KEYTER

Heat Pump

air to water

PACIFICA Pro

29-120 kW 32-132 kW

Reversible or cooling-only heat pumps with heating capacities ranging from 32 kW to 132 kW, specifically designed for commercial, industrial, and centralized residential applications. Modular systems of up to 5 units are possible (up to 600 kW), with water temperatures reaching up to 75°C.

Optimized for the use of R-290 refrigerant and full-inverter technology, they stand out for their high energy efficiency and sustainability, expanding the range of PRO Series solutions developed by KEYTER.

keyter.com

PACIFICA *Pro Heat Pump*

Energy efficiency

Equipment with Inverter technology

Compact Full-Inverter units equipped with hermetic scroll inverter compressors, high-quality EC fans, and high-efficiency heat exchangers, ensuring very high seasonal performance (average SEER 4.4 / SCOP35 4.7 / SCOP55 3.7).

High-efficiency, low-noise EC outdoor fans with integrated curved nozzle.

Cu-Al coils Polyurethane, Blygold, and Cu-Cu protections.

> Hermetic scroll compressors by Danfoss with variable frequency drive.

SIEMENS programmable electronic control (AQUAMATIX) and CLIMATIX HMI terminal.

Electronic expansion valve.

Brazed plate heat exchanger made of AISI 316L stainless steel.

Robust and safe design

With carefully designed insulation, the unit ensures proper protection and sound level reduction, achieving very quiet operation in the standard version.

Additionally, a super-silent mode can be achieved through the use of sandwich panels, reduced fan speed, and compressor frequency modulation, reaching a sound pressure level (Lp) below 45 dB(A) at 10 meters.

Enclosed compartment for refrigeration and hydraulic components with 10 mm polypropylene insulated panels in the standard version.

Easy access through removable panels.

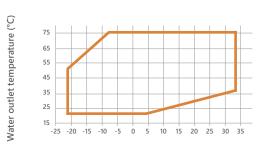
Optional sandwich panels available with 20 mm thick rock wool insulation (M0 rating).

Electrical panel in a sealed compartment with forced ventilation as standard.

Units equipped with intelligent control that ensures an optimal defrosting process.

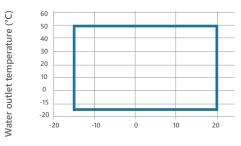
Night Mode with reduced fan and compressor speeds.

Integrated leak detection and ATEX extraction fan as standard for maximum safety.


PACIFICA Pro Heat Pump

Decarbonization and sustainability

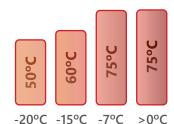
Wide operating range with high efficiency and extended operating limits (operation down to -20°C outdoor temperature at full load).


Heating Mode:

Outdoor air temperature (°C WB)

Orange zone: full load operation map of the unit.

Cooling Mode:



Outdoor air temperature (°C WB)

Blue zone: full load operation map of the unit.

High-temperature water production all year round for boiler replacement and carbon footprint reduction.

PACIFICA Pro

Outdoor air (°C DB)

- O— Integrated Legionella prevention control.
- O— Dual setpoint management allows the management of two setpoints for heating and DHW through a digital input.
- O Domestic hot water management allows DHW scheduling and setpoint control, with the ability to manage a built-in 3-way valve to supply water either to the heating circuit or to the storage tank.

Modular systems for high-capacity applications

The PACIFICA PRO range allows the creation of modular systems with up to 5 units. It offers an effective and simple solution for large-scale installations requiring high-capacity equipment, reaching up to 600 kW.

💥 up to 600 kW up to 660 kW 💍

Modular assembly is carried out through a quick and easy interconnection. In addition, the system offers a significant redundant and continuous operation solution thanks to its modular architecture and the electrical independence of each module.

KWEB	2035 2050 2055		55	5060							
Compressor speed (Hz)			fnom	fmax	fnom	fmax	fnom	fmax	fnom	fmax	
		kW	29,2	37,4	38,4	48,9	47,2	59,8	49,8	65,3	
	Nominal cooling capacity (1)	TR	8,5	10,5	11	14	13,5	17	14	18,5	
		kBTU/h	102	126	132	168	162	204	168	222	
	Absorbed power (2)	kW	9,9	14,8	14,0	21,6	17,0	26,7	17,9	27,1	
Cooling mode	EER (3)	kW/kW	2,94	2,53	2,75	2,26	2,77	2,24	2,79	2,41	
	ELIX (3)	BTU/(h*W)	10,03	8,62	9,38	7,73	9,46	7,64	9,51	8,22	
	SEER (4)	kWh/kWh	4,4		4	4,5		4,4		4,3	
	ηs,c (5)	%	174	1,7%	175	5,3%	173	,7%	168,3%		
	Nominal heating capacity (6)	kW	35,4	43,1	48,1	57,1	57,0	65,9	60,0	75,8	
	Absorbed power (2)	kW	9,1	12,7	12,3	17,6	14,4	20,5	17,0	24,0	
Heating mode	COR (3)	kW/kW	3,87	3,39	3,90	3,24	3,97	3,21	3,53	3,1	
30/35	COP (3)	BTU/(h*W)	13,21	11,57	13,30	11,06	13,55	10,95	12,05	10,7	
	SCOP (9)	kWh/kWh	4	,8	4	,7	4	,9	4,5		
	ηs,h (9) (5)	%	187	7,4%	18	6%	193	,4%	176,9%		
Heating mode 47/55	Nominal heating capacity (6)	kW	32,0	40,0	44,0	54,2	54,4	70,0	54,4	70,	
	Absorbed power (2)	kW	12,3	16,9	16,5	23,0	22,3	31,0	22,3	31,	
	COP (3)	kW/kW	2,61	2,37	2,67	2,36	2,44	2,25	2,44	2,2	
		BTU/(h*W)	8,92	8,08	9,12	8,04	8,33	7,69	8,33	7,6	
	SCOP (9)	kWh/kWh	3	,6	3	,7	3	,3	3,	,5	
	ηs,h (9) (5)	%	142	2,0%	143	,6%	136	,3%	136	,3%	
	Nominal heating capacity (6)	kW	31	-	42,3	-	51,1	-	52,2	-	
	Absorbed power (2)	kW	14	-	19,2	-	22,5	-	25,7	-	
Heating mode	COP (3)	kW/kW	2,15	-	2,20	-	2,27	-	2,03	-	
55/65	CO1 (3)	BTU/(h*W)	7,33	-	7,52	-	7,75	-	6,93	-	
	SCOP (9)	kWh/kWh	3	,1	3,2		3,3		3,0		
	ηs,h (9) (5)	%	122,2% 123,7%		127	127,4%		118%			
ECHNICAL SPECIFICA	TIONS										
Power supply						400 V / III / 50	Hz with neutral				
	Refrigerant fluid / GWP	kg CO₂					90/3				
Refrigeration circuit	No. of circuits / compressors				1,	/1			2,	/2	
	No. of capacity stages			00%		00%		00%	12,5-	100%	
	Heating water flow rate (12)	m³/h	6,1	7,5	8,3	9,9	9,9	11,4	10,4	13,	
	Cooling water flow rate	m³/h	5,0	6,4	6,6	8,4	8,1	10,3	8,6	11,	
Hydraulic circuit	Type of heat exchanger					brazed stainle	ess steel plates				
, aradic circuit	No. of heat exchangers			1		1		1	2		
	Buffer tank capacity – H version	(L)		00		00		00	20		
	Hydraulic connection Ø	(inch)	1 1	/2''	2"		2"		2"		

(1) Nominal cooling capacity for water inlet/outlet temperatures of 12/7°C (53.6/44.6°F) and outdoor air temperature of 35°C (95°F). Capacities calculated with a fouling factor in the plate heat exchanger of 0.43·10E-4 $(m^2 \cdot K/W)$.

22000

22000

1

800 EC-Z

640

646

22000

22000

800 EC-Z

666

672

Presión sonora equipo (Lp10) (9)

Outdoor fan

Weights (S version)

(2) Nominal power input of compressors and outdoor fans.
(3) EER and COP calculated in accordance with EN 14511:2022.

Outdoor air flow (summer)

Outdoor air flow (winter)

Number of fans

Empty weight

In-service weight

 \emptyset and Type of fan

- (4) Seasonal efficiencies calculated according to EN 14825:2022
- (5) ns,c values in compliance with Ecodesign Regulation EU 2016/2281 for comfort applications. ns,h values in accordance with Ecodesign Regulation EU 813/2013 for heat pump applications.
- (6) Nominal heating capacity for water inlet/outlet temperatures of 30/35°C (86/95°F) and outdoor air temperature of 7°C (44.6°F). Capacities calculated with a fouling factor in the plate heat exchanger of 0.43·10E-4 (m²-K/W).

Series 2

m³/h

m³/h

mm

kg

kg

dB(A)

Dimensions (mm)			
Chassis	L	W	Н
S/P	1875	1100	2375
Н	2975	1100	2375

22000

22000

800 EC-Z

639

706

44000

44000

2

800 EC-Z

1153

1161

technical data

WEB			50	70	61	00	61:	20	
ompressor speed (Hz)			fnom	fmax	fnom	fmax	fnom	fmax	
		kW	58,1	74,2	76,8	97,8	94,4	119,5	
	Nominal cooling capacity (1)	TR	16,5	21	22	28	27	34	
		kBTU/h	198	252	264	336	324	408	
Caaliaa aaada	Absorbed power (2)	kW	20,4	30,3	27,9	43,1	34,0	53,3	
Cooling mode	FED (2)	kW/kW	2,85	2,45	2,75	2,27	2,77	2,24	
	EER (3)	BTU/(h*W)	9,72	8,37	9,39	7,73	9,47	7,65	
	SEER (4)	kWh/kWh	4	.4	4,	5	4,	4	
	ηs,c (5)	%	172	,9%	176	6%	174	.7%	
	Nominal heating capacity (6)	kW	70,7	86,2	96,2	114,3	114,0	131,7	
	Absorbed power (2)	kW	18,9	26,0	24,7	35,2	28,7	41,0	
Heating mode	COD (2)	kW/kW	3,75	3,31	3,90	3,24	3,97	3,21	
30/35	COP (3)	BTU/(h*W)	12,79	11,31	13,31	11,07	13,56	10,95	
	SCOP (9)	kWh/kWh							
	ηs,h (9) (5)	%	186	,2%	186,	6%	194	,0%	
	Nominal heating capacity (6)	kW	64,0	80,1	88,1	108,3	105,6	125,6	
	Absorbed power (2)	kW	25,1	34,4	32,9	45,9	38,5	54,1	
Heating mode		kW/kW	2,55	2,33	2,67	2,36	2,74	2,32	
47/55	COP (3)	BTU/(h*W)	8,71	7,95	9,12	8,04	9,35	7,92	
	SCOP (9)	kWh/kWh	3	,6	3,	7	3,	8	
	ηs,h (9) (5)	%	141		143		148		
Heating mode	Nominal heating capacity (6)	kW	61,5	-	84,7	-	102,1	-	
	Absorbed power (2)	kW	29,2	-	38,4	-	44,9	-	
	,	kW/kW	2,10	_	2,21	-	2,27	_	
55/65	COP (3)	BTU/(h*W)	7,18	_	7,52	_	7,75	_	
	SCOP (9)	kWh/kWh	3,1		3,2		3,3		
	ηs,h (9) (5)	%	121	4%	124	0%	127	6%	
CHNICAL SPECIFICA		70		7170			127	,0,0	
Power supply	110113				400 V / III / 50 I	-la with noutral			
rower supply	Refrigerant fluid / GWP	kg CO₂							
Ciumita Frimarifia	No. of circuits / compressors	kg CO₂	2,	/2		R290/3 2/2		2/2	
Circuito Frigorífico									
	No. of capacity stages	3 /1-		100%	12,5-		12,5-		
	Heating water flow rate (12)	m³/h m³/h	12,3	14,9	16,7	19,8	19,8	22,8	
	Cooling water flow rate	m²/n	10,0	12,8	13,2	16,8	16,2	20,6	
Circuito Hidráulico	Type of heat exchanger				brazed stainle				
	No. of heat exchangers			2		2		2"	
	Buffer tank capacity – H version	(L)	20	00	37	375		375	
	Hydraulic connection Ø	(inch)	2		2 1,	2 1/2"		2 1/2"	
·	Outdoor air flow (summer)	m³/h	440	000	440	00	440	000	
Ventilador exterior	Outdoor air flow (winter)	m³/h	440	000	440	00	440	000	
ventuador exterior	Number of fans		2	2	2	2			
	Ø and Type of fan	mm	800	EC-Z	8008	EC-Z	8008	EC-Z	
Presión sonora equipo	(Lp10) (9)	dB(A)	52	54	51	52	53	54	
Weights (C	Empty weight	kg	11	53	13	92	14	17	
Weights (S version)	In-service weight	kg	11	61	14	15	14:	31	

⁽⁷⁾ Nominal heating capacity for water inlet/outlet temperatures of 47/55°C (116.6/131°F) and outdoor air temperature of 7°C (44.6°F). Capacities calculated with a fouling factor in the plate heat exchanger of 0.43:10E-4 (m²·K/W).

Series 5

Dimensions (mm) Chassis W Н S/P 3260 1100 2375 4360 1100 2375

Series 6

Dimensions (mm)			
Chassis	L	W	Н
S/P	3920	1100	2375
Н	5020	1100	2375

⁽⁸⁾ Nominal heating capacity for water inlet/outlet temperatures of 55/65°C (131/149°F) and outdoor air temperature of 7°C (44.6°F). Capacities calculated with a fouling factor in the plate heat exchanger of 0.43·10E-4 (m²·K/W).

⁽⁹⁾ Seasonal Coefficient of Performance (SCOP) and seasonal space heating energy efficiency (ns,h) calculated for low-temperature applications in a medium climate.

⁽¹⁰⁾ Seasonal Coefficient of Performance (SCOP) and seasonal space heating energy efficiency (ns,h) calculated for medium-temperature applications in a medium climate.

(11) Seasonal Coefficient of Performance (SCOP) and seasonal space heating energy efficiency (ns,h) calculated for high-temperature applications in a medium climate.

(12) Water flow rate calculated for water inlet/outlet temperatures of 30/35°C (86/95°F) and outdoor air temperature of 7°C (44.6°F).

⁽¹³⁾ Sound pressure level, measured in dB(A) under free-field conditions, at 10 meters from the source with a directivity factor of 1.

KWEB

range specification

General characteristics

	R290	✓
	Unit with refrigerant charge	✓
D. (1)	Leak detector	✓
Refrigerant	ATEX axial refrigerant extraction fan	✓
	ATEX centrifugal refrigerant extraction fan	•
	Warning light in case of leak	✓
	Self-supporting chassis/cabinet made of galvanized steel with oven-cured polyester powder coating	✓
	Custom color available to match installation requirements	•
	Enclosed compartment for refrigeration components with 10 mm polypropylene insulated panels	✓
Bodywork	Perimeter enclosure with 10 mm polypropylene insulated panels	✓
	20 mm polypropylene insulation for the refrigeration compartment and perimeter enclosure	•
	Perimeter enclosure with 20 mm rock wool sandwich panel	•
	Anti-vibration mounts available as accessories	•
	Scroll inverter technology	✓
Compressor	Compressor anti-vibration mounts	✓
	Acoustic insulation jacket	✓
Expansion valves	Electronic expansion valves	✓

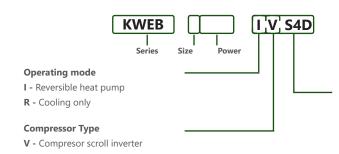
Fans

Outdoor fans	EC axial fans with integrated curved nozzle	✓
	Condensing pressure control	✓
	High-performance EC axial fans	•
	EC plug fans (radial type)	•
	Curved external nozzles (available only with high-performance EC fans)	•
	AxiTon diffusers for axial fans (available only with high-performance EC fans)	•

Heat exchangers

	Coils with copper tubes and aluminium fins	✓
Coils	Coil with copper tubes / polyurethane pre-coated aluminium fins	•
Colls	BLYGOLD: copper tubes / aluminium fins with Blygold coating	•
	COPPERFIN: copper tubes / copper fins	•
Heat exchangers	Propane-to-water heat exchanger, AISI 316L stainless steel brazed plates with copper, thermally insulated	✓

Energy


	Partial condensation heat recovery for DHW	•
Energy recovery	Pump in condensation heat recovery circuit	•
	Electric anti-freeze heater in DHW recovery plate heat exchanger	•

✓ Included as standard

Optional

- Not applicable

Codification:

Hydraulic version

- \boldsymbol{S} Standard unit / \boldsymbol{P} Version with hydraulic kit
- H Version with hydraulic kit and buffer tank
- J Version with hydraulic kit and high-capacity buffer tank

Power supply

4 - 400V/III/50Hz with neutral (standard)

Refrigerant

D - R290

range specification

Hydraulic (*) Single pump – standard available pressure (7–12 m.w.c.) Single pump – high available pressure (15–20 m.w.c.) Single pump – very high available pressure (25–30 m.w.c.) Pumps (P/H version) Single pump with variable speed drive Backup pump (standard, high, or very high available pressure) Electronic pump Electronic backup pump Low-temperature kit for operation with water outlet temperature < 0 $^{\circ}\text{C}$ Low outdoor temperature kit Flexible inlet and outlet water connections Hydraulic components Water filter Installation of pressure gauges at the inlet and outlet of the unit for version S Independent module with buffer tank available in 200 L / 375 L / 725 L + electric heaters

Installation

Protective grilles	Coil protection grille	•
Insulation	Thermal insulation on all cold metallic lines (refrigerant or water)	•
	400 V / 3-phase / 50 Hz with neutral	✓
Power supply	400 V / III ph / 60 Hz	•
	Other electrical voltages (contact us for available options)	•
Packaging	Packaging for maritime transport	•

Control

	AQUAMATIX programmable electronic controller	✓
Electronic control and communication	Climatix HMI user terminal for AQUAMATIX control	✓
	RS485 communication interface for Modbus protocol	✓
	Modbus TCP/IP and BACnet IP communication	✓
	Main switch in the electrical panel	✓
	Circuit breakers for compressors, fans, and pumps	✓
	Residual current devices (RCDs)	•
Additional control and	Low-pressure switch for pump protection	•
safety components	PREMIUM phase control relay with phase failure detection and rotation direction protection	✓
	EXCELLENT phase control relay with added phase imbalance, overvoltage, and undervoltage detection	•
	Triple protection for the plate heat exchanger: water flow switch, water and refrigerant antifreeze protections	✓
	Energy meter	•
	Refrigerant leak-insulated electrical panel	✓
	Fully wired electrical panel with IP54 protection	✓
Electrical panel	Forced ventilation of the electrical panel	✓
	Electrical components designed for high-temperature environments	✓
	Tropicalized electrical panel	•
	Socket outlet for general use	•
	Anti-freeze electric heater in electrical panel for low outdoor temperatures	•

Available in three versions depending on the hydraulic components included:

- O— S Version Standard unit, without hydraulic module.
- **O P Version** Unit with hydraulic module, including hydraulic pump, without buffer tank.
- O H Version Unit with hydraulic module, including hydraulic pump and buffer tank.

KWEB

Refrigerant of the present and the future advancing towards Decarbonization

LEADERS IN TECHNOLOGY OF HEAT PUMP

