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@1 Introduccion

Las presentes notas son la bitdcora del primero de los 6 médulos de nuestro
curso Deep Learning Avanzado. En este curso trataremos modelos neurona-
les diversos para garantizar un mejor rendimiento dependiendo de la estruc-

tura interna de las bases de datos.

Este médulo estd enfocado en las redes neuronales densas y lo impartimos
junto a Edison Vazquez. Ademads de este documento los invitamos a consultar

el Github del curso en este link.

El curso es una invitacién al uso de las redes neuronales profundas, la orga-

nizacién de las clases es la siguiente:

1. Introduccién a redes neuronales profundas (una hora).

2. Introduccién a Tensor Flow y capas densas (una hora).

3. Reduccion de la dimension (dos horas).

4. Caso de uso sobre clustering de clientes (dos horas).

5. Dudas y complementos sobre redes neuronales (dos horas).

6. Asesoria sobre el reto (6 horas).

@ Elrepositorio de Github para esta semana se puede encontrar en esta liga.

introduccion


https://github.com/EdisonVazquezG/DeepLearning_Bourbaki/tree/main
https://github.com/MaxMitre/Deep_Learning_Finanzas
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Frank Rosenblatt

Es un psicélogo estadounidense quien es conocido como el padre del Apren-
dizaje Profundo, sus investigaciones en neurociencias lo acercaron a lo que
hoy conocemos como la inteligencia artificial. En 1960 construy6 Mark I Per-
ceptron la primera computadora que logré aprender utilizando un algoritmo.
Actualmente este modelo y algoritmo son la base de las redes neuronales,
una de sus obras escritas mas importantes es "Principles of Neurodynamics:
Perceptrons and the Theory of Brain Mechanisms" donde resume sus inves-

tigaciones sobre este tema.
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Keras

Keras es un API sobre Machine Learning escrita en Python. Fue creada con la
finalidad de permitir a los usuarios experimentar, de modo rapido y sencillo,

con varios modelos.

Permite al usuario la creacién de algoritmos de modo sencillo para dejarle
tiempo a que se enfoque en las partes importantes sobre su investigacién en

lugar de gastar tiempo escribiendo cédigo de un modelo desde cero.

El médulo se encuentra bastante optimizado para realizar operaciones ten-
soriales en CPU, GPU o TPU, también permite calcular los gradientes de ex-
presiones arbitrarias, entre otros. Ademas es bastante intuitiva para usoy tie-

ne una documentacioén clara.

introduccion



@2 El lenguaje de las redes
neuronales

Definition 00.1. La arquitectura de una red neuronal feed-forward es una

familia de funciones que satisfacen lo siguiente:

= Sea G = (V, E) un grafo dirigido, finito y aciclico; es decir, tenemos un
conjunto finito de vértices v € V. Los elementos e € E se pueden inter-
pretar como flechas entre vertices que poseen una direcciéon, ademads
no hay una secuencia de elementos en E que empiece y termine en un

vértice.
= Alos elementos en V los llamaremos neuronas.
= Los elementos en E serdn transformaciones lineales.
= Una funcién llamada funcién de activacién p : R — R

= Una particién disjunta del conjunto de vértices V = V3 U...U Vi donde

cada nodo en V;_; estd conectado a algin elemento de V;.
= El pardmetro s serd el niimero de capas,

= V)] es un conjunto disjunto de vértices con tamano d + 1y Vs tiene un

solo nodo al que denotaremos como J.
06
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Vl VZ Vs—l Vs
X1 Wi Ws-11
X2 Wio Ws-12

y
Xd Wik Ws—1r

Definition 00.2. Dada una arquitectura de una red neuronal feed-forward,

una red neuronal es lo siguiente:

= Una asignacién w, (v) de un vector de cierta dimensién para cada neu-

ronaveV,
= Una asignacién w» (e) de una matriz para cada arista e € E,

= Las asignaciones anteriores satisfacen que si v € V;, v’ € V;; estén co-
nectados por algtin e € E entonces el tamafo de la matriz w; (e) es nxm
donde el tamano de los vectores w; (v), w; (v’ ) son iguales a n y m res-

pectivamente.

v e y/
/
X1 X1
X x'
2| ws (e) 2
I ( wi1 0 Win )
w;n,l v Wm,n
X, X'

= Una funcién f: X4 — Y que puede calcularse utilizando la informa-

el lenguaje de las redes...
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cién anterior en orden de izquierda a derecha V;_; to V. La operacién

parcial en cada una de las neuronas se ve de la siguiente forma:

p(wz(e)wr (v)+Db) (02.1)

Funciones de activacion

Como lo vimos en la definicién, una red neuronal depende de una eleccién
de las funciones de activacion. En esta seccién hablaremos sobre todo de dos

funciones de activacion:

Definition 01.1. Definimos a la funcién sigmoide o : R — R utilizando la si-

guiente féormula:

(02.2)

o(x)=
&2 1+e™*

FUNCION SIGMOID

La funcién sigmoide es ampliamente utilizada por ejemplo en el algoritmo
de la regresion logistica debido a sus propiedades, por ejemplo, que es una

funcién continua, acotada entre 0 y 1, que modela muy bien la probabilidad
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condicional P(x|y = 1). Es posible generalizar la funcién anterior a vectores

con tamano superior de la siguiente manera:

Definition 01.2. Dado un v = (v, v9,...,Vg) € R%, definimos la funcién

SoftMax de v como

eVl evd
SoftMax(v) = S oY o (02.3)
j=d j=<d

Exercise 01.1. Demuestre que si v € R4 entonces:

Vi

1. S ot € [0,1]
j=d
evi
2. =1
igd > el
j=d

Otra funcién de activacién muy importante para la clasificacion es la funcién

RELU:

Definition 01.3. Definimos a la funcién RELU : R — R utilizando la siguiente
férmula:

RELU (x) = max{0, —x} (02.4)

el lenguaje de las redes...
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Remark 01.2. Utilizando funcion RELU es posible definir el algoritmo de en-

trenamiento del perceptrén como veremos mds adelante.

Funciones de pérdida

Para pasar de la arquitectura de una red neuronal a una red neuronal, es ne-
cesario un proceso de entrenamiento utilizando algoritmos de optimizacién
(que en su mayoria no serdn convexos). A su vez para definir un problema de

optimizacién es necesario contar con una funcién de pérdida.

En esta seccién mencionarems algunas de las funciones de pérdida mas uti-

lizadas.

Definition 02.1. Dada la base de datos para una regresion lineal,

S= {(xl,yl),...(xN,yN)} (02.5)

donde (x,y) € RY xRy una funcién f : R? — R, definimos el error de minimos

cuadrados de f como el promedio de los cuadrados de las diferencias entre
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f(xi) ylas y;.

errs(f) = (f ) - yi)° (02.6)

1
N /N

Esta funcién de pérdida normalmente se utiliza para evaluar el error de la

regresion lineal.

Definition 02.2. Dada la base de datos para una clasificacién binaria

F= {(xl,yl),...(xN, yN)} 02.7)

tal que (x,y) € RY x {~1,+1} y una funcién f : R4 — R, definimos la funcién

de pérdida de la entropia cruzada de f en (x, y):

H(y, f@)=-)yilog(f (x) 02.8)
i<d

el lenguaje de las redes...
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Perceptron multicapa

Una de las redes que utilizaremos comtinmente, es la del perceptréon mul-
ticapa en la que las neuronas de una capa estdn conectadas con todas las

neuronas de la siguiente capa.

Una red neuronal densa con una capa es la arquitectura que conecta todas
las d caracteristicas (coordenadas) de x = (x1,...x;) con una neurona j, de

tal manera que a cada caracteristica se le asocia un peso.

El perceptréon (que estudiamos con profundiad en el curso de ML & TA) es una

generalizacion de ésta idea.

X1

o{f,x)=7

Xn

En un perceptrén multicapa, los k nodos de la capa V;_; estan relacionados
con cada uno de los nodos de V; mediante una regresion logistica, de tal mo-
doque z=0(f,x) para x = (xX;-1,1... X~ 1,k) Y P E RF para cada z € V;. En este

punto es preciso notar que los pesos f dependen de toda la capa anterior.

Si queremos hacer una prediccién binaria para un conjunto de datos, como
en 02.7, tendremos que afiadir una capa final con un solo nodo, j = o{f, M)
donde M es una matriz que contiene a todos los nodos de las capas internas,

y o esla funcién 02.2, como formalizaremos en la siguiente definiciéon.
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X1 Z21
X2 22

a{p,M) =y
Xn 2k

Definition 03.1. Siuna capa intermedia tiene un vector de neuronas x € R" y
la siguiente capa tiene un vector de neuronas z € R™, entonces un perceptron
multicapa entre ellas con funcién de activaciéon p es una matriz M € R"*" y

un vector b € R™ tales que las entradas del vector w son:

wj=p((mj,x)+b;j) (02.9)

Comtunmente lo abreviaremos con la notacién: w = p(Mx + b)

La cuestién sobre cudntas capas se deben utilizar para abordar un caso como
el de la prediccion binaria, se estudiard més adelante y siempre depende del
tipo de problema. Asimismo, hay heuristicas propias para determinar cuél
funcién de activacién sera la 6ptima segtn el problema que se pretende re-

solver.

el lenguaje de las redes...
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03 Autoencoders

En este capitulo hablaremos sobre dos de los algoritmos mads utilizados en
ciencia de datos a saber el Andlisis de Componentes Principales y los Auto-

encoders. Utilizaremos estos algoritmos para la imputacién de datos.

Analisis de componentes principales

En esta seccién describiremos las distintas versiones de PCA y c6mo puede
entenderse como una técnica para reducir la dimensién. La tercera formu-
lacién que enunciaremos serd la base para comprender cémo funcionan los

autoencoders.

La siguiente definicién del andlisis de componentes principales es bastante
parecida a la definicién de la regresion lineal, excepto que la manera de apro-

ximar es distinta.

Definition 01.1. PCA como aproximacioén lineal. Sea X = {x1,...,xn} € R4 ¥
k < d. El problema de aproximacion de k componentes principales correspon-

de con la solucion del siguiente problema de minimizacion:

PCA(k)= argmin (lz(d(xj,v)z) (03.1)

VeR:,dim(V)=k \ 1V j=N

Utilizando proyecciones ortogonales es posible reescribir la ecuacién 03.1 de
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la siguiente forma:

Proposition 01.2. PCA como aproximacion de k vectores ortonormales. Sea
X ={x1,...,xn} € R? y k < d. El problema de aproximacién por los primeros
k componentes principales v, ..., vy corresponde con la solucién del siguiente

problema de minimizacion:

1
: 2
Vu,...,v8) = argmin — Z IIxj - Vajll2 (03.2)
VeR*,VTV=1Idy,a;eRF \ 1V j<N
Aunque no es inmediato demostrar la siguiente proposicion, es posible rees-

cribir PCA como sigue.

Proposition 01.3. PCA como reduccion de la dimension. La solucién de la

ecuacion en la definicién 01.2 es equivalente a la siguiente:

. 1
(V,U)= argmin |—= Y llxj—VUx;ll5 (03.3)
VeR™k UeRkd J=N
En el andlisis de componentes principales las funciones que reducen la di-
mensioén son funciones lineales sin embargo los autoencoders utilizan fun-

ciones no lineales para modificar el espacio en el que viven nuestros datos.
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Definicion de Autoencoder

Los autoencoders son un algoritmo muy similar a la tltima versién que di-
mos sobre PCA con la diferencia de que permitiremos transformaciones no

necesariamente lineales.

Definition 02.1. Un autoencoder es la solucion al siguiente problema de mi-

nimizacion donde f, g son dos redes densas:

1
(£.8) = argmin| = 3 lIx; = g(f(xp)l3 (03.4)
g j<N

En este caso la reduccion de los datos es f(x;).

Remark 02.2. Esimportante mencionar que aunque esta vez hemos utilizado
la distancia euclidiana para medir la diferencia entre nuestros datos es posible

usar otras métricas.



@4 El problema de los valores
faltantes

En el anélisis de datos, uno de los desafios mas comunes es tratar con valores
faltantes en un conjunto de datos. La falta de datos es un problema comun
que aparece en contextos reales y puede comprometer el rendimiento de la
mayoria de los modelos de aprendizaje. Los valores faltantes pueden surgir
por diversas razones, como errores en la recopilacion de datos, la no disponi-
bilidad de informacién o incluso decisiones del sistema de almacenamiento

de datos.

Estos valores ausentes pueden afectar negativamente el rendimiento de los
modelos de aprendizaje automaético, especialmente si son una parte signifi-
cativa del conjunto de datos. Si no se abordan adecuadamente, los valores fal-
tantes pueden generar sesgos, disminuir la precisién de los modelos y afectar

la generalizacion de las predicciones.

Existen varios enfoques para manejar los valores faltantes, y los métodos cla-
17
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sicos suelen ser los primeros recursos utilizados para este propésito. Entre los

métodos mas comunes se encuentran:

= Imputacién por media, moda o muestreo: Consiste en reemplazar los
valores faltantes con la media (para variables ordenadas) o lamoda (pa-
ra variables no-ordenadas) de los datos no faltantes. Aunque es un en-
foque sencillo que puede estar justificado en la ley de los grandes nu-
meros, no es un enfoque que utiliza el resto de la estructura en la base
de datos. También es posible rellenar con un muestreo de una distribu-
cién aproximada correspondiente, ya sea ordenada o no. La desventaja
de este método es que nos estamos concentrando tinicamente en las

columnas de manera independiente y no en sus posibles interacciones.

= Imputacién por regresion: Utiliza una técnica de regresiéon para prede-
cir los valores faltantes basdndose en las relaciones existentes entre las
variables. Este enfoque puede ser mds preciso que la imputacién por
media, pero depende de poder elegir correctamente la variable predic-

tiva.

= Imputacién por el valor més cercano (KNN): Este método usa los va-
lores observados mds cercanos a los faltantes para estimar los valores
ausentes. Si bien es una técnica potente en algunos casos, puede ser
computacionalmente costosa y no siempre captura las relaciones més

complejas entre las variables.

= Imputacién Multivariante por Ecuaciones Encadenadas (MICE): Es un
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enfoque estadistico que ofrece una imputacion de valores faltantes me-
diante un proceso iterativo, utilizando un modelo de imputacién dis-
tinto para cada variable con datos faltantes. Este método trabaja enca-
denando ecuaciones de regresién multivariante, donde cada variable
con valores faltantes se modela condicionalmente a las demds varia-
bles, y se imputan los valores faltantes utilizando las predicciones de
este modelo. MICE se adapta bien a situaciones en las que las relacio-
nes entre las variables son complejas, ya que tiene en cuenta las inter-
acciones entre las mismas. El método que se propone en este trabajo

es un poco similar.

Como en todos los problemas de machine learning, los enfoques clasicos tie-
nen limitaciones, especialmente cuando las interacciones entre las diferen-
tes variables no se consideran adecuadamente debido a los mismos valores
faltantes. Es aqui donde las redes neuronales, pueden ofrecer una mejora sig-
nificativa en la imputacién de valores faltantes, considerando no solo las ca-
racteristicas individuales de las variables, sino también sus relaciones subya-

centes.

Estrategia para la imputacion de datos

Supongamos que tenemos acceso a un conjunto de datos con valores faltan-

tes al que llamaremos Xy;4i,, al que un experto (o un histérico) le ha impu-

el problema de los valores...
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tado algunos de los valores faltantes. A este nuevo conjunto lo llamaremos
Yirain, Quizds este conjunto adin tiene valores faltantes. Podremos suponer
que este rellenado de los valores se hizo por medio de un proceso costoso

como una auditoria por ejemplo.

5,
R
i
=i
&
E

r
#:
'a'saf.'

AL LR

|

La estrategia consiste en llenar los datos faltantes de Y;;4;, mediante algtin

. . . . N
método ingenuo (con promedios, por ejemplo) para construir Y, . .

Ahora entrenaremos un modelo neuronal como un autoencoder que arroje
una transformacién f a un conjunto de variables latentes; y otra transforma-
cién g al conjunto de variables originales. Nuestra intencion es aprender una

nueva representacion del conocimiento de experto.

f g [E—
!/ !
train train

Utilizando una imputacién de datos ingenua para X;rqin, digamos X, . ;

podemos evaluar las funciones f 'y g para construir las predicciones de impu-

¥ /
tacion Xm”.n.
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f g =
/ 1
Xtruin Xtrain

Idealmente las funciones f'y g que han aprendido la representacién del co-

!

nocimiento del experto estan forzando a X, _ ..

a meterse en la representa-
cién en pocas dimensiones. La evaluacién del modelo en el conjunto de en-
trenamiento hard comparando esta prediccion en contrade Y, . .
Cuando recibamos un nuevo conjunto de datos Xy.s;, podemos imputar da-
tos ingenuamente y obtener X;,,. Con las funciones f'y g lograremos hacer

una prediccioén para los valores faltantes. Si tenemos un conjunto Y;s; en-

tonces se puede estudiar el sobre-ajuste de este método.

En algunos casos estos métodos nos dan mejores resultados que los méto-
dos clasicos que hemos mencionado inicialmente. No hemos estudiado te6-
ricamente este algoritmo propuesto sin embargo es un excelente ejemplo de

como se pueden aprovechar a las redes neuronales profundas.

el problema de los valores...
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©5 Complementos sobre
entrenamiento de redes
neuronales profundas

En esta seccidn presentamos algunos complementos del curso que tratare-

mos en los dltimos dias de la semana.

El método del gradiente es la técnica mas utilizada en deep learning para en-

trenar a una red neuronal.

Comenzaremos con un caso muy sencillo para el caso de las regresiones li-

neales.

La derivada

En esta seccién introduciremos las derivadas en una sola dimensién y més

adelante serdn necesarias las derivadas respecto a més de una variable.

Definition 01.1. Si /: R — R es una funcién, entonces diremos que [ es dife-

renciable en un punto x € R cuando el siguiente limite existe:

o lx+0)-1(x)
lim————
5—0 0

Cuando existe ese limite, lo denotaremos [’ (x) y llamaremos "la derivada de [
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en el punto x".

A partir de ahora nos interesardn las funciones [ que se utilizan como métrica

para un algoritmo, por ejemplo, la funcién de error 02.6.

Supongamos que S = {(xl-, yl-)} es una base de datos asociada a una re-
isN

gresién univariada (es decir, d = 1), tal que la sefial de esta funcién satisface:

f*(X) = mX, entonces

1

2
ﬁ.iSN(mxl _— (05.1)

I(m)=errs(m) =

Exercise 01.1. Calcule la derivada del en 05.1.

Definition 01.2. Si [ : R? — R es una funcién, entonces diremos que [ es di-
ferenciable en un punto x € R%, con respecto a la coordenada j < d cuando
el siguiente limite existe:

T I(x1, .o Xj—1, X + By Xj11,. 0y Xg) — L(X1, ..., Xg)
im
h—0 h

0
Cuando ese limite existe, lo denotaremos a—l(x) y llamaremos la derivada
i
J

parcial de / en el punto x y con direccion j.

complementos sobre ...
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El método del gradiente de Cauchy

El método del gradiente es un algoritmo que es cominmente utilizado en
Machine Learning para el proceso de entrenamiento de diversos modelos. En
esta secciéon supondremos que [ : R — R es una funcién que entenderemos
como la funcién de error en algin modelo, por ejemplo, podriamos suponer

que

1(B) == X (vi—<B, X)) (05.2)

isN
en el caso de una regresion lineal. El método del gradiente consiste en actua-

lizar iterativamente los pardmetros 8 para optimizar la funcién [.

Definition 02.1. Sea f como en el parrafo anterior y f € R?, para v > 0 defi-

nimos el algoritmo del gradiente descendente de la siguiente manera:

1. Bo=(1,1,...,1)

2. Brs1=P: —VVl(ﬁt)

El pardmetro v sirve para garantizar que la aproximacién no se aleja dema-

siado de B y se conoce como factor de aprendizaje.

Si desentranamos con cuidado la definicién anterior obtenemos:

ol ol 0l
aﬁt,l (ﬂl‘)"”’ﬁt,j_vaﬁtJ (ﬁt)’”.’ﬁt'd_vaﬁt,d

(B:)

:31‘+1,j = ,Bt,l -V
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La idea principal detrds del método del gradiente se podria resumir para el
caso uno-dimensional, / : R — R, de la siguiente manera. Buscamos un f tal
que I'(B) = 0. Cuando d = 1y By = 0, la funcion de pérdida ! depende tnica-

mente del pardmetro S.

Si hemos encontrado un f’ € R que atn no satisface que I'(f') = 0, entonces

podrian ocurrir los siguientes dos casos:

I'(")>0 al disminuir g, el error I(f’) disminuye

I'()<0 al aumentarf’, el error I(B’) disminuye

Cuando !'(f') > 0 significa que la pendiente es positiva, por lo que para mi-
nimizar la funcién debemos movernos en direccién negativa. Igualmente,
cuando !'(f') < 0, debemos movernos en direccién positiva para disminuir

el error.

Por eso en el primero de los casos deseamos sumarle una cantidad negati-
va a 8/, a saber I'(f'), y en el segundo caso deseamos sumarle una cantidad
positiva, a saber —1'(f) para acercarnos al § que optimiza la funcion. Asi la
actualizacion de f; a B;+1 = B — I'(B) es cada vez més cercano a 5 como se

aprecia en la siguiente ilustracion.

complementos sobre ...
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Remark 02.1. Si una funcion es diferenciable un punto, entonces alrededor
de ese punto se tiene la siguiente aproximacion lineal: Si 3 es cercana a f;,

entonces

L(B) ~ L(B:) +(B— B, VL(B:) (05.3)

Cuando la funcién [ satisface algunas condiciones de regularidad y conve-
xidad, es posible garantizar la convergencia del método del gradiente, sin
embargo algunas veces podria ser problemdtico. Afortunadamente para las

redes neuronales profundas estas técnicas funcionan muy bien.

Meétodo del gradiente estocastico

Uno de los casos principales cuando el método del gradiente podria no con-
verger es cuando la cantidad de datos es demasiado extensa, en este caso el
método del gradiente estocastico permite solucionar la velocidad de conver-

gencia.
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Supongamos que f : R¢ — R es una funcién diferenciable que podemos es-

cribir de la siguiente manera:

f(B)= % > fi(B) (05.4)

isN
Por ejemplo la funcién de error de las regresiones que vimos anteriormente
en donde las f;(B) = ({6, x:) —J/i)z-

Es inmediato que el gradiente de f es

1
Vi(B) =5 L Vi(h) (05.5)
isN
En este caso el algoritmo de actualizacién del gradiente estocéstico se define

de la siguiente manera:

1. Bo=(1,1,...,1)

2. Bri1=PB: —vaj (ﬁi)

Para algtn j € {1,2,..., N}. Por supuesto, la pregunta mds natural es: ;c6mo

elegir j?

Supongamos que elegimos j de manera aleatoriay uniforme en {1,2,3,..., N}.
Es claro que $;) serd una variable aleatoria que depende de j. Calculemos

Su esperanza:

1 N

N
E(Bina) = 5 X (8903 (B0) = = vy X V15 (81) = Be—vV 1 (B)
j= =

complementos sobre ...
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Lo anterior es muy interesante porque significa que, en promedio, el efecto
del m’etodo del gradiente estocéstico serd igual al del gradiente determinis-
ta, con la enorme ventaja de solo requerir el cdlculo de un tnico gradiente
Vf; en cada iteracion, en lugar de sumar N gradientes V f; como requeriria el

método determinista.
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@6 Caso de uso: segmentacion
de clientes

En la actualidad las companias registran una gran cantidad de caracteristicas
de sus clientes, lo cual tiene un gran beneficio pues podemos utilizar mucha
informacién sobre ellos dependiendo de lo que se desee predecir. El objetivo
del caso de uso que presentaremos esta semana es utilizar a las redes neuro-
nales profundas, en particular a los autoencoders para reducir la dimensién
de los vectores con los que representamos a un conjunto de usuarios de tarje-
tas de crédito. Una vez que hayamos reducido la dimensién vamos a agrupar
a nuestros clientes por medio de un algoritmo no-supervisado llamado K-
Means. Es importante mencionar que este algoritmo dificilmente daria bue-

nos resultados debido a la maldicién de la dimensién.

caso de uso: segmentacion...






	Introducción
	Frank Rosenblatt
	Keras

	El lenguaje de las redes neuronales
	Funciones de activación
	Funciones de pérdida
	Perceptrón multicapa

	Autoencoders
	Análisis de componentes principales
	Definición de Autoencoder

	El problema de los valores faltantes
	Estrategia para la imputación de datos

	Complementos sobre entrenamiento de redes neuronales profundas
	La derivada
	El método del gradiente de Cauchy
	Método del gradiente estocástico

	Caso de uso: segmentación de clientes

