94 (100.0)

- Concordance in bacterial identification (%) 101 (86.32) 16 (69.56) 85 (90.42) 0.027 b

- Concordance in bacterial resistance identification (%) 101 (86.32) 16 (69.56) 85 (90.42) 0.011 b

Time comparison

- AOCHMP time (hours) 1 16.81 (14.38–20.58) 18.02 (15.98–20.33) 16.62 (14.17–20.68) 0.434 a

- AOCHFR time (hours) 1 46.32 (40.41–55.69) 47.83 (42.92–66.95) 45.84 (39.85–54.25) 0.111 a

- Time difference (hours) 1 28.43 (22.93–34.89) 29.57 (23.85–43.68) 28.09 (22.61–34.42) 0.246 a

Concordance of Therapeutic Recommendations

- Primary recommendation concordance (%) 94 (80.34) - - -

- Alternative recommendation concordance (%) 57 (48.71) 4 (17.39) 53 (56.38) 0.002 b

median and interquartile range, a = U-Mann–Whitney test, b = chi-squared test. Bacterial identification and
Resistance mechanism Detection.
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The AOCHMR and AOCHFR methods utilized MALDI-TOF mass spectrometry for
bacterial identification, successfully identifying 117 bacterial species. The concordance
between the two methods for species detection was high, at 86.32%. Resistance mechanism
detection also showed an 86.32% concordance rate. Escherichia coli was the most prevalent
bacterial species identified, accounting for 41.0% of cases, followed by Pseudomonas aerug-
inosa (6.8%) and Klebsiella pneumoniae (5.1%). These findings are visually represented in
Figure 2, illustrating the distribution of bacterial species identified in the study.

Figure 2. Distribution of detected bacteria.

3.1. Time to Recommendation

The time to generate therapeutic recommendations differed significantly between the
two systems. The median time for the AOCHMR was 16.81 h (IQR: 14.38–20.58), whereas
the AOCHFR report required a median time of 46.32 h (IQR: 40.41–55.69). The median
difference in time to results between the two methods was 28.43 h (IQR: 22.93–34.89), as
shown in Figure 3. This substantial difference in reporting time highlights the potential
clinical advantage of the AOCHMR system in providing rapid therapeutic guidance.

Figure 3. Time difference between AOCHMR and AOCHFR.
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3.2. Concordance of Therapeutic Recommendations

Primary therapeutic recommendations between AOCHMR and AOCHFR showed a
high level of agreement, with concordance observed in 80.34% of cases and discordance
in 19.66%. However, agreement for alternative therapeutic options was lower, with only
48.71% concordance and 51.29% discordance, as detailed in Table 1. The overall Cohen’s
Kappa index for therapeutic recommendations was 0.80, indicating substantial agreement
between the two systems. Agreement was particularly strong for commonly recommended
antibiotics: Ceftriaxone and ertapenem had the highest concordance, with 34 and 31 match-
ing cases, respectively. Moderate agreement was observed for antibiotics like cefepime
(six cases) and vancomycin (four cases). Some discrepancies were noted, particularly with
penicillin, which, despite four concordant cases, also showed mismatches when alternatives
like ampicillin were recommended instead, or in scenarios where no primary option could
be provided at all. These findings are further illustrated in Figure 4a, which provides a
detailed side-by-side comparison of antibiotic recommendations between the two systems.

 

Figure 4. (a) Confusion matrix for antibiotic recommendations between AOCHMR and AOCHFR;
(b) Concordance in therapeutic recommendations between AOCHMR and AOCHFR grouped
by bacteria.

Poisson regression analysis was conducted to identify variables associated with the
prevalence of concordance between the therapeutic recommendations of AOCHMR and
AOCHFR. Two variables were significantly associated with concordance in the crude analysis:
the presence of three positive blood culture bottles (crude Prevalence Ratio [cPR] = 1.20; 95%
Confidence Interval [CI]: 1.04–1.37; p = 0.009) and the isolation of Pseudomonas aeruginosa
(cPR = 0.50; 95% CI: 0.249–1.002; p = 0.05). However, in the adjusted analysis, only the
isolation of Streptococcus remained statistically significant, with its presence associated with a
lower prevalence of concordance (adjusted Prevalence Ratio [aPR] = 0.40; 95% CI: 0.16–0.98;
p = 0.04). These results are summarized in Table 2, which presents the crude and adjusted
prevalence ratios for concordance with primary therapeutic recommendations.
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Table 2. Poisson regression analysis evaluates crude and adjusted prevalence ratios of concordance
with primary therapeutic recommendations between AOCHMR and AOCHFR in bacteremias.

Variable cPR (95% CI) p-Value aPR (95% CI) p-Value

Age 0.999 (0.996–1.003) 0.88 -

Male gender 1.016 (0.845–1.221) 0.86 -

Blood culture bottles collected
per patient 0.82 -

- Two Reference

- Four 0.977 (0.802–1.190)

Positive blood culture bottles
per patient -

- Two 0.918 (0.758–1.113) 0.38

- Three 1.200 (1.047–1.374) <0.01 0.954 (0.858–1.060) 0.38

- Four 1.066 (0.815–1.395) 0.63

Time to result of molecular (hours) 1.001 (0.993–1.008) 0.76 -

Time to result of phenotype 0.997 (0.991–1.002) 0.32 -

Bacteria detected by
conventional culture

- Escherichia coli 0.958 (0.903–1.016) 0.15

- Salmonella spp. 0.800 (0.586–1.092) 0.16

- Klebsiella spp. 0.888 (0.704–1.120) 0.32

- Pseudomonas aeruginosa 0.500 (0.249–1.002) 0.05 0.545 (0.272–1.091) 0.08

- Streptococcus spp. 0.375 (0.152–0.920) 0.03 0.408 (0.169–0.988) 0.04

- Polymicrobial 0.750 (0.501–1.120) 0.16
cPR: crude Prevalence Ratio; 95% CI: 95 percent confidence interval.

Our results demonstrate that the AOCHMR system delivers rapid, reliable therapeutic
recommendations with substantial concordance to the AOCHFR system, especially for
primary treatment options. These findings highlight AOCHMR’s potential to improve
clinical decision-making by providing timely, accurate guidance for therapy selection.

4. Discussion
This study presents a comparative evaluation of two CDSS approaches (AOCHMR

and AOCHFR) based on AI and ML, aimed at recommending antimicrobial treatments
in patients with bacteremia, using either molecular diagnostic results alone or combined
with phenotypic susceptibility data. Our findings reveal a high level of concordance
between the two systems for initial therapeutic recommendations, with an agreement
rate of 80.34%. The discrepancies may be due to the inability of some molecular systems
to detect phenotypic resistance, which could lead to differences in antibiotic therapy if
not complemented with phenotypic susceptibility data [24]. Additionally, there was a
consistency of 86.32% in detecting bacterial species and resistance genes. This supports
previous studies highlighting that complementing molecular testing with conventional
methods improves diagnostic accuracy [25]. A significant advantage of the AOCHMR
system was its speed, delivering results approximately 29 h faster than the AOCHFR
system, underscoring the potential of rapid molecular diagnostics in guiding antimicrobial
therapy decisions in bacteremia.

The high concordance observed between AOCHMR and AOCHFR suggests that
rapid molecular testing, coupled with a robust Clinical Decision Support System (CDSS),
can be a reliable tool in the early management of bacteremia. This is particularly critical
in conditions like sepsis and bacteremia, where delayed antimicrobial administration is
associated with increased mortality, as noted by Bonine et al. [6]. AOCHMR provided
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clinicians with actionable therapeutic recommendations within approximately 16.81 h
post-blood culture collection, a crucial timeframe for such time-sensitive conditions. In
contrast, the AOCHFR system took nearly 46 h. This rapid turnaround offers a significant
opportunity to improve outcomes for bacteremia patients, especially those who are critically
ill. Importantly, our findings demonstrate that relying solely on molecular methods can
provide correct recommendations in 80% of bacteremia cases, 29 h earlier than conventional
methods, and this accuracy can reach up to 95% depending on the detected bacteria and
resistance genes.

The analysis of time differences between the two testing methods further emphasizes
the clinical relevance of molecular diagnostics. Our findings align with those reported by
Holma et al. and Lau et al. [10,26], showcasing the capability of molecular methods to
swiftly identify pathogens and resistance genes, thereby reducing the time to therapeutic
recommendations. In this study, we demonstrated reducing the time to therapeutic recom-
mendations by approximately 29 h. Rapid molecular assays and mass spectrometry for
identifying bacterial species and susceptibility in blood cultures have been associated with
statistically significant improvements in initiating appropriate antibiotic therapy [27,28],
reduced rates of recurrent infections [29], decreased mortality, shorter hospital stays, and
lower hospital costs [30,31]. In regions like Peru, where antimicrobial resistance (AMR)
is highly prevalent, the timely initiation of appropriate therapy is crucial for reducing
morbidity and mortality [5].

Despite the high level of agreement, our findings revealed a discordance rate of 19.66%
in primary and 51.29% in alternative antibiotic recommendations between the molecular-
based and molecular–phenotypic approaches. This highlights the need for integrated
approaches using both genotypic and phenotypic results for optimal antimicrobial recom-
mendations, particularly in complex resistance patterns, as described by Tamma et al. and
Claeys et al. [32,33]. The gap in concordance is partly due to the inability of molecular
methods alone to capture all phenotypic resistance patterns, as noted by Holma et al.
and Banerjee et al. [10,34]. In this context, AOCHFR provides an additional layer using
phenotypic data, which can further refine antibiotic recommendations.

Our Poisson regression analysis indicated that the isolation of Pseudomonas aerug-
inosa significantly influences the agreement between both systems, underscoring the
variability in test sensitivity and specificity among different bacterial species. Pseudomonas
aeruginosa may present a more complex resistance profile, as described by Qin et al.
and Giovagnorio et al. [23,35], reinforcing the need for a personalized approach to CDSS
implementation that accounts for prevalent pathogens and associated resistance in spe-
cific contexts [36]. However, the variability in resistance did not significantly affect the
consistency between both systems, demonstrating the robustness of the CDSS.

The exceptionally high concordance observed in therapeutic recommendations for
Escherichia coli (Figure 4b), which was the most frequently isolated pathogen, is noteworthy.
This suggests that the AOCHMR is highly reliable in guiding treatment for common bac-
teremia cases, providing appropriate antimicrobial guidance much faster than traditional
methods. This accelerated diagnostic pathway is crucial for improved antimicrobial stew-
ardship, allowing clinicians to quickly administer targeted therapy and reduce reliance on
broad-spectrum antibiotics, which can contribute to resistance and increase risks of adverse
reactions. The shift away from empirical treatment protocols marks a new paradigm in
bacteremia management. Studies show that AI, ML, and CDSS enhance antimicrobial
stewardship, while rapid diagnostic tests for bloodstream infections highlight the critical
importance of timely, targeted therapy to improve patient outcomes [19,37,38].

A Cohen’s kappa index of 0.80 for therapeutic recommendations aligns with findings
from other diagnostic concordance studies, indicating a high level of agreement between the



Life 2025, 15, 864 10 of 14

two systems. This is especially significant because the system incorporating both phenotypic
and molecular data is considered the gold standard, making the molecular-based system’s
ability to deliver similar recommendations in a shorter time particularly noteworthy.

AOCHMR, utilizing molecular data with AI/ML-powered CDSS, could represent a
paradigm shift in the management of bacteremia. The ability to obtain reliable therapeutic
recommendations in less than 20 h represents a significant advancement compared to the
nearly 49 h required by conventional phenotypic methods. This rapid decision-making
and a high degree of consistency hold important implications for clinicians. This method
could mitigate delays in appropriate therapy, particularly in settings with high AMR rates,
and improve patient outcomes. Moreover, the system can contribute to better antimicrobial
stewardship practices by reducing the dependence on empirical therapies, a significant
clinical dilemma when managing critically ill patients, as described by De Angelis et al.
and further supported by Blechman and Wright [19,39].

Despite the robust nature of our study, there are limitations to consider. First, this
was a single-center study conducted in a private laboratory, which may limit the general-
izability of our findings to other settings. Additionally, the relatively small sample size
and the exclusion of cases without a treatment recommendation from either algorithm
may introduce some selection bias. Second, we did not directly analyze clinical outcomes;
therefore, further research is needed to explore the system’s impact on mortality, morbid-
ity, and length of hospital stay. Future studies should investigate the real-world clinical
impact of implementing AOCHMR, including its effect on these key outcomes. Although
current research indicates that barriers to acceptance of these models persist among health-
care professionals—as these are still evolving tools [40]—it is also critical to assess the
cost-effectiveness of the rapid molecular CDSS and to evaluate how specific antimicro-
bial resistance patterns may influence the system’s performance. Moreover, conducting
prospective studies of real-time clinical outcomes in controlled trials will provide valuable
additional information.

It is also important to note that, in real-world clinical practice, therapeutic decisions
are not based solely on diagnostic test results, whether molecular or phenotypic. Clinical
judgment integrates multiple variables, including comorbidities, severity of illness, prior
antimicrobial treatments, site of infection, and local epidemiological patterns. The pur-
pose of this study was to evaluate, under controlled conditions, the diagnostic value and
therapeutic accuracy of rapid molecular data for guiding antimicrobial treatment. Our
findings should not be interpreted as a replacement for clinical judgment, but rather as a
complementary tool that may contribute to early therapeutic decision-making.

Finally, integrating additional clinical factors beyond those currently considered by
the AI/ML CDSS into the treatment decision-making algorithm may offer a more nuanced
approach to antimicrobial recommendations, something that is already being explored.

Our findings demonstrate that the AOCHMR system provides rapid and reliable
therapeutic recommendations with substantial concordance with the AOCHFR system, par-
ticularly for primary therapeutic options. The results underscore the potential of AOCHMR
to enhance clinical decision-making by delivering timely and accurate treatment guidance.

5. Conclusions
Our findings demonstrate that the AOCHMR, which utilizes AI/ML-CDSS based

solely on molecular data, provides rapid and accurate therapeutic recommendations for
bacteremia, addressing the critical need for timely intervention in high antimicrobial re-
sistance settings. This study makes an important contribution to the field of infectious
disease by demonstrating how AI/ML-driven systems and molecular methods can stream-
line decision-making in infectious disease management, ultimately reducing the time to
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effective treatment and improving patient outcomes. Integrating these technologies into
clinical practice has the potential to revolutionize antimicrobial stewardship by enabling
more precise and timely therapeutic strategies, ultimately shaping healthcare policies to
prioritize the adoption of advanced diagnostic tools.

Future research should focus on expanding the capabilities of AI/ML-powered sys-
tems by incorporating additional data types, such as patient demographics and environ-
mental factors, to enhance predictive accuracy. Furthermore, longitudinal studies assessing
the real-world impact of these systems on clinical outcomes and resistance patterns across
diverse healthcare settings are essential. Investigating the cost-effectiveness and scalability
of implementing AI/ML-driven diagnostics in resource-limited environments will also pro-
vide valuable insights. Building on these findings, future studies can further refine CDSS
applications in healthcare, enhancing their effectiveness and ensuring broader adoption in
the management of complex infectious diseases.

Supplementary Materials: The following supporting information can be downloaded at https:
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