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01 Introducción

Las presentes notas son la bitácora del primero de los 6 módulos de nuestro

curso Deep Learning Avanzado. En este curso trataremos modelos neurona-

les diversos para garantizar un mejor rendimiento dependiendo de la estruc-

tura interna de las bases de datos.

Este módulo está enfocado en las redes neuronales densas y lo impartimos

junto a Édison Vázquez. Además de este documento los invitamos a consultar

el Github del curso en este link.

El curso es una invitación al uso de las redes neuronales profundas, la orga-

nización de las clases es la siguiente:

1. Introducción a redes neuronales profundas (una hora).

2. Introducción a Tensor Flow y capas densas (una hora).

3. Reducción de la dimensión (dos horas).

4. Caso de uso sobre clustering de clientes (dos horas).

5. Dudas y complementos sobre redes neuronales (dos horas).

6. Asesoría sobre el reto (6 horas).

El repositorio de Github para esta semana se puede encontrar en esta liga.

https://github.com/EdisonVazquezG/DeepLearning_Bourbaki/tree/main
https://github.com/MaxMitre/Deep_Learning_Finanzas
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Frank Rosenblatt

Es un psicólogo estadounidense quien es conocido como el padre del Apren-

dizaje Profundo, sus investigaciones en neurociencias lo acercaron a lo que

hoy conocemos como la inteligencia artificial. En 1960 construyó Mark I Per-

ceptron la primera computadora que logró aprender utilizando un algoritmo.

Actualmente este modelo y algoritmo son la base de las redes neuronales,

una de sus obras escritas más importantes es "Principles of Neurodynamics:

Perceptrons and the Theory of Brain Mechanisms" donde resume sus inves-

tigaciones sobre este tema.
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Keras

Keras es un API sobre Machine Learning escrita en Python. Fue creada con la

finalidad de permitir a los usuarios experimentar, de modo rápido y sencillo,

con varios modelos.

Permite al usuario la creación de algoritmos de modo sencillo para dejarle

tiempo a que se enfoque en las partes importantes sobre su investigación en

lugar de gastar tiempo escribiendo código de un modelo desde cero.

El módulo se encuentra bastante optimizado para realizar operaciones ten-

soriales en CPU, GPU o TPU, también permite calcular los gradientes de ex-

presiones arbitrarias, entre otros. Además es bastante intuitiva para uso y tie-

ne una documentación clara.



02 El lenguaje de las redes
neuronales

Definition 00.1. La arquitectura de una red neuronal feed-forward es una

familia de funciones que satisfacen lo siguiente:

Sea G = (V ,E) un grafo dirigido, finito y acíclico; es decir, tenemos un

conjunto finito de vértices v ∈V . Los elementos e ∈ E se pueden inter-

pretar como flechas entre vertices que poseen una dirección, además

no hay una secuencia de elementos en E que empiece y termine en un

vértice.

A los elementos en V los llamaremos neuronas.

Los elementos en E serán transformaciones lineales.

Una función llamada función de activación ρ : R→R

Una partición disjunta del conjunto de vértices V =V1 ∪ . . .∪Vs donde

cada nodo en Vt−1 está conectado a algún elemento de Vt .

El parámetro s será el número de capas,

V1 es un conjunto disjunto de vértices con tamaño d +1 y Vs tiene un

solo nodo al que denotaremos como ŷ .

06



B O U R B A K I
COLEGIO DE MATEMÁTICAS

deep learning avanzado 07 el lenguaje de las redes…

x1

x2

xd

V1

w11

w12

w1k

V2

ws−11

ws−12

ws−1r

Vs−1

ŷ

Vs

...
...

...

Definition 00.2. Dada una arquitectura de una red neuronal feed-forward,

una red neuronal es lo siguiente:

Una asignación w1 (v) de un vector de cierta dimensión para cada neu-

rona v ∈V ,

Una asignación w2 (e) de una matriz para cada arista e ∈ E ,

Las asignaciones anteriores satisfacen que si v ∈ Vi , v ′ ∈ Vi+1 están co-

nectados por algún e ∈ E entonces el tamaño de la matriz w2 (e) es n×m

donde el tamaño de los vectores w1 (v), w1
(
v ′) son iguales a n y m res-

pectivamente.

v v ′e



x1

x2

...

xn


� w2(e)( w1,1 ··· w1,n

...
. . .

...
wm,1 ··· wm,n

) //



x ′
1

x ′
2

...

x ′
m



Una función f : X d → Y que puede calcularse utilizando la informa-
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ción anterior en orden de izquierda a derecha Vt−1 to Vt . La operación

parcial en cada una de las neuronas se ve de la siguiente forma:

ρ (w2 (e) w1 (v)+b) (02.1)

Funciones de activación

Como lo vimos en la definición, una red neuronal depende de una elección

de las funciones de activación. En esta sección hablaremos sobre todo de dos

funciones de activación:

Definition 01.1. Definimos a la función sigmoide σ : R→ R utilizando la si-

guiente fórmula:

σ (x) = 1

1+e−x (02.2)

La función sigmoide es ampliamente utilizada por ejemplo en el algoritmo

de la regresión logística debido a sus propiedades, por ejemplo, que es una

función continua, acotada entre 0 y 1, que modela muy bien la probabilidad
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condicional P(x|y = 1). Es posible generalizar la función anterior a vectores

con tamaño superior de la siguiente manera:

Definition 01.2. Dado un v = (v1, v2, . . . , vd ) ∈ Rd , definimos la función

SoftMax de v como

So f t M ax (v) =

 ev1∑
j≤d

ev j
, . . . ,

evd∑
j≤d

ev j

 (02.3)

Exercise 01.1. Demuestre que si v ∈Rd entonces:

1.
evi∑

j≤d
ev j

∈ [0,1]

2.
∑

i≤d

 evi∑
j≤d

ev j

= 1

Otra función de activación muy importante para la clasificación es la función

RELU:

Definition 01.3. Definimos a la función RELU : R→R utilizando la siguiente

fórmula:

RELU (x) = máx{0,−x} (02.4)
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Remark 01.2. Utilizando función RELU es posible definir el algoritmo de en-

trenamiento del perceptrón como veremos más adelante.

Funciones de pérdida

Para pasar de la arquitectura de una red neuronal a una red neuronal, es ne-

cesario un proceso de entrenamiento utilizando algoritmos de optimización

(que en su mayoría no serán convexos). A su vez para definir un problema de

optimización es necesario contar con una función de pérdida.

En esta sección mencionarems algunas de las funciones de pérdida más uti-

lizadas.

Definition 02.1. Dada la base de datos para una regresión lineal,

S =
{(

x1, y1
)

, . . .
(
xN , yN

)}
(02.5)

dónde
(
x, y

) ∈Rd×R y una función f : Rd →R, definimos el error de mínimos

cuadrados de f como el promedio de los cuadrados de las diferencias entre
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f (xi ) y las yi .

er rS
(

f
)= 1

N
· ∑

i≤N

(
f (xi )− yi

)2 (02.6)

Esta función de pérdida normalmente se utiliza para evaluar el error de la

regresión lineal.

Definition 02.2. Dada la base de datos para una clasificación binaria

S =
{(

x1, y1
)

, . . .
(
xN , yN

)}
(02.7)

tal que
(
x, y

) ∈ Rd × {−1,+1} y una función f : Rd → R, definimos la función

de pérdida de la entropía cruzada de f en
(
x, y

)
:

H
(
y, f (x)

)=−∑
i≤d

yi log
(

f (xi )
)

(02.8)



B O U R B A K I
COLEGIO DE MATEMÁTICAS

deep learning avanzado 12 el lenguaje de las redes…

Perceptrón multicapa

Una de las redes que utilizaremos comúnmente, es la del perceptrón mul-

ticapa en la que las neuronas de una capa están conectadas con todas las

neuronas de la siguiente capa.

Una red neuronal densa con una capa es la arquitectura que conecta todas

las d características (coordenadas) de x = (x1, . . . xd ) con una neurona ŷ , de

tal manera que a cada característica se le asocia un peso.

El perceptrón (que estudiamos con profundiad en el curso de ML & IA) es una

generalización de ésta idea.

x1

xn

σ〈β, x〉 = ŷ...

En un perceptrón multicapa, los k nodos de la capa Vt−1 están relacionados

con cada uno de los nodos de Vt mediante una regresión logística, de tal mo-

do que z =σ〈β, x〉 para x = (xt−1,1 . . . xt−1,k ) y β ∈Rk para cada z ∈Vt . En este

punto es preciso notar que los pesos β dependen de toda la capa anterior.

Si queremos hacer una predicción binaria para un conjunto de datos, como

en 02.7, tendremos que añadir una capa final con un solo nodo, ŷ = σ〈β̃, M〉

donde M es una matriz que contiene a todos los nodos de las capas internas,

y σ es la función 02.2, como formalizaremos en la siguiente definición.
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x1

x2

xn

z1

z2

zk

σ〈β̃, M〉 = ŷ
...

...

Definition 03.1. Si una capa intermedia tiene un vector de neuronas x ∈Rn y

la siguiente capa tiene un vector de neuronas z ∈Rm , entonces un perceptrón

multicapa entre ellas con función de activación ρ es una matriz M ∈ Rm×n y

un vector b ∈Rm tales que las entradas del vector w son:

w j = ρ
(〈m j , x〉+b j

)
(02.9)

Comúnmente lo abreviaremos con la notación: w = ρ(M x +b)

La cuestión sobre cuántas capas se deben utilizar para abordar un caso como

el de la predicción binaria, se estudiará más adelante y siempre depende del

tipo de problema. Asímismo, hay heurísticas propias para determinar cuál

función de activación será la óptima según el problema que se pretende re-

solver.
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03 Autoencoders

En este capítulo hablaremos sobre dos de los algoritmos más utilizados en

ciencia de datos a saber el Análisis de Componentes Principales y los Auto-

encoders. Utilizaremos estos algoritmos para la imputación de datos.

Análisis de componentes principales

En esta sección describiremos las distintas versiones de PCA y cómo puede

entenderse como una técnica para reducir la dimensión. La tercera formu-

lación que enunciaremos será la base para comprender cómo funcionan los

autoencoders.

La siguiente definición del análisis de componentes principales es bastante

parecida a la definición de la regresión lineal, excepto que la manera de apro-

ximar es distinta.

Definition 01.1. PCA como aproximación lineal. Sea X = {x1, . . . , xN } ∈ Rd y

k < d. El problema de aproximación de k componentes principales correspon-

de con la solución del siguiente problema de minimización:

PC A(k) = ar g mi n
V ⊂Rd ,di m(V )=k

(
1

N

∑
j≤N

(
d

(
x j ,V

)2
))

(03.1)

Utilizando proyecciones ortogonales es posible reescribir la ecuación 03.1 de
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la siguiente forma:

Proposition 01.2. PCA como aproximación de k vectores ortonormales. Sea

X = {x1, . . . , xN } ∈ Rd y k < d. El problema de aproximación por los primeros

k componentes principales v1, . . . , vk corresponde con la solución del siguiente

problema de minimización:

(V , v1, . . . , vk ) = ar g mi n
V ∈Rdk ,V T V =I dk ,a j∈Rk

(
1

N

∑
j≤N

||x j −V a j ||22
)

(03.2)

Aunque no es inmediato demostrar la siguiente proposición, es posible rees-

cribir PCA como sigue.

Proposition 01.3. PCA como reducción de la dimensión. La solución de la

ecuación en la definición 01.2 es equivalente a la siguiente:

(V ,U ) = ar g mi n
V ∈Rdk ,U∈Rkd

(
1

N

∑
j≤N

||x j −V Ux j ||22
)

(03.3)

En el análisis de componentes principales las funciones que reducen la di-

mensión son funciones lineales sin embargo los autoencoders utilizan fun-

ciones no lineales para modificar el espacio en el que viven nuestros datos.
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Definición de Autoencoder

Los autoencoders son un algoritmo muy similar a la última versión que di-

mos sobre PCA con la diferencia de que permitiremos transformaciones no

necesariamente lineales.

Definition 02.1. Un autoencoder es la solución al siguiente problema de mi-

nimización donde f , g son dos redes densas:

(
f , g

)= ar g mi n
f ,g

(
1

N

∑
j≤N

∥x j − g ( f (x j ))∥2
2

)
(03.4)

En este caso la reducción de los datos es f (x j ).

Remark 02.2. Es importante mencionar que aunque esta vez hemos utilizado

la distancia euclidiana para medir la diferencia entre nuestros datos es posible

usar otras métricas.



04 El problema de los valores
faltantes

En el análisis de datos, uno de los desafíos más comunes es tratar con valores

faltantes en un conjunto de datos. La falta de datos es un problema común

que aparece en contextos reales y puede comprometer el rendimiento de la

mayoría de los modelos de aprendizaje. Los valores faltantes pueden surgir

por diversas razones, como errores en la recopilación de datos, la no disponi-

bilidad de información o incluso decisiones del sistema de almacenamiento

de datos.

Estos valores ausentes pueden afectar negativamente el rendimiento de los

modelos de aprendizaje automático, especialmente si son una parte signifi-

cativa del conjunto de datos. Si no se abordan adecuadamente, los valores fal-

tantes pueden generar sesgos, disminuir la precisión de los modelos y afectar

la generalización de las predicciones.

Existen varios enfoques para manejar los valores faltantes, y los métodos clá-

17
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sicos suelen ser los primeros recursos utilizados para este propósito. Entre los

métodos más comunes se encuentran:

Imputación por media, moda o muestreo: Consiste en reemplazar los

valores faltantes con la media (para variables ordenadas) o la moda (pa-

ra variables no-ordenadas) de los datos no faltantes. Aunque es un en-

foque sencillo que puede estar justificado en la ley de los grandes nú-

meros, no es un enfoque que utiliza el resto de la estructura en la base

de datos. También es posible rellenar con un muestreo de una distribu-

ción aproximada correspondiente, ya sea ordenada o no. La desventaja

de este método es que nos estamos concentrando únicamente en las

columnas de manera independiente y no en sus posibles interacciones.

Imputación por regresión: Utiliza una técnica de regresión para prede-

cir los valores faltantes basándose en las relaciones existentes entre las

variables. Este enfoque puede ser más preciso que la imputación por

media, pero depende de poder elegir correctamente la variable predic-

tiva.

Imputación por el valor más cercano (KNN): Este método usa los va-

lores observados más cercanos a los faltantes para estimar los valores

ausentes. Si bien es una técnica potente en algunos casos, puede ser

computacionalmente costosa y no siempre captura las relaciones más

complejas entre las variables.

Imputación Multivariante por Ecuaciones Encadenadas (MICE): Es un
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enfoque estadístico que ofrece una imputación de valores faltantes me-

diante un proceso iterativo, utilizando un modelo de imputación dis-

tinto para cada variable con datos faltantes. Este método trabaja enca-

denando ecuaciones de regresión multivariante, donde cada variable

con valores faltantes se modela condicionalmente a las demás varia-

bles, y se imputan los valores faltantes utilizando las predicciones de

este modelo. MICE se adapta bien a situaciones en las que las relacio-

nes entre las variables son complejas, ya que tiene en cuenta las inter-

acciones entre las mismas. El método que se propone en este trabajo

es un poco similar.

Como en todos los problemas de machine learning, los enfoques clásicos tie-

nen limitaciones, especialmente cuando las interacciones entre las diferen-

tes variables no se consideran adecuadamente debido a los mismos valores

faltantes. Es aquí donde las redes neuronales, pueden ofrecer una mejora sig-

nificativa en la imputación de valores faltantes, considerando no solo las ca-

racterísticas individuales de las variables, sino también sus relaciones subya-

centes.

Estrategia para la imputación de datos

Supongamos que tenemos acceso a un conjunto de datos con valores faltan-

tes al que llamaremos X tr ai n , al que un experto (o un histórico) le ha impu-
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tado algunos de los valores faltantes. A este nuevo conjunto lo llamaremos

Ytr ai n , quizás este conjunto aún tiene valores faltantes. Podremos suponer

que este rellenado de los valores se hizo por medio de un proceso costoso

como una auditoría por ejemplo.

La estrategia consiste en llenar los datos faltantes de Ytr ai n mediante algún

método ingenuo (con promedios, por ejemplo) para construir Y ′
tr ai n .

Ahora entrenaremos un modelo neuronal como un autoencoder que arroje

una transformación f a un conjunto de variables latentes; y otra transforma-

ción g al conjunto de variables originales. Nuestra intención es aprender una

nueva representación del conocimiento de experto.

Y ′
tr ai n

f
//

g
// �Y ′

tr ai n

Utilizando una imputación de datos ingenua para X tr ai n , digamos X ′
tr ai n ;

podemos evaluar las funciones f y g para construir las predicciones de impu-

tación àX ′
tr ai n .
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X ′
tr ai n

f
//

g
// àX ′

tr ai n

Idealmente las funciones f y g que han aprendido la representación del co-

nocimiento del experto están forzando a X ′
tr ai n a meterse en la representa-

ción en pocas dimensiones. La evaluación del modelo en el conjunto de en-

trenamiento hará comparando esta predicción en contra de Y ′
tr ai n .

Cuando recibamos un nuevo conjunto de datos X test , podemos imputar da-

tos ingenuamente y obtener X ′
test . Con las funciones f y g lograremos hacer

una predicción para los valores faltantes. Si tenemos un conjunto Ytest en-

tonces se puede estudiar el sobre-ajuste de este método.

En algunos casos estos métodos nos dan mejores resultados que los méto-

dos clásicos que hemos mencionado inicialmente. No hemos estudiado teó-

ricamente este algoritmo propuesto sin embargo es un excelente ejemplo de

cómo se pueden aprovechar a las redes neuronales profundas.
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05 Complementos sobre
entrenamiento de redes
neuronales profundas

En esta sección presentamos algunos complementos del curso que tratare-

mos en los últimos días de la semana.

El método del gradiente es la técnica más utilizada en deep learning para en-

trenar a una red neuronal.

Comenzaremos con un caso muy sencillo para el caso de las regresiones li-

neales.

La derivada

En esta sección introduciremos las derivadas en una sola dimensión y más

adelante serán necesarias las derivadas respecto a más de una variable.

Definition 01.1. Si l : R→ R es una función, entonces diremos que l es dife-

renciable en un punto x ∈R cuando el siguiente límite existe:

l i m
δ→0

l (x +δ)− l (x)

δ

Cuando existe ese límite, lo denotaremos l ′(x) y llamaremos "la derivada de l
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en el punto x".

A partir de ahora nos interesarán las funciones l que se utilizan como métrica

para un algoritmo, por ejemplo, la función de error 02.6.

Supongamos que S =
{

(xi , yi )
}

i≤N
es una base de datos asociada a una re-

gresión univariada (es decir, d = 1), tal que la señal de esta función satisface:

f ∗(X ) = mX , entonces

l (m) = er rS (m) = 1

N
· ∑

i≤N

(
mxi − yi

)2 (05.1)

Exercise 01.1. Calcule la derivada de l en 05.1.

Definition 01.2. Si l : Rd → R es una función, entonces diremos que l es di-

ferenciable en un punto x ∈ Rd , con respecto a la coordenada j ≤ d cuando

el siguiente límite existe:

ĺım
h→0

l (x1, . . . , x j−1, x j +h, x j+1, . . . , xd )− l (x1, . . . , xd )

h

Cuando ese límite existe, lo denotaremos
∂

∂x j
l (x) y llamaremos la derivada

parcial de l en el punto x y con dirección j.
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El método del gradiente de Cauchy

El método del gradiente es un algoritmo que es comúnmente utilizado en

Machine Learning para el proceso de entrenamiento de diversos modelos. En

esta sección supondremos que l : Rd → R es una función que entenderemos

como la función de error en algún modelo, por ejemplo, podríamos suponer

que

l
(
β
)= 1

N

∑
i≤N

(
yi −〈β, xi 〉

)2 (05.2)

en el caso de una regresión lineal. El método del gradiente consiste en actua-

lizar iterativamente los parámetros β para optimizar la función l .

Definition 02.1. Sea f como en el párrafo anterior y β ∈ Rd , para ν > 0 defi-

nimos el algoritmo del gradiente descendente de la siguiente manera:

1. β0 = (1,1, . . . ,1)

2. βt+1 =βt −ν∇l
(
βt

)

El parámetro ν sirve para garantizar que la aproximación no se aleja dema-

siado de β y se conoce como factor de aprendizaje.

Si desentrañamos con cuidado la definición anterior obtenemos:

βt+1, j =
(
βt ,1 −ν

∂l

∂βt ,1

(
βt

)
, . . . ,βt , j −ν

∂l

∂βt , j

(
βt

)
, . . . ,βt ,d −ν

∂l

∂βt ,d

(
βt

))
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La idea principal detrás del método del gradiente se podría resumir para el

caso uno-dimensional, l : R→ R, de la siguiente manera. Buscamos un β tal

que l ′(β) = 0. Cuando d = 1 y β0 = 0, la función de pérdida l depende única-

mente del parámetro β.

Si hemos encontrado un β′ ∈ R que aún no satisface que l ′(β′) = 0, entonces

podrían ocurrir los siguientes dos casos:


l ′(β′) > 0 al disminuir β′, el error l (β′) disminuye

l ′(β′) < 0 al aumentarβ′, el error l (β′) disminuye

Cuando l ′(β′) > 0 significa que la pendiente es positiva, por lo que para mi-

nimizar la función debemos movernos en dirección negativa. Igualmente,

cuando l ′(β′) < 0, debemos movernos en dirección positiva para disminuir

el error.

Por eso en el primero de los casos deseamos sumarle una cantidad negati-

va a β′, a saber l ′(β′), y en el segundo caso deseamos sumarle una cantidad

positiva, a saber −l ′(β′) para acercarnos al β que optimiza la función. Así la

actualización de βt a βt+1 = βt − l ′(β) es cada vez más cercano a β como se

aprecia en la siguiente ilustración.
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l

β’β’

l ′

β

Remark 02.1. Si una función es diferenciable un punto, entonces alrededor

de ese punto se tiene la siguiente aproximación lineal: Si β es cercana a βt ,

entonces

l
(
β
)∼ l

(
βt

)+〈β−βt ,∇l
(
βt

)〉 (05.3)

Cuando la función l satisface algunas condiciones de regularidad y conve-

xidad, es posible garantizar la convergencia del método del gradiente, sin

embargo algunas veces podría ser problemático. Afortunadamente para las

redes neuronales profundas estas técnicas funcionan muy bien.

Método del gradiente estocástico

Uno de los casos principales cuando el método del gradiente podría no con-

verger es cuando la cantidad de datos es demasiado extensa, en este caso el

método del gradiente estocástico permite solucionar la velocidad de conver-

gencia.
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Supongamos que f : Rd → R es una función diferenciable que podemos es-

cribir de la siguiente manera:

f
(
β
)= 1

N

∑
i≤N

fi
(
β
)

(05.4)

Por ejemplo la función de error de las regresiones que vimos anteriormente

en donde las fi (β) = (〈β, xi 〉− yi
)2.

Es inmediato que el gradiente de f es

∇ f
(
β
)= 1

N

∑
i≤N

∇ fi
(
β
)

(05.5)

En este caso el algoritmo de actualización del gradiente estocástico se define

de la siguiente manera:

1. β0 = (1,1, . . . ,1)

2. βt+1 =βt −ν∇ f j
(
βi

)

Para algún j ∈ {1,2, . . . , N }. Por supuesto, la pregunta más natural es: ¿cómo

elegir j ?

Supongamos que elegimos j de manera aleatoria y uniforme en {1,2,3, . . . , N }.

Es claro que βi+1 será una variable aleatoria que depende de j . Calculemos

su esperanza:

E
[
βt+1

]= 1

N

N∑
j=1

(
βt −ν∇ f j

(
βt

))=βt −ν
1

N

N∑
j=1

∇ f j
(
βt

)=βt −ν∇ f
(
βt

)
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Lo anterior es muy interesante porque significa que, en promedio, el efecto

del m’etodo del gradiente estocástico será igual al del gradiente determinis-

ta, con la enorme ventaja de solo requerir el cálculo de un único gradiente

∇ f j en cada iteración, en lugar de sumar N gradientes ∇ fi como requeriría el

método determinista.
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06 Caso de uso: segmentación
de clientes

En la actualidad las compañías registran una gran cantidad de características

de sus clientes, lo cual tiene un gran beneficio pues podemos utilizar mucha

información sobre ellos dependiendo de lo que se desee predecir. El objetivo

del caso de uso que presentaremos esta semana es utilizar a las redes neuro-

nales profundas, en particular a los autoencoders para reducir la dimensión

de los vectores con los que representamos a un conjunto de usuarios de tarje-

tas de crédito. Una vez que hayamos reducido la dimensión vamos a agrupar

a nuestros clientes por medio de un algoritmo no-supervisado llamado K-

Means. Es importante mencionar que este algoritmo difícilmente daría bue-

nos resultados debido a la maldición de la dimensión.
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