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01 Introducción

Las presentes notas son la bitácora del primero de los 6 módulos de
nuestro curso Deep Learning for Finance. En este curso trataremos
modelos neuronales diversos para garantizar un mejor rendimiento de-
pendiendo de la estructura interna de las bases de datos.

Este módulo está enfocado en las redes neuronales densas y lo im-
partimos junto a Max Mitre. Además de este documento los invitamos
a consultar el Github del curso en este link.

El curso es una invitación al uso de las redes neuronales profundas,
la organización de las clases es la siguiente:

1. Introducción al problema financiero (dos horas).
2. Presentación de la arquitectura (dos horas).
3. Caso de uso (dos horas).
4. Sesión de dudas y presentación del reto (dos horas).
5. Tiempo para trabajar en el reto y dudas finales (cuatro horas).

https://github.com/MaxMitre
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Frank Rosenblatt

Es un psicólogo estadounidense quien es conocido como el padre
del Aprendizaje Profundo, sus investigaciones en neurociencias lo acer-
caron a lo que hoy conocemos como la inteligencia artificial. En 1960
construyó Mark I Perceptron la primera computadora que logró apren-
der utilizando un algoritmo. Actualmente este modelo y algoritmo son
la base de las redes neuronales, una de sus obras escritas más impor-
tantes es ”Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms” donde resume sus investigaciones sobre este tema.

Keras

Keras es un API sobre Machine Learning escrita en Python. Fue creada
con la finalidad de permitir a los usuarios experimentar, demodo rápido
y sencillo, con varios modelos.

Permite al usuario la creación de algoritmos de modo sencillo para
dejarle tiempo a que se enfoque en las partes importantes sobre su in-
vestigación en lugar de gastar tiempo escribiendo código de un modelo
desde cero.



deep learning for finance i 03 introducción
B O U R B A K I

F I N A N Z A S

El módulo se encuentra bastante optimizado para realizar opera-
ciones tensoriales en CPU, GPU o TPU, también permite calcular los
gradientes de expresiones arbitrarias, entre otros. Además es bastante
intuitiva para uso y tiene una documentación clara.
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02 El lenguaje de las redes
neuronales

Definition 00.1 La arquitectura de una red neuronal feed-forward es
una familia de funciones que satisfacen lo siguiente:

• Sea 𝐺 = (𝑉, 𝐸) un grafo dirigido, finito y acíclico; es decir, ten-
emos un conjunto finito de vértices 𝑣 ∈ 𝑉, los elementos 𝑒 ∈ 𝐸 se
pueden interpretar como flechas entre vertices que poseen una
dirección, además no hay una secuencia de elementos en 𝐸 que
empiece y termine en un vértice.
A los elementos en 𝑉 los llamaremos neuronas y a los elementos
en 𝐸 los llamaremos transformaciones lineales,

• Una función llamada función de activación 𝜌 ∶ ℝ → ℝ
• Una partición disjunta del conjunto de vértices 𝑉 = 𝑉1 ∪ … ∪ 𝑉𝑠
donde cada nodo en 𝑉𝑡−1 está conectado a algún elemento de 𝑉𝑡.

• El parámetro 𝑠 será el número de capas,
• 𝑉1 es un conjunto disjunto de vértices con tamano 𝑑+1 y 𝑉𝑠 tiene
un solo nodo al que denotaremos como ̂𝑦.

𝑥1

𝑥2

𝑥𝑑

𝑉1

𝑤11

𝑤12

𝑤1𝑘

𝑉2

𝑤𝑠−11

𝑤𝑠−12

𝑤𝑠−1𝑟

𝑉𝑠−1

̂𝑦

𝑉𝑠

⋮ ⋮ ⋮

Definition 00.2 Dada una arquitectura de una red neuronal feed-forward,
una red neuronal es lo siguiente:

• Una asignación𝑤1 (𝑣) de un vector de cierta dimensión para cada
neurona 𝑣 ∈ 𝑉,

• Una asignación 𝑤2 (𝑒) de una matriz para cada arista 𝑒 ∈ 𝐸,
• Las asignaciones anteriores satisfacen que si 𝑣 ∈ 𝑉𝑖, 𝑣′ ∈ 𝑉𝑖+1
están conectados por algún 𝑒 ∈ 𝐸 entonces el tamaño de la matriz



deep learning for finance i 05el lenguaje de las redes neuronales
B O U R B A K I

F I N A N Z A S

𝑤2 (𝑒) es 𝑛 × 𝑚 donde el tamaño de los vectores 𝑤1 (𝑣), 𝑤1 (𝑣′)
son iguales a 𝑛 y 𝑚 respectivamente.

𝑣 𝑣′𝑒

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
⋮

𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥′
1

𝑥′
2

⋮
𝑥′

𝑚

⎞⎟⎟⎟⎟⎟⎟
⎠

• Una función 𝑓 ∶ 𝑋𝑑 → 𝑌 que puede calcularse utilizando la infor-
mación anterior en orden de izquierda a derecha 𝑉𝑡−1 to 𝑉𝑡. La
operación parcial en cada una de las neuronas se ve de la siguiente
forma:

𝜌 (𝑤2 (𝑒) 𝑤1 (𝑣) + 𝑏) (02.1)

Funciones de activación
Como lo vimos en la definición, una red neuronal depende de una elec-
ción de las funciones de activación. En esta sección hablaremos sobre
todo de dos funciones de activación:

Definition 00.3 Definimos a la función sigmoide 𝜎 ∶ ℝ → ℝ utilizando
la siguiente fórmula:

𝜎 (𝑥) = 1
1 + 𝑒−𝑥 (02.2)

La función sigmoide es ampliamente utilizada por ejemplo en el al-
goritmo de la regresión logística debido a sus propiedades, por ejemplo,
que es una función continua, acotada entre 0 y 1, que modela muy bien
la probabilidad condicional ℙ(𝑥|𝑦 = 1). Es posible generalizar la fun-
ción anterior a vectores con tamaño superior de la siguiente manera:
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Definition 00.4 Dado un 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑑) ∈ ℝ𝑑, definimos la fun-
ción SoftMax de 𝑣 como

𝑆𝑜𝑓 𝑡𝑀𝑎𝑥 (𝑣) =
⎛⎜⎜⎜⎜⎜
⎝

𝑒𝑣1

∑
𝑗≤𝑑

𝑒𝑣𝑗
, … , 𝑒𝑣𝑑

∑
𝑗≤𝑑

𝑒𝑣𝑗

⎞⎟⎟⎟⎟⎟
⎠

(02.3)

Exercise 00.1 Demuestre que si 𝑣 ∈ ℝ𝑑 entonces:

1. 𝑒𝑣𝑖

∑
𝑗≤𝑑

𝑒𝑣𝑗
∈ [0, 1]

2. ∑
𝑖≤𝑑

⎛⎜⎜⎜⎜⎜
⎝

𝑒𝑣𝑖

∑
𝑗≤𝑑

𝑒𝑣𝑗

⎞⎟⎟⎟⎟⎟
⎠

= 1

Otra función de activación muy importante para la clasificación es
la función RELU:

Definition 00.5 Definimos a la función 𝑅𝐸𝐿𝑈 ∶ ℝ → ℝ utilizando la
siguiente fórmula:

𝑅𝐸𝐿𝑈 (𝑥) = 𝑚𝑎𝑥{0, −𝑥} (02.4)
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Remark 00.2 Utilizando función RELU es posible definir el algoritmo
de entrenamiento del perceptrón como veremos más adelante.

Funciones de pérdida
Para pasar de la arquitectura de una red neuronal a una red neuronal,
es necesario un proceso de entrenamiento utilizando algoritmos de op-
timización (que en su mayoría no serán convexos). A su vez para definir
un problema de optimización es necesario contar con una función de
pérdida.

En esta sección definiremos algunas de funciones de pérdida las
más utilizadas.

Definition 00.6 Dada una base de datos de una regresión lineal

𝑆 = { (𝑥1, 𝑦1) , … (𝑥𝑁, 𝑦𝑁) } (02.5)

tal que (𝑥, 𝑦) ∈ ℝ𝑑 × ℝ y una función 𝑓 ∶ ℝ𝑑 → ℝ, definimos el error
de mínimos cuadrados de 𝑓 como el promedio de los cuadrados de las
diferencias entre 𝑓 (𝑥𝑖) y las 𝑦𝑖.

𝑒𝑟𝑟𝑆 (𝑓) = 1
𝑁 ⋅ ∑

𝑖≤𝑁
(𝑓 (𝑥𝑖) − 𝑦𝑖)

2 (02.6)

Esta función de pérdida normalmente se utiliza para calcular la re-
gresión lineal.

Definition 00.7 Dada una base de datos de clasificación binaria

𝑆 = { (𝑥1, 𝑦1) , … (𝑥𝑁, 𝑦𝑁) } (02.7)

tal que (𝑥, 𝑦) ∈ ℝ𝑑 × {−1, +1} y una función 𝑓 ∶ ℝ𝑑 → ℝ, definimos la
función de pérdida de la entropía cruzada de 𝑓 en (𝑥, 𝑦):

𝐻 (𝑦, 𝑓 (𝑥)) = −∑
𝑖≤𝑑

𝑦𝑖 log (𝑓 (𝑥𝑖)) (02.8)

Perceptrón multicapa
Una de las redes que utilizaremos comúnmente, es la del perceptrón
multicapa en la que las neuronas de una capa están conectadas con
todas las neuronas de la siguiente capa.

Una red neuronal densa con una capa es la arquitectura que conecta
todas las 𝑑 características (coordenadas) de 𝑥 = (𝑥1, … 𝑥𝑑) con una
neurona ̂𝑦, de tal manera que a cada característica se le asocia un peso.

El perceptrón (que estudiamos con profundiad en el curso de ML &
IA) es una generalización de ésta idea.
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𝑥1

𝑥𝑛

𝜎⟨𝛽, 𝑥⟩ = ̂𝑦⋮

En un perceptrón multicapa, los 𝑘 nodos de la capa 𝑉𝑡−1 están rela-
cionados con cada uno de los nodos de𝑉𝑡 mediante una regresión logís-
tica, de tal modo que 𝑧 = 𝜎⟨𝛽, 𝑥⟩ para 𝑥 = (𝑥𝑡−1,1 … 𝑥𝑡−1,𝑘) y 𝛽 ∈ ℝ𝑘

para cada 𝑧 ∈ 𝑉𝑡. En este punto es preciso notar que 𝛽, es decir, los
pesos, dependen de toda la capa anterior.

Si queremos hacer una predicción binaria para un conjunto de datos,
como en 02.7, tendremos que añadir una capa final con un solo nodo,
̂𝑦 = 𝜎⟨ e𝛽, 𝑀⟩ donde 𝑀 es una matriz que contiene a todos los nodos de
las capas internas, y 𝜎 es la función 02.2, como formalizaremos en la
siguiente definición.

𝑥1

𝑥2

𝑥𝑛

𝑧1

𝑧2

𝑧𝑘

𝜎⟨ e𝛽, 𝑀⟩ = ̂𝑦
⋮ ⋮

Definition 00.8 Si una capa intermedia tiene un vector de neuronas 𝑥 ∈
ℝ𝑛 y la siguiente capa tiene un vector de neuronas 𝑧 ∈ ℝ𝑚, entonces
un perceptrón multicapa entre ellas con función de activación 𝜌 es una
matriz 𝑀 ∈ ℝ𝑚×𝑛 y un vector 𝑏 ∈ ℝ𝑚 tales que las entradas del vector
𝑤 son:

𝑤𝑗 = 𝜌(⟨𝑚𝑗, 𝑥⟩ + 𝑏𝑗) (02.9)
Comúnmente lo abreviaremos con la notación: 𝑤 = 𝜌(𝑀𝑥 + 𝑏)

La cuestión sobre cuántas capas se deben utilizar para abordar un
caso como el de la predicción binaria, se estudiará más adelante y siem-
pre depende del tipo de problema. Asímismo, hay heurísticas propias
para determinar cuál función de activación será la óptima según el
problema que se pretende resolver.
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03 Physics-Informed Neural
Networks (PINN)

En este capítulo hablaremos sobre las redes neuronales utilizadas para
aproximar soluciones de ecuaciones diferenciales, estas pueden ser tanto
simples como parciales.

Supongamos el caso sencillo de una ecuación diferencia de grado
uno de una función 𝑓 (𝑋) donde 𝑥 ∈ ℝ:

𝛿𝑓 (𝑋)
𝛿𝑋

(𝑥) = 𝐹(𝑥, 𝑓 (𝑥))

Con condición inicial 𝑓 (0) = 𝐶.
La intención de este enfoque es aproximar la función 𝑓 (𝑥) mediante

alguna otra a la que llamaremos ̂𝑓 (𝑋). En este caso vamos a construir
las aproximaciones mediante la siguiente fórmula:

̂𝑓 (𝑋) = 𝐶 + 𝑋𝑓𝛽(𝑋)

La función 𝑓𝛽(𝑋) será una red neuronal con parámetros entren-
ables 𝛽 y una arquitectura por determinar. Debido a la fórmula anterior,

̂𝑓 (𝑋) satisface las condiciones iniciales.
El paso indispensable para poder aproximar a 𝑓 es definir una fun-

ción de pérdida adecuada:

𝑙𝑃𝐼𝑁𝑁( ̂𝑓 ; 𝑥𝑖) = (𝛿 ̂𝑓 (𝑋)
𝛿𝑋

(𝑥𝑖) − 𝐹(𝑥𝑖, ̂𝑓 (𝑥𝑖)))
2

Notemos que no es difícil calcular lo anterior ya que:

𝛿 ̂𝑓 (𝑋)
𝛿𝑋

(𝑥𝑖) =
𝛿(𝐶 + 𝑋𝑓𝛽(𝑋)))

𝛿𝑋
(𝑥𝑖) = 𝑓𝛽(𝑥𝑖) +

𝛿𝑓𝛽(𝑋)
𝛿𝑋

(𝑥𝑖)
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04 Caso de uso: valuación de
opciones mediante Deep
Learning

Durante el caso de uso presentaremos dos acercamientos a la valuación
de opciones utilizando redes neuronales, en el primero se introduce
una red neuronal densa y en el segundo una PINN. En ambos casos se
busca comparar este acercamiento de deep learning contra las técnicas
clásicas como la fórmula de Black y Scholes.
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