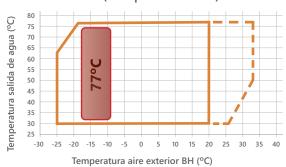


Bombas de Calor aire-agua aptas para clima frío | producción de agua hasta 77°C

En versión reversible, diseñadas para aplicaciones residenciales o comerciales.

Nueva Serie PRO: Optimizadas para el uso del refrigerante R290 y **Tecnología Full-Inverter**.

Adaptación y Medio Ambiente


- O— Carga reducida de refrigerante R290 natural de clase A3 y ecológico de bajo impacto medioambiental (PCA=3) y alto rendimiento termodinámico.
- Producción de agua a alta temperatura.
- Diseño robusto y fiable integra detección de fugas y ventilador de extracción ATEX para máxima seguridad.
- O— Con un cuidado aislamiento garantizan la protección adecuada del equipo y la reducción del nivel sonoro consiguiendo un funcionamiento supersilencioso.
- O Unidades equipadas con una regulación inteligente que garantiza un proceso de desescarche óptimo.

Eficiencia Energética

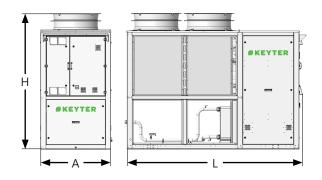
- Equipos compactos Full-Inverter montados con compresores de pistón semihérmeticos inverter, ventiladores EC de alta calidad que aseguran el mejor rendimiento estacional (SEER/SCOP).
- Intercambiadores de alta eficiencia.
- Amplio rango de funcionamiento con alta eficiencia y límites de operación ampliados, funcionamiento hasta -25°C de temperatura exterior a carga total.

Codificación: KWRH 2 070 I'V', S4D Serie Tamaño Potencia Modo funcionamiento 1 - Bomba de calor reversible Versión - Tipo de Compresor V - Compresor scroll inverter Versión Hidráulica S - Equipo estándar P - Versión con grupo hidráulico Alimentación eléctrica 4 - 400V/III/50Hz con neutro (de serie) Refrigerante D - R290

Modo Calefacción (Compresor a 50Hz):

Zona naranja: mapa de operación de la unidad a plena carga.

ziran pro maxima



Modelo KWRH			KWRH 2070		
	Frecuencia compresor	Hz	30	50	70
Modo refrigeración		kW	41,4	67,7	83,9
	Potencia frigorífica nominal (1)	TR	12,0	19,0	24,0
		kBTU/h	144	228	288
	Potencia absorbida (2)	kW	15,3	26,1	37,3
	EER (3)	kW/kW	2,69	2,58	2,23
		BTU/(h*W)	9,22	8,86	7,66
Modo calefacción	Potencia calorífica nominal (4)	kW	47,0	69,8	90,1
	Potencia absorbida (2)	kW	14,0	32,1	45,3
	COP (3)	kW/kW	3,35	2,17	1,98
		BTU/(h*W)	11,47	7,42	6,79
	SCOP (6)	kWh/kWh		3,4	
	ηs,h (6) (5)	%	131,2%		
ARACTERÍSTICAS TÉCNICAS					
Alimentación eléctrica			400 V / III / 50 Hz con neutro		
Circuito frigorífico	Fluido Frigorífico / GWP	kg CO₂	R290/3		
	Nº circuitos frig. / compresores		1/1		
	Nº etapas de potencia		45-100%		
Circuito hidráulico	Caudal de agua interior	m³/h	4,0	6,0	7,8
	Tipo de intercambiador		Placas soldadas de acero inoxidable		
	Ø de conexiones hidráulicas	inch	2"		
Ventilador exterior	Caudal de aire exterior verano	m³/h		38000	
	Caudal de aire exterior invierno	m³/h	39000		
	Número de ventiladores		2		
	Ø y Tipo de ventilador	mm		800 EC-Z	
Presión sonora equipo (Lp 10) (7)		dB (A)	58,4	60,2	62,0
Pesos (versión S)	Peso en vacío	kg		1255	
	Peso en servicio	kg		1264	

⁽¹⁾ Potencia frigorifica nominal para una Ta de entrada/salida de agua de 12/7°C (53.6/44.6°F) y Ta de aire exterior de 35°C (95°F). Potencias calculadas con factor de ensuciamiento en intercambiador de placas de 0.43*10E-4 (m²V/V).

Dimensiones

Serie 2 S/P/H

Dimensiones (mm)				
	Serie 2			
Chásis	S/P/H			
L	3240			
Α	1300			
Н	2550			

⁽²⁾ Potencia nominal abara that in the entituda/saluda de algua de 12/7 C (35.0)44.0°F) y 1° de aire exterior de 3° C (95°F). Potencias calculadas con factor de ensuciamiento en intercambiador de placas de 0.43° 10E-4 (11 N/W).

(2) Potencia nominal abara transfer de entrada/saluda de agua de 55/65°C (86/95°F) y 1° de aire exterior de 7°C (44.6°F). Potencias calculadas con factor de ensuciamiento en intercambiador de placas de 0.43*10E-4 (m²K/W).

(5) Valores ps.c en cumplimiento con el Reglamento de Ecodiseño EU 2016/2281 para aplicaciones de Confort. Valores ps.h conformes al diseño ecológico en virtud del Reglamento UE 813/2013 para la aplicación de bomba de calor.

(6) Coeficiente de rendimiento estacional (SCOP) y eficiencia energética estacional de valores ps.h calculados para aplicaciones a alta temperatura y clima medio.

⁽⁷⁾ Nivel de presión sonora en dB(A) en campo libre, a 10 m de distancia de la fuente y directividad 1.