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01 Introducción

Bienvenidos a nuestro curso de Matemáticas Avanzadas para la Ciencia de

Datos, nuestro curso tiene cuatro módulos dedicados a estudiar las ideas ma-

temáticas más útiles para comprender los algoritmos y modelos matemáticos

más comúnes en Ciencia de Datos. Los cuatro módulos son los siguientes

Fundamentos de probabilidad

Álgebra Lineal

Estadística e inferencia bayesiana

Optimización y cálculo diferencial

Todos los módulos tienen una duración de 6 semanas. El curso está acom-

pañado de ejercicios y tareas en Python para practicar y reforzar los cono-

cimientos aprendidos así como las implementaciones en bases de datos de

los algoritmos estudiados. Pueden consultar el repositorio de esta semana en

este link.

La estructura de cada una de las semanas es la siguiente:

1. Veinte minutos dedicados a estudiar un artículo de referencia que mo-

tivará los conceptos matemáticos de esta semana.

2. Dos horas cuarenta dedicadas a estudiar el tema de la semana y algu-

nos ejercicios.

https://github.com/AnIsAsPe/Estadistica_y_Probabilidad_para-CD-
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3. Una hora y media dedicada a practicar lo aprendido utilizando Python.

El primer módulo de probabilidad consta de los siguientes temas:

1. Aleatoriedad, independencia y condicionamiento.

2. Variables aleatorias, sus momentos y las regresiones.

3. Ley de los grandes números y el teorema límite central.

4. Tests estadísticos.

5. Cadenas de Markov y Page Rank.

6. Metropolis-Hastings y mensajes codificados.

 El repositorio de Github para esta semana se puede encontrar en éste link.

https://github.com/AnIsAsPe/Estadistica_y_Probabilidad_para-CD-/tree/34fd2f8e211f4d6cf5576400f7aafc550bc45bab/PrincipiosDeProbabilidad/Semana2
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02 Karl Pearson

En esta semana hablaremos, entre otras cosas, sobre el cálculo de la correla-

ción entre dos variables aleatorias. La fórmula de la correlación se le atribuye

al matemático inglés Karl Pearson, aunque también los matemáticos Auguste

Bravais y Francis Galton participaron en el desarrollo de ella.

Karl Pearson (1857 - 1936) fue uno de los matemáticos más importantes en el

desarrollo de la estadística moderna. Abogado, filósofo, escritor e historiador

del arte. La mayoría de sus trabajos los desarrolló en el Kings College of Lon-

don. Su influencia en la academia inglesa fue muy poderosa y por muchos es

considerado el padre de la estadística.

Entre sus contribuciones está la idea de estudiar la relación de datos a través

de los patrones geométricos que generan. Sus trabajos junto a Walter Eldon
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acerca de evolución y características hereditarias en plantas son pioneros en

lo que hoy se conoce como la bioestadística. Algunas técnicas estadísticas

que requieren de grandes bases de datos, se le atribuyen a Pearson. Más ade-

lante en el curso hablaremos sobre sus resultados teóricos sobre los tests es-

tadísticos.



B O U R B A K I
COLEGIO DE MATEMÁTICAS

fundamentos de probabilidad 07 lectura de referencia: las…

03 Lectura de referencia: las
distribuciones de Laplace

En la semana 4 del curso hablaremos sobre un teorema que es llamado el

Teorema Límite Central y que justifica su importancia. Por el momento solo

haremos referencia a la idea intuitiva que todos tenemos cuando escuchamos

o vemos una"campana de gauss".

La distribución gaussiana es ampliamente conocida y utilizada para mode-

lar distintos fenómenos tanto en Ciencia de Datos como en otras áreas del

conocimiento.

Además del matemático alemán Carl FriedrichGauss a quien le debe su nom-

bre la distribución gaussiana, en su descubrimiento participó el matemático

francés Pierre SimónLaplace quien descubrió otra distribución de probabi-

lidad hoy conocida como distribución de Laplace. Esta distribución tiene la

importante diferencia con la gaussiana que la cantidad de valores atípicos
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(outliers)es mucho mayor.

Les compartimos este texto de referencia [1] sobre la distribución que siguen

las mediciones del crecimiento de algunas compañías japonesas. Por medio

de observaciones empíricas y algunos resultados teóricos el autor concluye

que las distribuciones de Laplace son una mejor hipótesis para este fenó-

meno.
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04 Las variables aleatorias y sus
momentos

La semana pasada hablamos sobre los espacios de probabilidad y en esta lo

haremos sobre las variables aleatorias, estas últimas son la base de la teoría

moderna de probabilidades. A continuación explicaremos a relación entre

ambos conceptos.

Definition 00.1. Una variable aleatoria X es un fenómeno que es aproxima-

do por un conjunto con N observaciones numéricas generadas por el mismo

fenómeno X ≈ {x1, x2, . . . , xN }.

Example 00.1. Al elegir a N personas al azar y registrar sus estaturas

{x1, x2, . . . , xN } estamos aproximando una variable aleatoria que corresponde

a la población total.

Proposition 00.2. Asociado a una variable aleatoria X es posible construir un

espacio de probabilidad sobre el conjunto Ω de valores distintos que toma la

variable X . La fórmula de la función de probabilidad asociada a la variable X

es

PX (x) = nx

N
(04.1)

donde nx es el número de veces que aparece el valor x en la variable.

En términos de los registros de una base de datos X con N observaciones
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x1, x2, . . . xN , donde sólo hay k registros distintos, digamos x1, x2, . . . xk (con

k ≤ N ), entonces su espacio de probabilidad asociado ΩX tiene k elementos

Ω= {x1, . . . xk } donde P(xi ) = nxi
N . Como veremos en el siguiente ejemplo.

Example 00.3. Supongamos que hay N = 8 personas, con alturas X ≈

{1.55,1.57,1.57,1.60,1.65,1.70,1.70,1.72}. El espacio de probabilidad aso-

ciado a la variable altura X , consta de los valores distintos Ω =

{1.55,1.57,1.60,1.65,1.70,1.72}. La probabilidad asociada a esta variable es:

PX (1.55) = 1

8
; PX (1.57) = 2

8
= 1

4
; PX (1.60) = 1

8

PX (1.65) = 1

8
; PX (1.70) = 1

4
; PX (1.72) = 1

8

La importancia del espacio de probabilidad asociado es que nos permite dis-

tinguir matemáticamente a dos variables aleatorias.

Inversamente podemos asociar una variable aleatoria a un espacio de proba-

bilidad dado.

Proposition 00.4. Consideremos un espacio de probabilidad (finito por el mo-

mento) (Ω,P), cuyos valores son númericos (números reales) es posible cons-

truir una variable aleatoria X en donde cada número ω ∈Ω aparezca en X la

parte proporcional de veces correspondiente a P(ω).

Desafortunadamente existe una ambigüedad en esta asignación pues no he-

mos fijado el tamaño de la base de datos; sin embargo como explicaremos en

las clases, esto no es un problema muy grave.
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Example 00.5. Supongamos que tenemos dado un espacio de probabilidad

(
Ω= {w1, w2},P=

{
P(w1) = 1

4
,P(w2) = 3

4

})

La ambigüedad que se menciona arriba se refiere a que la variable asociada a

(Ω,P) podría ser: X ≈ {x1, x2, x2, x2} o bien, X ′ ≈ {x1, x1, x2, x2, x2, x2, x2, x2}, o

de muchas otras maneras; por lo cual es importante fijar N .

Remark 00.6. La enorme ventaja de las variables aleatorias respecto a los es-

pacios de probabilidad es que al constar de observaciones numéricas,podemos

operar con ellas, es decir sumarlas, restarlas, etc...

Example 00.7. Si Ω= {2,3,4,5, . . . ,12} es el espacio de probabilidad correspon-

diente a la experiencia aleatoria de lanzar dos dados de manera independiente

y sumarlos. Su variable aleatoria correspondiente Xsum es evidente.

Veamos algunos ejemplos.

P (Xsum = 2) = 1

6
· 1

6
= 1

36

P (Xsum = 3) = 2

36
= 1

18

P (Xsum = 4) = 3

36
= 1

12

P (Xsum = n) = # combinaciones que suman n

# de combinaciones posibles: 6×6

Por ejemplo, hay dos maneras de sumar 3: Que en el primer dado salga 1 y en

el segundo 2; y que en el primer dado salga 2 y en el segundo 1. Siguiendo esta

misma idea, Xsum = 4 se puede obtener de 3 maneras distintas: 1+ 3, 2+ 2 y
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3+1.

Exercise 00.8. Calcule los valores faltantes para el ejemplo 00.7

Recordemos la ley de probabilidad binomial PBi n(n,p) (i ) =
(

n!
(n−i )!i !

)
p i

(
1−p

)n−i

con parámetros 0 ≤ p ≤ 1 y n un número natural. Pensemos en una base de

datos donde n corresponde al número de columnas {X1, . . . Xn}. Pensemos

que las columnas son independientes entre sí, y que satisfacen la ley de pro-

babilidad de Bernouli

(
Ω= {0,1},PBer null i = {1−p, p}

)

es decir, p es la proporción de unos en cada columna. En este escenario,

PBi n(n,p) (i ) corresponde a la probabilidad de obtener renglones con exacta-

mente i unos.

Example 00.9. Con las n = 4 columnas de la siguiente tabla donde cada una

tiene probabilidad PBer noul i (Xi ) = 3
5 . Entonces, para i = 2, PBi n(n,p) (2) es la

probabilidad de obener arreglos (permutaciones de las columnas) en los que

aparecen renglones con exactamente dos unos.
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X1 X2 X3 X4

1 1 1 1

0 1 1 1

0 0 1 0

1 0 0 1

1 1 0 0

Exercise 00.10. Determine el espacio de probabilidad asociado a la suma de n

variables aleatorias X1, X2, . . . Xn de bernoulli independientes. A esta variable

la denotamos como

Sn =
n∑

k=1
Xk (04.2)

Valor esperado y varianza

Definition 01.1. Si X es una variable aleatoria y (Ω,PX ) su espacio de proba-

bilidad asociado, definimos el valor esperado de X de la siguiente forma:

E [X ] =
∑

x∈Ω
x ·px (04.3)

Donde px =P (x).



B O U R B A K I
COLEGIO DE MATEMÁTICAS

fundamentos de probabilidad 14 las variables aleatorias y sus…

Example 01.2. Sea X la variable aleatoria de Bernoulli ({0,1},P), entonces

E [X ] = (
0 · (1−p

))+ (
1 ·p

)= p (04.4)

Example 01.3. Consideremos la variable X1 de la tabla del ejemplo 00.9. En-

tonces E(X1) = 3
5 .

Exercise 01.4. Defina dos variables aleatorias que corresponda a las 10 califi-

caciones durante un semestre de dos alumnos, todas ellas entre 5 y 10 y calcule

sus esperanzas.

Exercise 01.5. Calcular la esperanza de Xsum del ejemplo 00.7.

Una propiedad muy importante de la esperanza es que es un funcional li-

neal, esto significa que respeta la suma de variables y producto por escalares

en el siguiente sentido:

Proposition 01.6. Si X ,Y son dos variables aleatorias y a,b ∈ R, entonces

E (aX +bY ) = aE (X )+bE (Y ).

Proposition 01.7. Sea
(
{0,1}n ,PBi n(n,p)

)
la ley de probabilidad binomial (de-

finida en las notas de la semana pasada). Llamemos Sn la variable aleatoria

asociada a dicho espacio. Entonces E [Sn] = np.

Example 01.8. En el ejemplo de las olimpiadas que vimos en la notas pasadas,

la esperanza es 307×0.005 = 1.535 que es lo que se esperaría en promedio de

medallas olímpicas ganadas por Argentina de acuerdo al tamaño de su pobla-

ción.
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Definition 01.9. Sea X una variable aleatoria. Definimos la varianza de X

como

V ar (X ) =
∑

x∈Ω
(x −E (X ))2 ·px (04.5)

Definition 01.1. Definimos la desviación estándar de una variable aleatoria

como la raíz positiva de la varianza

σX =
√

V ar (X ) (04.6)

Example 01.10. Sea X la variable aleatoria de Bernoulli. Utilizando el resutla-

do 04.4 tenemos que

V ar (X ) =(
0−p

)2 · (1−p
)+ (

1−p
)2 ·p = p · (1−p

)

Exercise 01.11. Calcule la varianza de la variable aleatoria definida en el ejer-

cicio 01.4.

Exercise 01.12. Calcule la varianza de la variable Xsum definida en el ejemplo

00.7.

Remark 01.13. La volatilidad o riesgo de un activo financiero se mide me-

diante la desviación estándar cuando se miden los rendimientos.

La curtosis
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En ocasiones el valor esperado y la varianza no son suficientes para deter-

minar de cuál distribución estamos hablando. En esta sección proponemos

utilizar el cuarto momento de una variable aleatoria,el cual está íntimamente

relacionado con los valores extremos.

Definition 02.1. Sea X = {x1, x2, . . . , xN } una variable aleatoria, definimos la

curtosis de X

κX = ∑
x∈X

(
x −E (X )

σ

)4

·px (04.7)

Notemos que la curtosis escrita de esta manera es siempre positiva, pues es

una suma de números elevados a la cuarta. Más aún, notemos que si existen

datos xi muy alejados de E[X ], entonces los factores (X −E[X ])4 serán núme-

ros muy grandes, por lo que una curtosis grande puede indicar una mayor

cantidad de datos alejados de la media hacia uno u otro lado.

Example 02.1. La curtosis de una distribución gaussiana centrada en cero y

con varianza uno es igual a cero.

κX = ∑
x∈X

(
x −0

1

)4

·px = E[X ] = 0

Aunque más adelante estudiaremos detalladamente las distribuciones con-

tinuas, en esta sección vale la pena mencionar a la distribución de Laplace

pues es un importante ejemplo de cómo la curtosis es útil para distinguir dos

distribuciones.
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Definition 02.2. Distribución de Laplace. La variable aleatoria de Laplace

con media µ y varianza 2b2 se define el fenómeno de obtener un número x

en la recta real con la siguiente probabilidad.

PLapl ace (−∞, x) = 1

2b

∫x

−∞
e−

|t−µ|
b d t (04.8)

La curtosis de la curva normal estándar es KNor mal = 3. Se define la curtosis

K3, también conocida como el exceso de curtosis como K3(X ) = K (X ) − 3

para determinar qué tan alejada está la gráfica de frecuencias de X de una

distribución normal.

Example 02.2. El exceso de curtosis de una distribución de Laplace centrada

en cero y con varianza uno es igual a tres.
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Momentos para vectores aleatorios

Hasta el momento solo hemos hablado de las variables aleatorias sin embar-

go es común que en ciencia de datos tratemos vectores aleatorios- Comenza-

remos con el caso de dos variables aleatorias.

Definition 03.1. Sean X ,Y dos variables aleatorias. Definimos la covarianza

entre X y Y como

Cov (X ,Y ) = E (X ·Y )−E (X ) ·E (Y ) (04.9)

Example 03.1. Consideremos dos variables aleatorias independientes idénti-

camente distribuidas, o bien, columnas de una base de datos

X Y
4 5
8 1
2 3
5 4
1 2

Calculemos sus medias E(X ) =µX = 1
5 (4+8+2+5+1) = 20

5 = 4 y E(Y ) =µ(Y ) =

1
5 (5+1+3+4+2) = 15

5 = 3. Calculemos también el producto entrada a entrada

X ·Y = {20,8,6,20,2} y su promedio E(X ·Y ) =µX ·Y = 56
5 . Entonces la covarian-

za es Cov(X ,Y ) = E(X ·Y )−E(X ) ·E(Y ) = 56
5 −12 =−0.8

Exercise 03.2. Verifique que Cov (X , X ) =V ar (X ).

Exercise 03.3. Verifique que Si X ,Y son variables aleatorias independientes

entonces Cov (X ,Y ) = 0.
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Definition 03.2. Si X ,Y son dos variables aleatorias, definimos su correla-

ción como

Cor r (X ,Y ) = Cov (X ,Y )

σX ·σY
(04.10)

Example 03.4. Calculemos la varianza de cada una de las variables del ejem-

plo 03.1. Si eliminamos la media de cada columna obtenemos X − µX =

{0,4,−2,1,−3} y Y −µY = {2,−2,0,1,−1} y luego elevemos todo al cuadrado

(X −µX )2 = {0,16,4,1,9}, (Y −µY )2 = {4,4,0,1,1}; entonces la varianza es el

promedio V ar (X ) = 0+16+4+1+9
5 = 6 y V ar (Y ) = 4+4+0+1+1

5 = 2. Con lo que las

desviaciones estándar son σX = p
6 y σY = p

2. Finalmente, su coeficiente de

correlación es Cor r (X ,Y ) = −0.8p
6·p2

=−0.23.

Proposition 03.5. Entre más cercana a −1 o +1 sea la correlación entre dos

variables X = {x1, . . . , xN }, Y = {y1, . . . , yN } más cercana de estar en regresión

lineal simple estará la base de datos
{(

x1, y1
)

, . . . ,
(
xN , yN

)}
. De hecho, los co-

eficientes de la regresión son:

β0 = Cov (X ,Y )

V ar (X )
yβ1 =µY −β0µX

donde µX y µY representan las medias de X y Y respectivamente.

Correlación de Spearman
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La correlación de Spearman, al igual que la correlación de Pearson, también

mide la relación entre dos variables aleatorias X y Y . A diferencia de la corre-

lación de Pearson, la de Spearman trabaja con los estadísticos de orden de

los datos x − y .

El primer estadístico de orden de una muestra de tamaño n es el siguiente

mínimo. Del mismo modo, el n-ésimo estadístico de orden n es el máximo:

X(1) = mı́n{X1, X2, . . . Xn}

X(n) = máx{X1, X2, . . . Xn}

El rango de la muestra es la diferencia:

Rang o{X1, . . . , Xn} = X(n) −X(1)

El coeficiente de correlación de Spearman ρ se calcula como

ρ = 1− 6 ·∑n
i=1 d 2

i

n · (n2 −1)
(04.11)

Donde di son las diferencias entre los rangos de ambas variables en cada ob-

servación di = x(i ) − y(i ).

El coeficiente ρ mide las relaciones monótonas entre X y Y , es decir, detec-

ta si una de las variables aumenta o disminuye cuando la otra lo hace; sin

asumir que dicha relación es lineal (como en la correlación de Pearson).
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Example 04.1. Calculemos la correlación de Spearman para las variables del

ejemplo 03.1, para lo que será útil observar la siguiente tabla.

X Y Rango X Rango Y d (diferencia) d 2

4 5 3 5 -2 4
8 1 5 1 4 16
2 3 2 3 -1 1
5 4 4 4 0 0
1 2 1 2 -1 1

Entonces el coeficiente de correlación de Spearman se calcula como

ρ = 1− 6 ·∑d 2

n · (n2 −1)
= 1− 6 · (4+16+1+0+1)

5 · (52 −1)

= 1− 6 ·22

5 ·24
= 1− 22

20
= 1− 11

10
=− 1

10
=−0.1

Remark 04.2. El coeficiente de correlación de Spearman varía en el interva-

lo [-1, 1]. Cuando ρ = −1, hay una correlación monótona perfecta negativa.

Cuando ρ = 1 se presenta una correlación monótona perfecta positiva, y cuan-

do ρ = 0 no hay relación monótona entre las variables.

Skewness

El skewness o asimetría mide qué tan simétrica es la distribución de una va-

riable aleatoria con valores reales. Hay distintas maneras de abordar este pro-

blema, pero entre las más usuales están el coeficiente de asimetría de Fisher

y el coeficiente de asimetría de Pearson.

Definition 05.1. El coeficiente de asimetría (poblacional) de Fisher para una
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variable aleatoria X se calcula como:

γF i sher =
E [(X −µ)3]

σ3 (04.12)

Donde µ es la media, σ es la desviación estándar

Definition 05.2. El coeficiente de asimetría de Pearson se calcula como

γPear son = µ−Mo

σ
(04.13)

donde µ es la media y Mo es la moda de X .

Hablemos de la interpretación del signo del índice de asimetría

γ= 0 Estamos en presencia de una distribución simétrica.

γ> 0 La distribución tiene una cola más larga hacia la derecha.

γ< 0 La distribución de X muestra una cola más larga a la izquierda.

Example 05.1. El coeficiente de asimetría de Fisher de la variable Xsum defi-
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nida en el ejemplo 00.7 se obtiene fácilmente:

E [Xsum] = 252

36
= 7 y E [X 2

sum] = 1974

36

V ar (Xsum) = 1974

36
−72 = 1974−1764

36
= 35

6
y σ=

√
35

6
,

E [(X −µ)3] = −125−128−81−32+5+0+5+32+81+128+125

36
= 0,

γF i sher =
E [(X −µ)3]

σ3 = 0

σ3 = 0

Lo que indica que la distribución Xsum es simétrica.

Ley multinomial

Example 06.1. Ley multinomial. Fijemos K y n dos números naturales y Ω un

conjunto de tamaño nK , digamos Ω= {x1, x2, . . . , xn}K .Además fijemos núme-

ros 0 ≤ p1, p2, . . . , pK ≤ 1 cuya suma es igual a uno. Definimos la ley de proba-

bilidad multinomial de la siguiente forma:

PMul t(n,p1,...,pK ) (x1, x2, . . . , xK ) =
(

n!

x1!x2! . . . xK !

)
px1

1 . . . pxK
K (04.14)

Pensemos en una base de datos X con n columnas X1, X2, . . . , Xn y N ren-

glones. En cada columna podemos tener solamente K observaciones. Éstas

observaciones podrían ser incluso variables categóricas, digamos c1,c2 . . . ,ck .

Llamemos pi a la probabilidad de que aparezca la observación ci en cada co-

lumna. En este contexto P(x1, x2, x3) es la probabilidad de encontrar renglo-
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nes con exactamente x1 observaciones c1, x2 observaciones c2 y x3 observa-

ciones c3.

Por ejemplo, si K = 3, n = 4, N = 5, c1 es oscuro y p1 = 1
5 , c2 es dorado y p2 = 3

5

y c3 es gris claro y p3 = 2
5 . La siguiente tabla muestra que hay probabilidad de

obtener arreglos con renglones para (x1, x2, x3) de la forma (1,1,2) (de hecho,

el primero y el último de los renglones tienen esta configuración), también

tenemos posibilidad para (1,2,1), (0,3,1),(1,3,0) y (0,2,2).

Proposition 06.2. Si Xi , X j son algunas de las K columnas distintas donde vi-

ven los valores de la distribución multinomial, entonces Cov(Xi , X j ) =−npi p j .
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05 Distribuciones infinitas

Siméon Denis Poisson

Nació en Francia solo unos años antes de la revolución francesa, estudió en

una de las escuelas más emblemáticas de toda la historia de Francia, École

Polytechnique. Sus trabajos científicos están relacionados con la Teoría del

Potencial, con la Óptica, con la Mecánica y por supuesto con la Teoría de la

Probabilidad.

Estudiando los juicios criminales en materia civil desde el punto de vista de

la probabilidad dedujo lo que actualmente se conoce como ley de Poisson la

cual estudiaremos más adelante en este texto.

Sus interacciones con otros matemáticos de la época son naturales debido

al gran prestigio que cosechó durante su carrera académica, sustituyendo en
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algún momento al mismísimo Joseph Fourier. Una de estas interacciones es

bastante notable, con el joven y genial Évariste Galois a quien invitó a publi-

car su trabajo completo a pesar de describirlo como incomprensible.

Lectura de referencia: La maldición de la Di-

mensión y MLE

Uno de los problemas más complicados dentro de Machine Learning es el de

la maldición de la dimensión pues cuando el espacio de parámetros es dema-

siado grande la búsqueda de los valores óptimos puede ser tan complicada

como imposible gracias a la compleja geometría de estos espacios.

La técnica de aproximación que veremos en este capítulo se le conoce co-

mo máxima verosimilitud y es ampliamente conocida en estadística como

un método para aproximar parámetros. Esta técnica al igual que otros mé-

todos de machine learning también se ven afectados por la maldición de la

dimensión.

En esta lectura de referencia recomendamos el siguiente artículo [2] en el que

los autores introducen algunas mejoras a la clásica regresión logística para

aproximar los parámetros. Aunque en esta semana no estudiaremos la regre-

sión logística sino la regresión de Poisson, ambos métodos son muy pareci-

dos.



B O U R B A K I
COLEGIO DE MATEMÁTICAS

fundamentos de probabilidad 27 distribuciones infinitas

Distribuciones infinitas

Hasta ahora hemos hecho énfasis de espacios de probabilidad finitos sin em-

bargo las variables aleatorias son mucho más expresivas para espacios de

probabilidad infinitos. En esta sección nos dedicaremos a estudiar variables

aleatorias un poco más complicadas.

Example 03.1. Si E es la experiencia aleatoria de lanzar un dado justo hasta

obtener el número seis, definimos la siguiente variable aleatoria: X (ω1,ω2, . . .) =

{w1, w2, . . . wk } donde k es el menor número de tiradas del lado en las que ob-

tuvimos un 6, es decir, k = mi n
j≥1

{
j : ω j = 6

}
.

Definiremos la siguiente experiencia aleatoria numerable (esto es, cuando Ω

tiene tantos elementos como números naturales Ω= {1,2,3, . . .}), llamada Ley

de Poisson.

Definition 03.2. Sea λ> 0, definimos

PPoi sson,λ (i ) = e−λ ·λi

i !
(05.1)

Proposition 03.3. Para una variable aleatoria de Poisson X con parámetro

λ,la media y la varianza son E[X ] =V ar [X ] =λ

La ley anterior corresponde a la probabilidad de que un evento raro ocurra

después de muchas repeticiones. La justificación matemática de esta intui-

ción es la siguiente proposición:
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Proposition 03.4. Consideremos una distribución binomial Bi n(n,pn ) en la

que ĺımn→∞ pn ·n =λ. Entonces l i m
n→∞PBi n(pn ,n) (i ) =PPoi sson,λ (i ).

La condición de la proposición anterior dice que cuando n crece, las proba-

bilidades pn deben ser cada vez más pequeñas, pues de no ser así, el límite

ĺımn→∞ Pn ·n sería infinito.

Example 03.5. Pensemos en el evento de tirar n monedas donde ganar signi-

fica que salga águila. La condición correspondería a que entre más monedas

lancemos, menos probabilidades tenemos de ganar.

Example 03.6. Comparemos la distribución de Poisson con la ley binomial

que calculamos en el ejemplo de las olimpiadas en la primera semana, en este

caso nuestro parámetro λ será igual a la esperanza de la variable aleatoria

de Bernouilli, lo cuál corresponde con 1.535 gracias al cálculo que hicimos en

aquellas notas, tenemos:

PPoi sson,1.535 (0) = 0.215, PPoi sson,1.535 (1) = 0.33,

PPoi sson,1.535 (2) = 0.253, PPoi sson,1.535 (3) = 0.129

Exercise 03.7. Calcule la curtosis de una distribución de Poisson con paráme-

tro λ.

Notemos que si en lugar de considerar la variable aleatoria Sn consideramos

la variable aleatoria n −Sn (o equivalentemente la variable aleatoria de Pois-

son con λ= n
(
1−p

)
es posible aproximar de la misma manera eventos alta-
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mente probables. Una pregunta inmediata es ¿qué pasa si deseamos calcular

eventos cuya probabilidad no es muy pequeña ni muy alta? Para ello será ne-

cesario utilizar el célebre Teorema Límite Central de Lévy.

03.1 Leyes de probabilidad continuas

Las leyes de probabilidad continuas (es decir definidas sobre el conjunto total

de los números reales) son más complicadas de definir porque en ese caso las

funciones de probabilidad no actúan sobre la familia total de subconjuntos,

si lo hicieran esto generaría algunos problemas matemáticos los cuales tras-

cienden el objetivo de este curso. En esta sección hablaremos de las llamadas

leyes continuas con densidad.

Definition 03.1. La ley de probabilidad uniforme sobre el intervalo de nú-

meros reales [a,b] es la ley de probabilidad tal que

Puni f ((a,b))
(x) =



0 si x ≤ a

x−a
b−a si a < x < b

1 si x ≥ b

(05.2)

Example 03.8. La variable aleatoria uniforme del tiempo medio (en minu-

tos) de entrega de un pedido en una cafetería está distribuida en el intervalo

[5,15]. La probabilidad de que su café se entregue en menos de 7 minutos es de

Puni f[5,15] (7) = 7−5
15−5 = 1

5
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Definition 03.2. La ley de probabilidad Gaussiana o normal con parámetros(
µ,σ2

)
se define para los intervalos (−∞, x] de la siguiente manera:

PGauss(µ,σ2)
(−∞, x] = 1

σ ·p2π

∫x

−∞
e−

(t−µ)2

2·σ2 d t (05.3)

En estas notas no hemos definido la esperanza ni la covarianza para leyes de

probabilidad no numerables, sin embargo es posible hacerlo:

Proposition 03.9. Si X es una variable aleatoria con probabilidad continua

uniforme Puni f ((a,b))
(X ), entonces E(X ) = a+b

2 y V ar (X ) = (b−a)2

12 .

Proposition 03.10. Si X es una variable aleatoria tal que PX = PGauss(µ,σ) en-

tonces E (X ) =µ y V ar (X ) =σ2.

Example 03.11. Distribución gaussiana multivariada

Sea X = (X1, X2, . . . , Xd ) una variable aleatoria con E [Xi ] = µi , denotamos por

µ = (µ1,µ2, . . . ,µd ) ∈ Rd al vector de medias. Sea C ∈ Rd×d la matriz de cova-

rianza de X , es decir, Ci . j = Cov(Xi , X j ) (de hecho, C es simétrica C = C T y

satisface que xC xT > 0 para cualquier x ∈ Rd \{0̄}). Definimos la ley de proba-

bilidad gaussiana d dimensional con parámetros µ,C de la siguiente forma:

PGauss((−∞, x1]× . . .× (−∞, xd ]) = 1

(2π)d/2 |C |d/2

∫x1

−∞
. . .

∫xd

−∞
e−

1
2 (t−µ)C−1(t−µ)T

d t
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Regresiones de Poisson y el aprendizaje super-

visado

En esta semana por primera vez hablaremos sobre un ejemplo de aprendizaje

supervisado en el que tendremos acceso a un muestreo S de lo que se conoce

como una probabilidad conjunta de dos variables aleatorias (X ,Y ). Utilizan-

do a S deseamos averiguar una relación funcional que exista entre X e Y , a

saber una función f de la variable X tal que en la medida de lo posible expli-

quen a Y , es decir f (X ) ∼ Y . De ese hecho viene la relación de la regresión

con el aprendizaje supervisado. Si X es una base de datos con variable super-

visada Y . Se espera que la predicción f (X ) se aproxime a la supervisión Y . El

ejemplo más sencillo de este problema es el de las regresiones de Poisson.

En el caso de una regresión de Poisson se asumirá la siguiente fórmula:

log(E [Y |X ]) = 〈X ,β〉 (05.4)

Lo anterior es equivalente a suponer que la variable Y sigue una distribución

de Poisson al condicionarla con X .

Example 04.1. En una base de datos X con d características y variable obje-

tivo Y , en donde P(Y = n|(x1, . . . , xd ) = e−λ···λn

n! , es decir, tenemos una distribu-

ción de Poisson para cada (x1, . . . , xd ), entonces λ está dado por los xi como

λ(x1,...,xd ) = eβ1x1+···+βd xd y además E[Y |(x1, x2, . . . , xd )] = eβ1x1+···+βd xd . Aquí los

betas son precisamente los coeficientes de la regresión.
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Example 04.2. Regresión lineal. Tradicionalmente en las regresiones lineales

se intenta modelar E [Y |X ] con una combinación lineal de las variables expli-

cativas X .

En una base de datos X con d características y variable objetivo Y con dis-

tribución gaussiana, es decir P(Y = y |(x1, . . . xd )) = N [β1x1 + . . .+βd xd ,σ] es

gaussiana, entonces el valor esperado E[Y |(x1, . . . xd )] =β1x1 + . . .+βd xd .
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Machine Learning Generativo

Muchos de los modelos matemáticos buscan modelar la distribución P
(
y |x)

donde x ∈ Rd e y ∈ {−1,+1}. A este tipo de modelos los llamaremos modelos

discriminativos o modelos de clasificación.

En contraposición a estos modelos están los modelos generativos los cuales

buscan modelar la distribución de probabilidad P
(
x|y)

. Es decir, a partir de

supervisiones fijas, se busca generar las características que se apegan a esas

supervisiones. Gracias al teorema de Bayes, si conocemos las probabilidades

P
(
x|y)

y P
(
y
)

es posible deducir

P
(
y |x)= P

(
x|y) ·P(

y
)

P (x)
= P

(
x|y) ·P(

y
)

P
(
x|y =−1

)
P

(
y =−1

)+P
(
x|y =+1

)
P

(
y =+1

)

La última igualdad ocurre gracias a la igualdad llamada Regla de Bayes, para

los eventos mutuamente excluyentes y = 1 y y =−1.

Proposition 05.1. Regla de Bayes. Si {A1, A2, . . . An} son eventos mutuamen-

te excluyentes con probabilidad distinta de cero, y X es un evento del que se

conocen las probabilidades condicionales P(X |Ai ), entonces podemos conocer

las probabilidades condicionales

P(Ai |X ) = P(X |Ai ) ·P(Ai )∑n
k=1P(X |Ak ) ·P(Ak )

Los modelos generativos no son un cambio radical sin embargo en la prác-
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tica para algunos casos resulta sorprendentemente útil modelarlos de esta

manera. En lo particular para el problema de topic modeling resulta mucho

más eficaz pues dado un prior (por ejemplo y = −1) deseamos modelar la

frecuencia de las palabras que ahí aparecen.
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