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@1 Introduccion

Bienvenidos a nuestro curso de Matematicas Avanzadas para la Ciencia de
Datos, nuestro curso tiene cuatro médulos dedicados a estudiar las ideas ma-
temadticas mas utiles para comprender los algoritmos y modelos matematicos

mds comunes en Ciencia de Datos. Los cuatro médulos son los siguientes

Fundamentos de probabilidad

Algebra Lineal

Estadistica e inferencia bayesiana

Optimizacién y calculo diferencial

Todos los médulos tienen una duraciéon de 6 semanas. El curso estd acom-
panado de ejercicios y tareas en Python para practicar y reforzar los cono-
cimientos aprendidos asi como las implementaciones en bases de datos de
los algoritmos estudiados. Pueden consultar el repositorio de esta semana en

este link.

La estructura de cada una de las semanas es la siguiente:

1. Veinte minutos dedicados a estudiar un articulo de referencia que mo-

tivara los conceptos matemadticos de esta semana.

2. Dos horas cuarenta dedicadas a estudiar el tema de la semana y algu-

nos ejercicios.

introduccion


https://github.com/AnIsAsPe/Estadistica_y_Probabilidad_para-CD-
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3. Unahoraymedia dedicada a practicar lo aprendido utilizando Python.

El primer médulo de probabilidad consta de los siguientes temas:

1. Aleatoriedad, independencia y condicionamiento.

2. Variables aleatorias, sus momentos y las regresiones.

3. Leydelos grandes nimeros y el teorema limite central.
4. Tests estadisticos.

5. Cadenas de Markov y Page Rank.

6. Metropolis-Hastings y mensajes codificados.

% Elrepositorio de Github para esta semana se puede encontrar en éste link.


https://github.com/AnIsAsPe/Estadistica_y_Probabilidad_para-CD-/tree/34fd2f8e211f4d6cf5576400f7aafc550bc45bab/PrincipiosDeProbabilidad/Semana2
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@2 Karl Pearson

En esta semana hablaremos, entre otras cosas, sobre el calculo de la correla-
cion entre dos variables aleatorias. La férmula de la correlacion se le atribuye
al matemadtico inglés Karl Pearson, aunque también los matemdticos Auguste

Bravais y Francis Galton participaron en el desarrollo de ella.

Karl Pearson (1857 - 1936) fue uno de los matematicos mdas importantes en el
desarrollo de la estadistica moderna. Abogado, fil6sofo, escritor e historiador
del arte. La mayoria de sus trabajos los desarroll6 en el Kings College of Lon-
don. Su influencia en la academia inglesa fue muy poderosa y por muchos es

considerado el padre de la estadistica.

Entre sus contribuciones esta la idea de estudiar la relacién de datos a través

de los patrones geométricos que generan. Sus trabajos junto a Walter Eldon

karl pearson
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acerca de evolucion y caracteristicas hereditarias en plantas son pioneros en
lo que hoy se conoce como la bioestadistica. Algunas técnicas estadisticas
que requieren de grandes bases de datos, se le atribuyen a Pearson. Més ade-
lante en el curso hablaremos sobre sus resultados teéricos sobre los tests es-

tadisticos.
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@3 Lectura de referencia: las
distribuciones de Laplace

En la semana 4 del curso hablaremos sobre un teorema que es llamado el
Teorema Limite Central y que justifica su importancia. Por el momento solo
haremos referencia a la idea intuitiva que todos tenemos cuando escuchamos

0 vemos una'campana de gauss".

La distribucién gaussiana es ampliamente conocida y utilizada para mode-
lar distintos fenémenos tanto en Ciencia de Datos como en otras areas del

conocimiento.

Ademads del matemaético alemdan Carl FriedrichGauss a quien le debe su nom-
bre la distribucién gaussiana, en su descubrimiento particip6 el matematico
francés Pierre SiménLaplace quien descubri6 otra distribucién de probabi-
lidad hoy conocida como distribucién de Laplace. Esta distribucién tiene la

importante diferencia con la gaussiana que la cantidad de valores atipicos

lectura de referencia: las...
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(outliers)es mucho mayor.

Les compartimos este texto de referencia [1] sobre la distribucién que siguen
las mediciones del crecimiento de algunas compaiias japonesas. Por medio
de observaciones empiricas y algunos resultados tedricos el autor concluye
que las distribuciones de Laplace son una mejor hip6tesis para este feno-

meno.
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@4 Las variables aleatorias y sus
momentos

La semana pasada hablamos sobre los espacios de probabilidad y en esta lo
haremos sobre las variables aleatorias, estas dltimas son la base de la teoria
moderna de probabilidades. A continuacién explicaremos a relacién entre

ambos conceptos.

Definition 00.1. Una variable aleatoria X es un fenémeno que es aproxima-
do por un conjunto con N observaciones numéricas generadas por el mismo

fenémeno X = {x;, xo,..., XN}

Example 00.1. Al elegir a N personas al azar y registrar sus estaturas
{x1,x2,...,xN} estamos aproximando una variable aleatoria que corresponde

a la poblacién total.

Proposition 00.2. Asociado a una variable aleatoria X es posible construir un
espacio de probabilidad sobre el conjunto Q de valores distintos que toma la
variable X. La formula de la funcion de probabilidad asociada a la variable X

es
Py (x) = == (04.1)
XX—N .

donde ny es el niimero de veces que aparece el valor x en la variable.

En términos de los registros de una base de datos X con N observaciones

las variables aleatorias y sus...



BOURBAKI

COLEGIO DE MATEMATICAS

fundamentos de probabilidad 10 las variables aleatorias y sus...

X1,X2,... Xy, donde s6lo hay k registros distintos, digamos xj, x2,... X (con
k < N), entonces su espacio de probabilidad asociado Qx tiene k elementos

Q = {x1,...x} donde P(x;) = % Como veremos en el siguiente ejemplo.

Example 00.3. Supongamos que hay N = 8 personas, con alturas X =
{1.55,1.57,1.57,1.60,1.65,1.70,1.70,1.72}. El espacio de probabilidad aso-
ciado a la variable altura X, consta de los valores distintos Q =

{1.55,1.57,1.60,1.65,1.70,1.72}. La probabilidad asociada a esta variable es:

P (155)_1' P (157)_2_1' P (160)_1
X\1L. _87 X\ _8_4) X\L. _8

1 1 1
Px(1.65)=—; Px(1.700=-; Px(1.72)=-—
x(1.65) 3 x(1.70) 1 x(1.72) 3

La importancia del espacio de probabilidad asociado es que nos permite dis-

tinguir mateméticamente a dos variables aleatorias.

Inversamente podemos asociar una variable aleatoria a un espacio de proba-

bilidad dado.

Proposition 00.4. Consideremos un espacio de probabilidad (finito por el mo-
mento) (Q,P), cuyos valores son niimericos (ntimeros reales) es posible cons-
truir una variable aleatoria X en donde cada niimero w € Q aparezca en X la

parte proporcional de veces correspondiente aP(w).

Desafortunadamente existe una ambigiiedad en esta asignacién pues no he-
mos fijado el tamafio de la base de datos; sin embargo como explicaremos en

las clases, esto no es un problema muy grave.
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Example 00.5. Supongamos que tenemos dado un espacio de probabilidad
Q= {W1, wz};[FD = {I]:D(LU]_) = l,ﬂ:b(wz) = §})
4 4

La ambigiiedad que se menciona arriba se refiere a que la variable asociada a
; S Y~ ; 0
(Q,P) podria ser: X = {x1, X2, X2, X2} 0 bien, X' = {x1, X1, X2, X2, X2, X2, X2, X2}, O

de muchas otras maneras; por lo cual es importante fijar N.

Remark 00.6. La enorme ventaja de las variables aleatorias respecto a los es-
pacios de probabilidad es que al constar de observaciones numéricas,podemos

operar con ellas, es decir sumarlas, restarlas, etc...

Example 00.7. SiQ =1{2,3,4,5,...,12} es el espacio de probabilidad correspon-
diente a la experiencia aleatoria de lanzar dos dados de manera independiente

y sumarlos. Su variable aleatoria correspondiente X, es evidente.

Veamos algunos ejemplos.

_ _1 1_ 1
P(Xsum—z)—g’g—%
|]:D(X5um:3):£:i

36 18
l]:D(Xsum:‘l):i:i
36 12

# combinaciones que suman n

P (X =n)=
(Ksum = 1) # de combinaciones posibles: 6 x 6

Por ejemplo, hay dos maneras de sumar 3: Que en el primer dado salga 1 y en
el segundo 2; y que en el primer dado salga 2 y en el segundo 1. Siguiendo esta

misma idea, Xsum = 4 se puede obtener de 3 maneras distintas: 1+3,2+2 y

las variables aleatorias y sus...
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3+1.

Exercise 00.8. Calcule los valores faltantes para el ejemplo 00.7

Recordemoslaley de probabilidad binomial Pg;y, , (i) = (W_Ll'w) p(1- p)n—i
con pardmetros 0 < p < 1 y n un nimero natural. Pensemos en una base de
datos donde n corresponde al nimero de columnas {Xj,... X;}. Pensemos
que las columnas son independientes entre si, y que satisfacen la ley de pro-

babilidad de Bernouli

(Q = {0, 1}rﬂ:bBernulli ={l1- p, p})

es decir, p es la proporciéon de unos en cada columna. En este escenario,
Pin,,, (i) corresponde a la probabilidad de obtener renglones con exacta-

mente i unos.

Example 00.9. Con las n = 4 columnas de la siguiente tabla donde cada una

tiene probabilidad Pgernouii (Xi) = % Entonces, para i = 2, Py, , (2) es la

n,p)

probabilidad de obener arreglos (permutaciones de las columnas) en los que

aparecen renglones con exactamente dos unos.
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X1 | Xo | X3 | Xa

Exercise 00.10. Determine el espacio de probabilidad asociado a la suma de n
variables aleatorias X,,X>,... X,, de bernoulli independientes. A esta variable

la denotamos como

n
S, = Z X (04.2)
k=1

\/alor esperado y varianza

Definition 01.1. Si X es una variable aleatoria y (Q,Px) su espacio de proba-

bilidad asociado, definimos el valor esperado de X de la siguiente forma:

E(X]=) x-px (04.3)
x€Q

Donde p, =P (x).

las variables aleatorias y sus...
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Example 01.2. Sea X la variable aleatoria de Bernoulli ({0, 1},[?), entonces

ElXI=(0-(1-p))+(1-p)=p (04.4)

Example 01.3. Consideremos la variable X, de la tabla del ejemplo 00.9. En-

toncesE(X;) = %

Exercise 01.4. Defina dos variables aleatorias que corresponda a las 10 califi-
caciones durante un semestre de dos alumnos, todas ellas entre 5y 10y calcule

SUus esperanzas.

Exercise 01.5. Calcular la esperanza de Xy, del ejemplo 00.7.

Una propiedad muy importante de la esperanza es que es un funcional li-
neal, esto significa que respeta la suma de variables y producto por escalares

en el siguiente sentido:

Proposition 01.6. Si X,Y son dos variables aleatorias y a,b € R, entonces

E(aX+bY)=ak(X)+bE(Y).

Proposition 01.7. Sea ({0, ]‘}n’PBin(n,p)) la ley de probabilidad binomial (de-
finida en las notas de la semana pasada). Llamemos S, la variable aleatoria

asociada a dicho espacio. EntoncesE[S,] = np.

Example 01.8. En el ejemplo de las olimpiadas que vimos en la notas pasadas,
la esperanza es 307 x 0.005 = 1.535 que es lo que se esperaria en promedio de
medallas olimpicas ganadas por Argentina de acuerdo al tamario de su pobla-

cion.
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Definition 01.9. Sea X una variable aleatoria. Definimos la varianza de X

como

Var(X)= ) (x-EX)* px (04.5)
xeQ)

Definition 01.1. Definimos la desviacion estandar de una variable aleatoria

como la raiz positiva de la varianza

ox=+vVar(X) (04.6)

Example 01.10. Sea X la variable aleatoria de Bernoulli. Utilizando el resutla-

do 04.4 tenemos que

2

Var(X):(O—p)z-(l—p)+(1—p) -p=p-(1-p)

Exercise 01.11. Calcule la varianza de la variable aleatoria definida en el ejer-

cicio 01.4.

Exercise 01.12. Calcule la varianza de la variable X, definida en el ejemplo

00.7.

Remark 01.13. La volatilidad o riesgo de un activo financiero se mide me-

diante la desviacién estdndar cuando se miden los rendimientos.

La curtosis

las variables aleatorias y sus...
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En ocasiones el valor esperado y la varianza no son suficientes para deter-
minar de cudl distribucién estamos hablando. En esta seccién proponemos
utilizar el cuarto momento de una variable aleatoria,el cual estd intimamente

relacionado con los valores extremos.

Definition 02.1. Sea X = {x;, x»,..., XN} una variable aleatoria, definimos la

curtosis de X

_ 4
ﬂ) - 04.7)

Kx = (
xeX o

Notemos que la curtosis escrita de esta manera es siempre positiva, pues es
una suma de ntimeros elevados a la cuarta. Mds atin, notemos que si existen
datos x; muy alejados de E[X], entonces los factores (X —E[X])* serdn ntime-
ros muy grandes, por lo que una curtosis grande puede indicar una mayor

cantidad de datos alejados de la media hacia uno u otro lado.

Example 02.1. La curtosis de una distribucion gaussiana centrada en cero y

con varianza uno es igual a cero.

—0\%
Kx = Z(x—) py=E[X] =0

Aunque mads adelante estudiaremos detalladamente las distribuciones con-
tinuas, en esta seccién vale la pena mencionar a la distribucién de Laplace
pues es un importante ejemplo de cémo la curtosis es ttil para distinguir dos

distribuciones.
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Definition 02.2. Distribucién de Laplace. La variable aleatoria de Laplace
con media p y varianza 2b? se define el fenémeno de obtener un ntimero x

en la recta real con la siguiente probabilidad.

[t=pl

1 [* _iew
PrLaplace (—00,%) = _f e b dt (04.8)
2b —00

La curtosis de la curva normal estandar es Ky,rma = 3. Se define la curtosis
K3, también conocida como el exceso de curtosis como K3(X) = K(X) -3
para determinar qué tan alejada estd la gréafica de frecuencias de X de una

distribucién normal.

Example 02.2. El exceso de curtosis de una distribucion de Laplace centrada

en cero y con varianza uno es igual a tres.

las variables aleatorias y sus...
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Momentos para vectores aleatorios

Hasta el momento solo hemos hablado de las variables aleatorias sin embar-
go es comun que en ciencia de datos tratemos vectores aleatorios- Comenza-

remos con el caso de dos variables aleatorias.

Definition 03.1. Sean X, Y dos variables aleatorias. Definimos la covarianza

entre Xy Y como

Cov(X,Y)=EX-Y)-EX)-E(Y) (04.9)

Example 03.1. Consideremos dos variables aleatorias independientes idénti-

camente distribuidas, o bien, columnas de una base de datos

XY

O DN CO| >
N W=

Calculemos sus mediasE(X) = ux = %(4+8+2 +5+1) = % =4yE(Y)=p(Y) =
%(5 +1+3+4+2)= % = 3. Calculemos también el producto entrada a entrada
X Y =1{20,8,6,20,2} y su promedioE(X-Y) = ux.y = %. Entonces la covarian-

zaesCov(X,Y)=EX-Y)-EX)-E(Y)= % -12=-0.8
Exercise 03.2. Verifique que Cov (X, X) = Var (X).

Exercise 03.3. Verifique que Si X,Y son variables aleatorias independientes

entonces Cov (X,Y) =0.
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Definition 03.2. Si X,Y son dos variables aleatorias, definimos su correla-

cién como

Cov(X,Y)
Corr(X,Y)= ——— (04.10)
Ox'0Oy

Example 03.4. Calculemos la varianza de cada una de las variables del ejem-
plo 03.1. Si eliminamos la media de cada columna obtenemos X — ux =
{0,4,-2,1,-3} y Y —uy = {2,-2,0,1,—-1} y luego elevemos todo al cuadrado
(X — ux)? =10,16,4,1,9}, (Y — uy)? = {4,4,0,1,1}; entonces la varianza es el
promedio Var(X) = % =6yVar(Y)= % = 2. Con lo que las

desviaciones estdndar son ox = V6 yoy = V2. Finalmente, su coeficiente de

correlacion es Corr (X,Y) = \/_69'\8@ =-0.23.

Proposition 03.5. Entre mds cercana a —1 o +1 sea la correlacién entre dos
variables X = {xy,...,xn}, Y ={y1,..., YN} mds cercana de estar en regresion
lineal simple estard la base de datos { (x1,31)5--» (XN, YN) } De hecho, los co-
eficientes de la regresion son:

B Cov(X,Y)

Po = Var X yB1 = py — Pokx

donde px y py representan las medias de X y Y respectivamente.

Correlacion de Spearman

las variables aleatorias y sus...
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La correlacién de Spearman, al igual que la correlacién de Pearson, también
mide la relacién entre dos variables aleatorias X y Y. A diferencia de la corre-
lacién de Pearson, la de Spearman trabaja con los estadisticos de orden de

los datos x — y.

El primer estadistico de orden de una muestra de tamafo 7 es el siguiente

minimo. Del mismo modo, el n-ésimo estadistico de orden 7 es el maximo:

X(l) = rnin{Xl, Xg, 000 Xn}

X = max{Xy, X, ... X}

El rango de la muestra es la diferencia:

Rango{Xl,...,Xn} = X(n) — X(])

El coeficiente de correlacién de Spearman p se calcula como

2
G'Z?:Idi

S — (04.11)

p=1

Donde d; son las diferencias entre los rangos de ambas variables en cada ob-

servacion d; = xg) — Y-

El coeficiente p mide las relaciones monétonas entre X y Y, es decir, detec-
ta si una de las variables aumenta o disminuye cuando la otra lo hace; sin

asumir que dicha relacion es lineal (como en la correlaciéon de Pearson).
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Example 04.1. Calculemos la correlacién de Spearman para las variables del

ejemplo 03.1, para lo que serd titil observar la siguiente tabla.

X | Y | Rango X | Rango Y | d (diferencia) | d°
4 |5 3 5 -2 4
8 |1 5 1 4 16
213 2 3 -1 1
5| 4 4 4 0 0
1|2 1 2 -1 1

Entonces el coeficiente de correlacion de Spearman se calcula como

6-Yd*>  6-(4+16+1+0+1)
n-n2-1) 5-(52—1)
6-22 22 11 1

=] —-—= _—_—= ——:——:—O.]_
5-24 20 10 10

Remark 04.2. El coeficiente de correlacion de Spearman varia en el interva-

lo [-1, 1]. Cuando p = —1, hay una correlacion mondtona perfecta negativa.

Cuando p = 1 se presenta una correlacion monétona perfecta positiva, y cuan-

do p =0 no hay relacion monétona entre las variables.

Skewness

El skewness o asimetria mide qué tan simétrica es la distribucién de una va-

riable aleatoria con valores reales. Hay distintas maneras de abordar este pro-

blema, pero entre las mds usuales estan el coeficiente de asimetria de Fisher

y el coeficiente de asimetria de Pearson.

Definition 05.1. El coeficiente de asimetria (poblacional) de Fisher para una

las variables aleatorias y sus...
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variable aleatoria X se calcula como:

El(X - w3

= (04.12)
o

YFisher =

Donde p es la media, o es la desviacion estdndar
Definition 05.2. El coeficiente de asimetria de Pearson se calcula como

u—Mo
o

(04.13)

Y Pearson =

donde u esla mediay Mo es lamoda de X.

Hablemos de la interpretacioén del signo del indice de asimetria

Y =0 Estamos en presencia de una distribucién simétrica.

Y >0 La distribucién tiene una cola mas larga hacia la derecha.

Y <0 La distribucién de X muestra una cola mds larga a la izquierda.

Example 05.1. EI coeficiente de asimetria de Fisher de la variable X, defi-
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nida en el ejemplo 00.7 se obtiene fdcilmente:

252 ) 1974
E[Xsuml = 36 =7 y E[Xg,,l= ET

Varx )_1974 2 _1974-1764 35 IS

sum) = 38 -~ 3% 6 ° 7TV%

5 —125-128-81-32+5+0+5+32+81+128+125
E[(X-w’]= =0,

36
ElX-w’ 0
YFisher = o3 = ; =0

Lo que indica que la distribucion X, es simétrica.

Ley multinomial

Example 06.1. Ley multinomial. Fijemos K y n dos ntimeros naturales y Q un
conjunto de tamariio nX, digamos Q = {x1, X3, ..., x,}X.Ademds fijemos niime-
ros 0 < p1, p2,..., px < 1 cuya suma es igual a uno. Definimos la ley de proba-

bilidad multinomial de la siguiente forma:

n! xl Xk
|75 sz (04.14)

PMult(n'pl”"'pK) i ipoo0niic) = (xllxz!...xK.

Pensemos en una base de datos X con n columnas X, X»,..., X, y N ren-
glones. En cada columna podemos tener solamente K observaciones. Estas
observaciones podrian ser incluso variables categéricas, digamos cj, ¢z ..., Ck.
Llamemos p; ala probabilidad de que aparezca la observacién c; en cada co-

lumna. En este contexto P(x1, X2, x3) es la probabilidad de encontrar renglo-

las variables aleatorias y sus...
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nes con exactamente x; observaciones cj, X, observaciones ¢, y x3 observa-

ciones c3.

Por ejemplo, si K=3,n=4, N=5, c; esoscuroy p; = %, ¢, esdoradoy p2 = %
y cs es grisclaroy p3 = % La siguiente tabla muestra que hay probabilidad de
obtener arreglos con renglones para (xp, x2, x3) de la forma (1,1,2) (de hecho,
el primero y el tltimo de los renglones tienen esta configuracién), también
tenemos posibilidad para (1,2,1), (0,3,1),(1,3,0) y (0,2,2).

X1 Xo X3 Xy
[
]

Proposition 06.2. Si X;, X; son algunas de las K columnas distintas donde vi-

ven los valores de la distribucion multinomial, entonces Cov(X;, X;) = —np;pj.
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@5 Distribuciones infinitas

Siméon Denis Poisson

Nacié6 en Francia solo unos afios antes de la revoluciéon francesa, estudi6 en
una de las escuelas mds emblematicas de toda la historia de Francia, Ecole
Polytechnique. Sus trabajos cientificos estdn relacionados con la Teoria del
Potencial, con la Optica, con la Mecénica y por supuesto con la Teoria de la

Probabilidad.

Estudiando los juicios criminales en materia civil desde el punto de vista de
la probabilidad dedujo lo que actualmente se conoce como ley de Poisson la

cual estudiaremos mas adelante en este texto.

Sus interacciones con otros matemadticos de la época son naturales debido

al gran prestigio que cosech6 durante su carrera académica, sustituyendo en

distribuciones infinitas
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alglin momento al mismisimo Joseph Fourier. Una de estas interacciones es
bastante notable, con el joven y genial Evariste Galois a quien invité a publi-

car su trabajo completo a pesar de describirlo como incomprensible.

Lectura de referencia: La maldicion de la Di-

mension y MLE

Uno de los problemas mds complicados dentro de Machine Learning es el de
la maldicién de la dimensién pues cuando el espacio de parametros es dema-
siado grande la biisqueda de los valores 6ptimos puede ser tan complicada

como imposible gracias a la compleja geometria de estos espacios.

La técnica de aproximacién que veremos en este capitulo se le conoce co-
mo méxima verosimilitud y es ampliamente conocida en estadistica como
un método para aproximar pardmetros. Esta técnica al igual que otros mé-
todos de machine learning también se ven afectados por la maldicién de la

dimension.

En esta lectura de referencia recomendamos el siguiente articulo [2] en el que
los autores introducen algunas mejoras a la cldsica regresion logistica para
aproximar los pardmetros. Aunque en esta semana no estudiaremos la regre-
sién logistica sino la regresién de Poisson, ambos métodos son muy pareci-

dos.
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Distribuciones infinitas

Hasta ahora hemos hecho énfasis de espacios de probabilidad finitos sin em-
bargo las variables aleatorias son mucho més expresivas para espacios de
probabilidad infinitos. En esta seccién nos dedicaremos a estudiar variables

aleatorias un poco més complicadas.

Example 03.1. Si E es la experiencia aleatoria de lanzar un dado justo hasta
obtener el niimero seis, definimos la siguiente variable aleatoria: X (w1, wy,...) =
{w1, w,,... wy} donde k es el menor niimero de tiradas del lado en las que ob-

tuvimos un 6, es decir, k = min{j twj = 6}.
j=1

Definiremos la siguiente experiencia aleatoria numerable (esto es, cuando Q
tiene tantos elementos como niimeros naturales Q = {1,2,3,...}), lamada Ley

de Poisson.

Definition 03.2. Sea A > 0, definimos

el
i!

Ppoisson,a (1) = (05.1)

Proposition 03.3. Para una variable aleatoria de Poisson X con pardmetro

A la media y la varianza sonE[X] = Var[X] = A

La ley anterior corresponde a la probabilidad de que un evento raro ocurra
después de muchas repeticiones. La justificacién matematica de esta intui-

cion es la siguiente proposicion:
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Proposition 03.4. Consideremos una distribucion binomial Bing,p,) en la

quelim,_.oo pn - n = A. Entonces ,ZILTOPBZ'"(W”) (@) =Ppoissona (D).

La condicién de la proposicién anterior dice que cuando 7 crece, las proba-
bilidades p, deben ser cada vez més pequenas, pues de no ser asi, el limite

lim,,_.o, Py, - 1 seria infinito.

Example 03.5. Pensemos en el evento de tirar n monedas donde ganar signi-
fica que salga dguila. La condicion corresponderia a que entre mds monedas

lancemos, menos probabilidades tenemos de ganar.

Example 03.6. Comparemos la distribucién de Poisson con la ley binomial
que calculamos en el ejemplo de las olimpiadas en la primera semana, en este
caso nuestro pardmetro A serd igual a la esperanza de la variable aleatoria
de Bernouilli, lo cudl corresponde con 1.535 gracias al cdlculo que hicimos en

aquellas notas, tenemos:

I]:DPoisson,1.535 (0) =0.215, PPoisson,1.535 (1) =0.33,

[FDPoissan,l.SSS (2) = 0-2537 IPPoisson,l.SSS (3) =0.129

Exercise 03.7. Calcule la curtosis de una distribucion de Poisson con pardme-

troA.

Notemos que si en lugar de considerar la variable aleatoria S,, consideramos
la variable aleatoria n — S; (o equivalentemente la variable aleatoria de Pois-

son con A = n(1- p) es posible aproximar de la misma manera eventos alta-
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mente probables. Una pregunta inmediata es ;qué pasa si deseamos calcular
eventos cuya probabilidad no es muy pequeiia ni muy alta? Para ello sera ne-

cesario utilizar el célebre Teorema Limite Central de Lévy.

03.1 Leyes de probabilidad continuas

Las leyes de probabilidad continuas (es decir definidas sobre el conjunto total
de los nlimeros reales) son mas complicadas de definir porque en ese caso las
funciones de probabilidad no acttian sobre la familia total de subconjuntos,
silo hicieran esto generaria algunos problemas matemaéticos los cuales tras-
cienden el objetivo de este curso. En esta seccion hablaremos de las llamadas

leyes continuas con densidad.

Definition 03.1. Laley de probabilidad uniforme sobre el intervalo de nu-

meros reales [a, b] es la ley de probabilidad tal que

0 six<a
I]:Du”if((a,b)) (x) = < ﬁ sia<x<b (05.2)
1 six=b

Example 03.8. La variable aleatoria uniforme del tiempo medio (en minu-
tos) de entrega de un pedido en una cafeteria estd distribuida en el intervalo
[5,15]. La probabilidad de que su café se entregue en menos de 7 minutos es de

. _ 15 _1
Punifisis (V) = 1525 = 5

distribuciones infinitas
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Definition 03.2. Laley de probabilidad Gaussiana o normal con pardmetros

(1, 02) se define para los intervalos (—oo, x] de la siguiente manera:

X (-w?
[ e 202 dt (05.3)

—00

1
o-V2m

I]:DGausswygz) (—00,x] =

En estas notas no hemos definido la esperanza ni la covarianza para leyes de

probabilidad no numerables, sin embargo es posible hacerlo:

Proposition 03.9. Si X es una variable aleatoria con probabilidad continua

. 2
uniforme Punif«a,b)) (X), entonces E(X) = %b yVar(X) = (bl—z‘”.

Proposition 03.10. Si X es una variable aleatoria tal que Px = PGauss,q en-

toncesE(X)=pyVar(X) = o2,

Example 03.11. Distribucion gaussiana multivariada

Sea X = (X3, Xy,...,X4) una variable aleatoria con E[X;] = u;, denotamos por
W= (U1, to, ..., taq) € R al vector de medias. Sea C € R**¢ la matriz de cova-
rianza de X, es decir, C; j = Cov(X;, X;) (de hecho, C es simétrica C = cT y
satisface que xCx” > 0 para cualquier x € R*\{0}). Definimos la ley de proba-

bilidad gaussiana d dimensional con pardmetros u, C de la siguiente forma:

1 X1 Xd 1 -1 T
B ~ 3 -3 (t-p)C' (t—p)
PGauss((—=00, x1] % ... x (=00, X4]) = (Zn)d/2lc|d/2 f_oo“.f_ooe at
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Regresiones de Poisson y el aprendizaje super—

visado

En esta semana por primera vez hablaremos sobre un ejemplo de aprendizaje
supervisado en el que tendremos acceso a un muestreo S de lo que se conoce
como una probabilidad conjunta de dos variables aleatorias (X, Y). Utilizan-
do a S deseamos averiguar una relacién funcional que exista entre X e Y, a
saber una funcién f de la variable X tal que en la medida de lo posible expli-
quen a Y, es decir f(X) ~ Y. De ese hecho viene la relacion de la regresion
con el aprendizaje supervisado. Si X es una base de datos con variable super-
visada Y. Se espera que la prediccién f(X) se aproxime a la supervisién Y. El

ejemplo mds sencillo de este problema es el de las regresiones de Poisson.

En el caso de una regresién de Poisson se asumira la siguiente férmula:

logE[Y]X]) = (X, B (05.4)

Lo anterior es equivalente a suponer que la variable Y sigue una distribucién

de Poisson al condicionarla con X.

Example 04.1. En una base de datos X con d caracteristicas y variable obje-

tivo Y, en dondeP(Y = n|(xy,...,Xq) =

7A/"v n . . .
¢ n,l , es decir, tenemos una distribu-

cion de Poisson para cada (x1,...,xg), entonces A estd dado por los x; como

.....

betas son precisamente los coeficientes de la regresion.

distribuciones infinitas
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X Y

“ Poisson Ax
hlh..

l. Poisson Ax’

Example 04.2. Regresion lineal. Tradicionalmente en las regresiones lineales
se intenta modelar E[Y | X] con una combinacion lineal de las variables expli-

cativas X.

En una base de datos X con d caracteristicas y variable objetivo Y con dis-
tribucion gaussiana, es decir P(Y = y|(x1,...x4)) = N[B1x1 +...+ Baxq,0] es

gaussiana, entonces el valor esperadoE[Y|(x1,...xg)] = f1X1 +...+ Baxg.

| Bx
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Machine Learning Generativo

Muchos de los modelos matematicos buscan modelar la distribucién P (y|x)
donde x e R% e y € {—1,+1}. A este tipo de modelos los llamaremos modelos

discriminativos o modelos de clasificacién.

En contraposicién a estos modelos estdn los modelos generativos los cuales
buscan modelar la distribucion de probabilidad P (x|y). Es decir, a partir de
supervisiones fijas, se busca generar las caracteristicas que se apegan a esas
supervisiones. Gracias al teorema de Bayes, si conocemos las probabilidades

P(xly) yP(y) es posible deducir

(x1y)-P(y) _ P(xly)-P(y)
P (x) CP(xly=-1)P(y=-1)+P(xly=+1)P(y=+1)

P(ylx) = d

La ultima igualdad ocurre gracias a la igualdad llamada Regla de Bayes, para

los eventos mutuamente excluyentes y=1y y = —1.

Proposition 05.1. Regla de Bayes. Si {A;, A,,... Ap} son eventos mutuamen-
te excluyentes con probabilidad distinta de cero, y X es un evento del que se
conocen las probabilidades condicionales P(X|A;), entonces podemos conocer
las probabilidades condicionales

P(X|A)-P(A;)
Y7 P(XIAp -P(Ap)

P(AilX) =

Los modelos generativos no son un cambio radical sin embargo en la prac-

distribuciones infinitas
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tica para algunos casos resulta sorprendentemente til modelarlos de esta
manera. En lo particular para el problema de topic modeling resulta mucho
mads eficaz pues dado un prior (por ejemplo y = —1) deseamos modelar la

frecuencia de las palabras que ahi aparecen.
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