NPC Al system

Below is a diagram detailing how the system functions, but i will go into closer detail.

- - -
el e
S e it e — it e -
— S X .
we Demire. el e s — e -
= = =
i | "R st | T e || | I i || T | ey
. N e ¥ L s e =
e T — s
i e ES =
. o
.
.
o e taiv e et e
erstu hreten N jrors mwarce.
—— e
- =
=
JJJJJ —
o T |
et | [st s |, [-
margs e w T ey da treron Pl
1 el [.
i vt
.
£
e p— -
S L i e

State and desire setup:

The states and desires are set up a such:

Where there is a base function for each despite some state having a different function to the
others.

Current parent child diagram below, with some brief descriptions of what they do.

It is very easy to add new desires and states into the project, just not sure what else to add for
now.

I G G NN NN Sy GHVEN SCNN (RO I D

tired state hunger thirst state bosadom toilet state wandar tired Desire hunger thirst Desire DDrer.I_um toilet Desire wam_jer
state state state Desire Desire Desire
retums to walks o a set value:
walks to a relevant random desires increase over desire
vendorfinteraction location time doesnt
change

change
desire value

Visitor NPC AI Class - 1st iteration (outdated)

This is the class that runs everything, it uses the desires and states but it does all of the decision

making.
Stored variables:

Below is a diagram showing all of the logic variable stored by the class, along with the desire list

and which desires it stores.

States and Desires
Desire List
hunger thirst Desire boredom toilet Desire wander
Desire Desire Desire
. hunger - boredom o wander
tired state thirst state toilet state
‘ state ! state state
N - 'y b F
. : hunger . i boredom " : wander
tired Desire Desire thirst Desire Desire toilet Desire Desire
A ry 4 A ry A
stored 2 < 2 < Z- M - A i 2 i
variables l 1 1 l
current current N state
state desire task active change

booleans

Start function is run on load of class, so immediately:

creates desires with random
start points, also gives names
and the rate they increase at

Update function is run every frame:

A

_ |initialises all | addsall .
> Start ol states and .| aplicable .| setscurrent desire to a
“| Function 4] desires "| desires to - desire instance

the list

v
all except
tired

if yes

;|

runs calculate desires (checks ’
the desires values to see if a
change is needed)

ifyes

I

check if task

H initialised is

run update desires
(increases the desires

values) true

update

check if
tired is

function

%

bellow max

current state update, runs the update
function for the current state

Calculate and update desires:

runs tired
itno state update

_funs the loops through the desire list and updlate Visitor Npc
tired update [§ runs the desires update function - desives 3 Al —
seperately p function
if this has changed from S calculate
last iteration set state I?iop;thgqur?h ihe de_swz I'S.t to < desires
change true n the highest priority desire function

| if this is true
set state
change update current state _| open the
false to match new state 1 new state

Due to the way the AI works we can add as many or as few desires as we want, it also hold all of

the current desires values publicly, meaning they can be accessed easily for when we want the

player to be able to inspect the NPCs.

Visitor NPC AI Class - 2nd iteration (current)

Changes made to improve performance and legibility.

Changes to start and update:

Start function now invokes a separate update tasks function.

This sets a function to be called after x seconds, repeating every x seconds.

creates desires with random
start points, also gives names
and the rate they increase at

Fy

Start
Function

initialises all
states and
desires

A4

adds all
aplicable
desires to

the list

sets current desire to a
wander (idle)

v

Invoke repeating: "update
tasks"

A4

all except
tired

Update function now just calls current state update.

“Update tasks” function replaces the old update function as it can be controlled by invoke

repeating; this function doesn't run update at all.

ns calculate desires (checks

ru
it yes the desires values to see if a
change is needed)

run update desires
(increases the desires
values)

ifyes

_{

check if task
initialised is
true

update
tasks
function

{

»

check if
tired is
bellow max

sets current
desire to
tired

if no

if no

Everything else related has remained consistent to the last iteration.

3rd iteration

Added in issues where the visitor complains when a desire gets too high.

:

calculate L
desi loops for each position in the
esires desrire list ™
function
c';IECK.'f GES"E if it is run the add issue to acknowledge
Vthue ;15 Iacl foc\:e »| ping issue total issues in the issue as
resho r function spawner made
issues
check_ if desire if it is, sets s ch
value is greater L desire to > 2; tectoatrrlg:
than l.he current current desire u
desire value
o)

check if change
state is true

.

Ping issue function just outputs the complaint.

changes change
state to false

the current
desire

sets current
state to match

opens the
new state

Moved the move function into the default state so that its virtual not repeated in each state.

Added satisfaction

NPC satisfaction is linked to the desire value for the current task, at time of task completion, the

npc checks the value of the current desire checking to see whether the value is above or below
the threshold. If the desire is above the threshold, the satisfaction is decreased, alluding to
displeasure at how long it took to fulfill the issue, if it is below the threshold, the satisfaction is

increased. When the NPC leaves the park, they leave their satisfaction value with the spawner

which takes that value and changes the spawn rate based on that.

