Focusing in on PBC: Novel targets for future management


Michael Trauner

Medical University of Vienna, Austria

How do you assess the prognosis of PBC patients in your daily clinical practice?

- Liver histology
- Fibroelastography
- Laboratory values
- None of the above

In PBC, elevated ALP and bilirubin values are associated with higher risk for liver transplant or death

^{*}Estimated with cubic spline function. ALP, alkaline phosphatase; PBC, primary biliary cholangitis; ULN, upper limit of normal. Lammers WJ, et al. Gastroenterology 2014;147:1338–49.

Note to Prof Trauner: We have increased the font size of references to 12 pt (any larger causes interference with slide content).

Until 2016, UDCA was the only approved treatment for PBC^{1–4}

The most recent guidelines for the treatment of PBC from 2009 recommend that patients with PBC should be treated with long-term UDCA⁵

2009 EASL recommendations for the treatment of PBC⁵

Patients with PBC, including those with asymptomatic disease, should be treated with UDCA (13–15 mg/kg/d) on a long-term basis

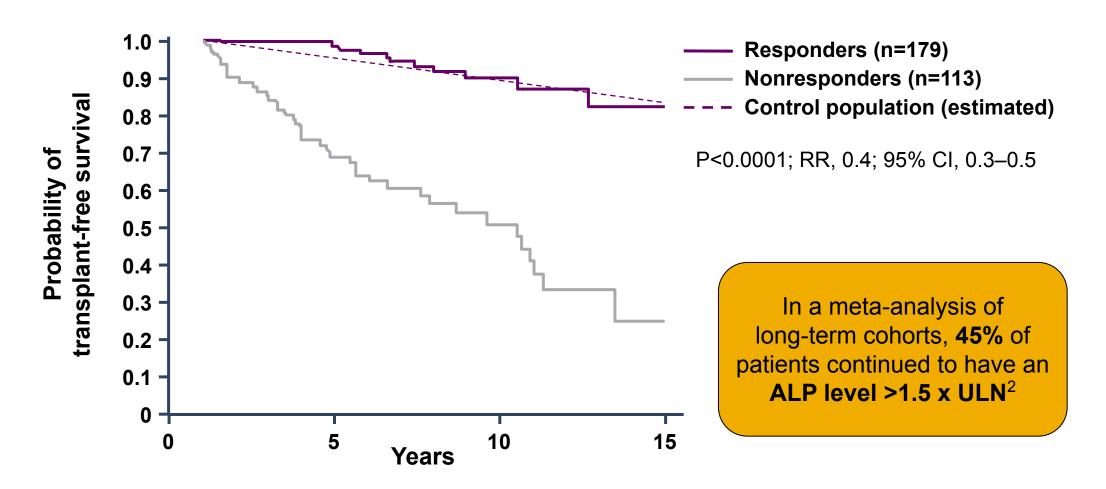
There is currently no consensus on how to treat patients with a suboptimal biochemical response to UDCA

Liver transplantation should be strongly considered in patients with advanced disease

EASL, European Association for the Study of the Liver; PBC, primary biliary cholangitis, UDCA, ursodeoxycholic acid.

1. FDA news release. Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm503964.htm. Last accessed 11 April 2017; 2. Poupon R. *J Hepatol* 2010;52:745–58; 3. Intercept Press Release. Available at: http://ir.interceptpharma.com/releasedetail.cfm?ReleaseID=1004114. Last accessed 11 April 2017; 4. European Medicines Agency Press Release. Available at: http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2016/10/news_detail_002618.jsp&mid=WC0b01ac058004d5c1. Last accessed 11 April 2017; 5. European Association for the Study of the Liver. *J Hepatol* 2009;237–67.

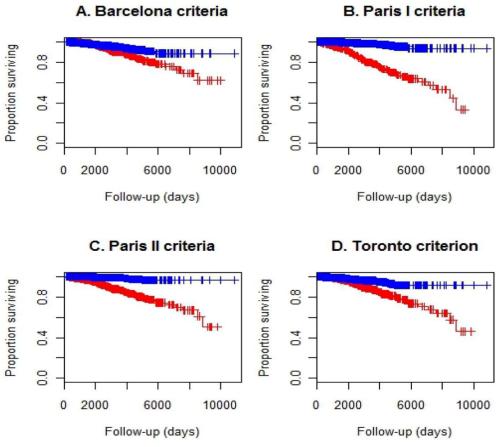
Proposed mechanism of action of UDCA


Although the exact mechanism of action has not been fully elucidated, experimental evidence suggests there are a number of mechanisms by which UDCA may carry out its effects

Primary mechanisms of action		
'Diluting' the BA pool	Reduces concentrations of hydrophobic BAs and becomes the major circulating BA, thereby reducing toxicity of circulating bile ¹	
Increasing BA secretion	Stimulates secretion of BA from hepatocytes by increasing expression of BA transporters (via post-translational mechanisms) ^{1,2}	
Cytoprotective	Stabilises hepatocyte membranes, protects against oxidative stress and may inhibit apoptosis induced by several agents ^{1,2}	
Secondary mechanism of action		
Immune response effects	May interfere with basic mechanisms of autoimmunity and has anti-inflammatory properties ^{1,2}	

BA, bile acid; UDCA, ursodeoxycholic acid.

^{1.} Paumgartner G, Beuers U. *Hepatology* 2002;36:525–31; 2. Beuers U, et al. J Hepatol 2013;62(suppl1):S25–37.


Biochemical response to UDCA at 1 year predicts disease progression

ALP, alkaline phosphatase; CI, confidence interval; RR, risk ratio; UDCA, ursodeoxycholic acid; ULN, upper limit of normal. 1. Corpechot C, et al. Hepatology 2008;48:871–7; 2. Lammers WJ, et al. Gastroenterology 2014;147:1338–49.

Defining response to UDCA

Survival curves for patients who did (blue) vs. did not (red) meet response criteria

Barcelona

Decrease in ALP level >40% of baseline level or a normal level

Paris I (all criteria met)

- ALP level ≤3 X ULN
- AST level ≤2 X UI N
- Normal bilirubin level

Paris II (all criteria met)


- ALP level ≤1.5 X ULN
- AST level ≤1.5 X ULN
- Normal bilirubin level

Toronto

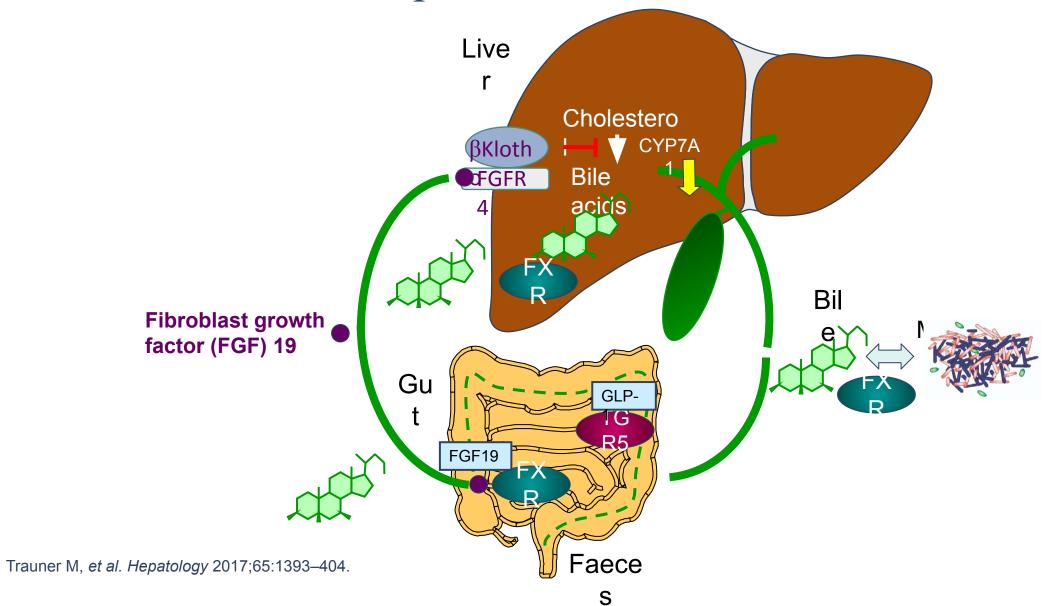
ALP level <1.76 X ULN*

^{*2-}stage increase applied as per Kumagi T, et al. Am J Gastroenterol 2010;105:2186–94. ALP, alkaline phosphatase; AST, aspartate aminotransferase; ULN, upper limit of normal; UDCA, ursodeoxycholic acid. Carbone M, et al. Gastroenterology 2013;144:560–9.

GLOBE score online calculation

Assessing the biochemical response to UDCA

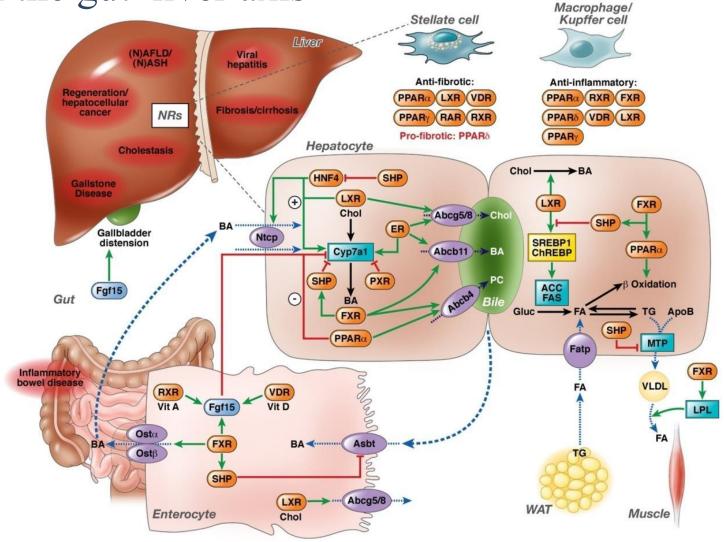
GLOBE Score	C-statistic = 0.81 (95% CI, 0.79–0.83)
Paris I	C-statistic = 0.69 (95% CI, 0.66–0.71)
Rotterdam	C-statistic = 0.69 (95% CI, 0.66–0.71)
Paris II	C-statistic = 0.63 (95% CI, 0.61–0.65)
Toronto	C-statistic = 0.61 (95% CI, 0.58–0.63)
Barcelona	C-statistic = 0.58 (95% CI, 0.55–0.61)


Derivation cohort (N=2488). CI, confidence index; UDCA, ursodeoxycholic acid. Lammers W, *et al. Gastroenterology* 2015;149:1804–12.

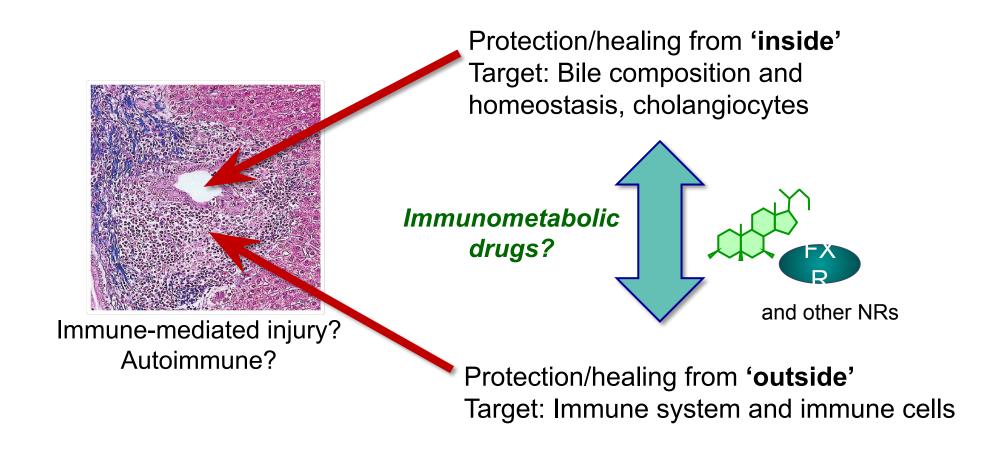
What new targets are being investigated in PBC?

FGF, fibroblast growth factor; FXR, farnesoid X receptor; PBC, primary biliary cholangitis; PPAR, peroxisome proliferator-activated receptor. Trauner M, *et al. Hepatology* 2017;65:1393–404.

Bile acids as enterohepatic hormones

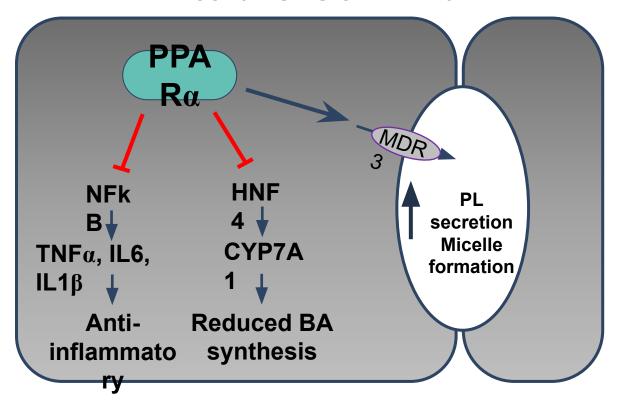

FGF19 via FGFR4 as a potential treatment for PBC

- FGF19 is an endocrine hormone released in the ileum that regulates hepatic bile acid, lipid, and carbohydrate metabolism¹
 - FGF19 selectively binds to FGFR4
- It also has a role in regulating hepatic cell proliferation¹
 - FGF19-FGFR4 signalling is associated with hepatocellular tumourigenesis
- An engineered FGF19 variant is capable of targeting bile acid homeostasis function, but not the proliferative function, by suppressing hepatic CYP7A1 expression¹
- In mouse PSC model, adeno-associated virus-mediated delivery of FGF19 improved liver injury, hepatic inflammation and fibrosis²
- Encouraging Phase II data in PBC³
 - Liver enzymes improved, pruritus not exacerbated


Biologic targets in PBC

- IL-12 and IL-23¹
 - Pro-inflammatory effect implicated in pathogenesis of PBC
 - Produced by antigen presenting cells and promote Th1 and Th17 immune responses, respectively
 - Ustekinumab negative²
- CD40³
 - Activation of CD40 on BEC triggers activation of NF-κB and AP-1, leading to apoptosis and bile duct loss
 - Phase II (FFP104) ongoing (NCT02193360)⁴

Nuclear receptors such as PPAR and FXR are involved in regulation of the gut–liver axis


Two-pronged approach to nuclear receptors as therapeutic targets

Peroxisome proliferator-activated receptors (PPARs)

- Activated by fatty acids and derivatives¹
- Key regulators of lipid/glucose metabolism and inflammation (co-regulation/dichotomy)^{1,2}
- Three isoforms: α , β/δ , γ^{1-3}
- Fibrates in PBC (& PSC): Improved liver measurements, due to metabolic and immune effects^{1,3}
 - Fenofibrate → PPARα
 - Bezafibrate → slightly broader
 - Novel dual α/δ and δ ligands?

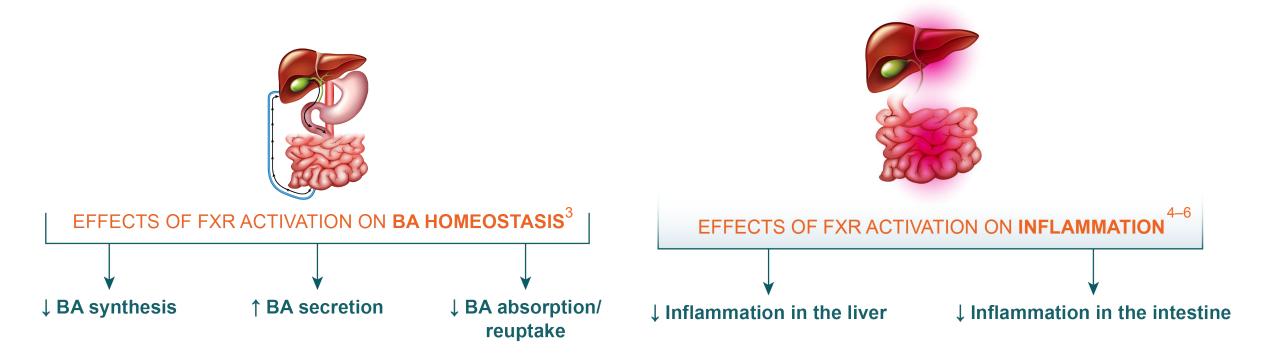
Anticholestatic and anti-inflammatory mechanisms of PPARα⁴

BA, bile acid; CYP7A1, cytochrome P450 7A1; HNF4, hepatocyte nuclear factor 4; IL, interleukin; NF-κB, nuclear factor-kappa B; PBC, primary biliary cholangitis; PPAR, peroxisome proliferator-activated receptor; PSC, primary sclerosing cholangitis; TNFα, tumour necrosis factor alpha.

^{1.} Choi JM, Bothwell AL. Mol Cells 2012;33:217–22; 2. Pawlak M, et al. J Hepatol 2015;62:720–33; 3. Cuperus FJ, et al. Curr Opin Gastroenterol 2014;30:279–86;

^{4.} Fuchs C, et al. Clin Liver Dis 2017;9:43-47.

PPAR activity

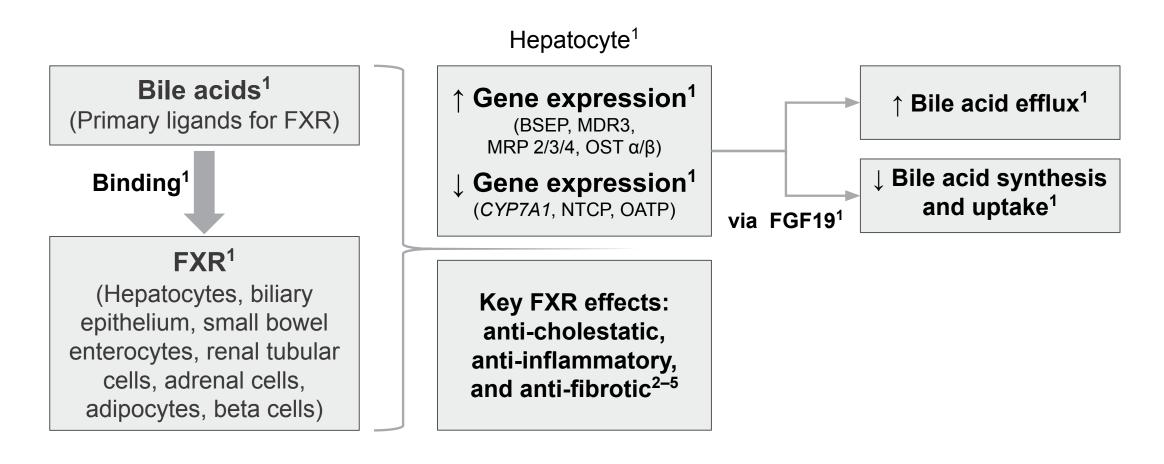

Iso-form	Primary distribution	Anti-cholestatic mechanism
$\alpha^{1,2}$	Liver	 Regulates bile acid synthesis/detoxification Modulates phospholipid secretion Down-regulates hepatic proinflammatory genes Broad anti-inflammatory effects
γ ^{1,2}	Adipose tissue, immune system	 Regulates adipogenesis Represses transactivation of inflammatory response genes Anti-fibrotic effect on hepatic stellate cells
δ ^{1,3}	Ubiquitous	 Regulates target genes for lipid/glucose metabolism Reduces liver fat Antagonises inflammatory pathways

PPAR, peroxisome proliferator-activated receptor

^{1.} Cuperus FJ, et al. Curr Opin Gastroenterol 2014;30:279–86; 2. Zollner G, et al. Br J Pharmacol 2009;156:7–27;

^{3.} Bays HE, et al. J Clin Endocrinol Metab 2011;96:2889–97.

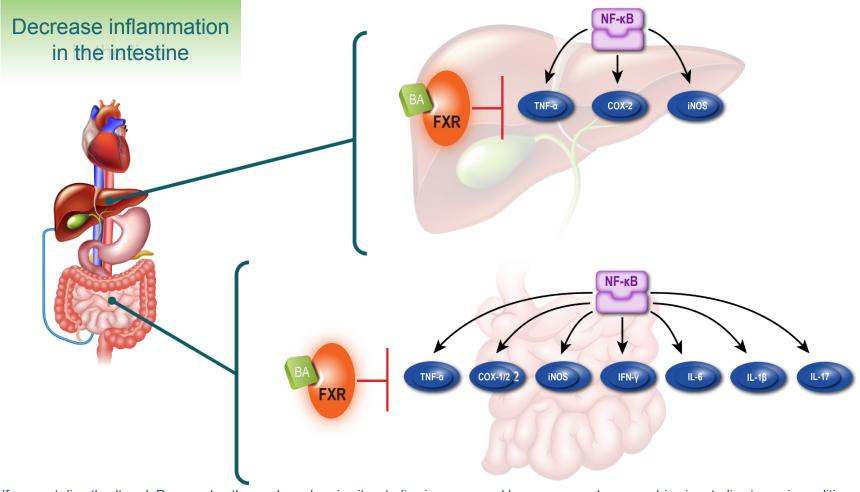
FXR is predominantly expressed in the liver, intestine, and kidney, where it mediates its effects^{1,2}



Proposed roles based on *in vivo* and *in vitro* studies in multiple animal and cell models using different FXR agonists. *In vivo/in vitro* studies do not necessarily correlate with clinical response, and not all FXR agonists may produce the same effects.

BA, bile acid; FXR, farnesoid X receptor.

- 1. Forman BM, et al. Cell 1995;81:687–93; 2. de Aguiar Vallim TQ, et al. Cell Metab 2013;17:657–69; 3. Modica S, et al. Nucl Recept Signal 2010;8:e005;
- 4. Wang YD, et al. Hepatology 2008;48:1632–43; 5. Vavassori P, et al. J Immunol 2009;183:6251–61; 6. Gadaleta RM, et al. Gut 2011;60:463–72.


Role of FXR signalling in bile acid homeostasis

BSEP, bile salt export pump; FGF, fibroblast growth factor; FXR, farnesoid X receptor; MRP 2/3/4, multidrug resistant protein 2/3/4; NTCP, sodium/taurocholate co-transporting polypeptide; OATP, organic anion transporting polypeptide; OST α/β , organic soluble transporter α/β .

1. Neuschwander-Tetri BA. Curr Gastroenterol Rep 2012;14:55–62; 2. Adorini L, et al. Drug Discov Today 2012;17:988–97; 3. Pellicciari R, et al. J Med Chem 2002;45:3569–72; 4. Verbeke L, et al. Sci Rep 2016;6:33453; 5. Baghdasaryan A, et al. Hepatology 2011;54:1303–12.

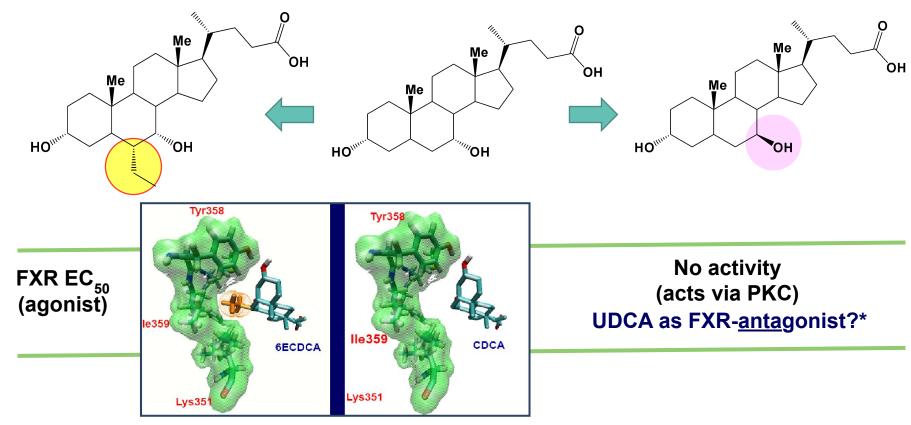
Possible mechanisms by which FXR may regulate inflammation

NF-κB expression itself was not directly altered. Proposed pathways based on *in vitro* studies in mouse and human macrophages and *in vivo* studies in murine colitis models. *In vivo/in vitro* studies do not necessarily correlate with clinical response, and not all FXR agonists may produce the same effects.

BA, bile acid; FXR, farnesoid X receptor; NF-κB, nuclear factor-kappa B.

Wang YD, et al. Hepatology 2008;48:1632–43; Vavassori P, et al. J Immunol 2009;183:6251–61; Gadaleta RM, et al. Gut 2011;60:463–72.

FXR activation may modulate the course of cholestatic liver disease in mouse models of cholangitis



- Activation of FXR by INT-767 reverses cholestatic liver and bile duct injury in Mdr2 (Abcb4)^{-/-} mice¹
- INT-767 led to:¹
 - Reductions in:
 - COL1a1 expression by fibroblasts
 - TNF- α and IL-1 β expression by inflammatory cells
 - VCAM-1 expression by cholangiocytes
 - Increases in HCO₃ secretion
 - ☐ Reduced toxicity of bile

Obeticholic acid (OCA) is a potent and selective steroidal FXR agonist

OCA CDCA
6a-ethyl chenodeoxycholic acid chenodeoxycholic acid

UDCA ursodeoxycholic acid

CDCA, chenodeoxycholic acid; EC₅₀, half maximal effective concentration; FXR, farnesoid X receptor; OCA, obeticholic acid; PKC, protein kinase C; UDCA, ursodeoxycholic acid.

Pellicciari R, et al. J Med Chem 2002;45:3569-72; *Müller M, et al. J Hepatol 2015;62:1398-404.

In your opinion, FXR ligands exert beneficial effects in cholestatic liver injury by:

- Repression of bile acid synthesis
- Promotion of biliary secretion (bile acids, phospholipids, HCO₃⁻)
- Mediating anti-inflammatory effects
- All of the above

Summary

- In PBC, elevated ALP and bilirubin values are associated with higher risk for liver transplant or death¹
- Until 2016, UDCA was the only approved treatment for PBC²⁻⁵
 - Early treatment with UDCA is associated with improved long-term outcomes⁶
- Biochemical response after one year of UDCA treatment is predictive of disease outcomes but 45% of patients continue to have ALP >1.5 x ULN 7,8
- New therapeutic targets under investigation for PBC include FXR, PPARs, FGF19 and biologics (anti-IL-12, IL-23 and CD40)
- FXR activation is associated, *in vitro* and *in vivo*, with reduced bile acid secretion and absorption/reuptake as well as reduced inflammation of the liver*8–13
- Obeticholic acid, a potent and selective steroidal FXR agonist,¹⁴ presents a new targeted therapeutic option in PBC

*In vivo/in vitro studies do not necessarily correlate with clinical response, and not all FXR agonists may produce the same effects.

ALP, alkaline phosphatase; FGF, fibroblast growth factor; FXR, farnesoid X receptor; IL, interleukin; PBC, primary biliary cholangitis; PPAR, peroxisome proliferator-activated receptor; UDCA, ursodeoxycholic acid; ULN, upper limit of normal

1. Lammers WJ, et al. Gastroenterology 2014;147:1338–49; 2. FDA news release. Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm503964.htm. Last accessed 11 April 2017; 3. Poupon R. J Hepatol 2010;52:745–58; 4. Intercept Press Release. Available at: http://ir.interceptpharma.com/releasedetail.cfm?ReleaseID=1004114. Last accessed 11 April 2017; 5. European Medicines Agency Press Release. Available at: http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2016/10/news_detail_002618.jsp&mid= WC0b01ac058004d5c1. Last accessed 11 April 2017; 6. Poupon RE, et al. Gastroenterology 1997;113:884–90; 7. Corpechot C, et al. Hepatology 2008;48:871–5; 8. Forman BM, et al. Cell 1995;81:687–93; 9. de Aguiar Vallim TQ, et al. Cell Metab 2013;17:657–69; 10. Modica S, et al. Nucl Recept Signal 2010;8:e005; 11. Wang YD, et al. Hepatology 2008;48:1632–43; 12. Vavassori P, et al. J Immunol 2009;183:6251–61; 13. Gadaleta RM, et al. Gut 2011;60:463–72; 14. Pellicciari R, et al. J Med Chem 2002;45:3569–72.