
KEYTER

Bomba de Calor

PACIFICA Pro

29-120 kW 32-132 kW

Bombas de Calor reversibles o solo frío, con potencia calorífica entre 32 kW y 132 kW, especialmente diseñadas para aplicaciones comerciales, industriales e instalaciones residenciales centralizadas. Permite sistemas modulares hasta 5 unidades (hasta 600 kW) y alta temperatura de agua hasta 75°C.

Optimizadas para el uso de refrigerante R-290 y tecnología full-inverter, destacan por su alta eficiencia energética y sostenibilidad ampliando las soluciones de la Serie PRO desarrollada por KEYTER.

keyter.com

PACIFICA *Pro Bomba de Calor*

Eficiencia Energética

Equipo con tecnología Inverter

Equipos compactos Full-Inverter montados con compresores scroll hérmeticos inverter, ventiladores EC de alta calidad e intercambiadores de alta eficiencia que aseguran un muy alto rendimiento estacional (SEER medio 4,4 / SCOP₃₅ medio 4,7 / SCOP₅₅ medio 3,7).

Ventiladores exteriores EC de alta eficiencia y bajo nivel sonoro, con tobera curva integrada.

Baterías Cu-Al Protecciones poliuretano, Blygold y Cu-Cu.

Compresores scroll herméticos Danfoss con variador de frecuencia.

Control electrónico SIEMENS programable AQUAMATIX y terminal CLIMATIX HMI.

Válvula de expansión electrónica.

Intercambiador de placas soldadas de acero inoxidable AISI 316L.

Diseño robusto y seguro

Con un cuidado aislamiento garantizan la protección adecuada del equipo y la reducción del nivel sonoro consiguiendo un funcionamiento muy silencioso en la versión estándar.

Además permite la reducción a un nivel supersilencioso mediante paneles sándwich, reducción de velocidad en ventiladores y reducción de frecuencia en compresores pudiéndose alcanzar un nivel presión sonora Lp 10 metros < 45 dB(A).

Compartimento cerrado para los componentes frigoríficos e hidráulicos con paneles aislados con propileno de 10 mm en la versión estándar.

Fácil accesibilidad mediante paneles desmontables.

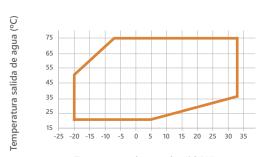
Disponible opcionalmente paneles sandwich con aislamiento de lana de roca de 20 mm de espesor (M0).

Cuadro eléctrico en compartimento estanco con ventilación forzada de serie.

Unidades equipadas con una regulación inteligente que garantiza un proceso de desescarche óptimo.

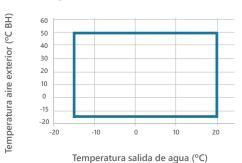
Modo Nocturno con reducción de la velocidad de ventiladores y compresores

Integra detección de fugas y ventilador de extracción ATEX de forma estándar para máxima seguridad.


PACIFICA Pro Bomba de Calor

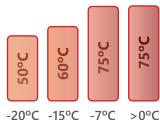
Descarbonización y sostenibilidad

Amplio rango de funcionamiento con alta eficiencia y límites de operación ampliados (funcionamiento hasta -20°C de temperatura exterior a carga total).


Modo Calefacción:

Temperatura aire exterior (°C BH)

Zona naranja: mapa de operación de la unidad a plena carga.


Modo Refrigeración:

Zona azul: Mapa de operación de la unidad a plena carga.

Producción de agua a alta temperatura durante todo el año para sustitución de caldera y reducción de la huella de carbono.

PACIFICA Pro

Aire exterior (°C BH)

- Control integrado de prevención de legionela
- O- Gestión de doble punto de consigna permite gestionar dos zonas consignas para calefacción y ACS mediante una entrada digital.
- O— Gestión del agua caliente sanitaria permiten la programación y punto de consigna de ACS pudiendo gestionar una V3V incorporada al equipo para suministrar agua hacia el circuito de calefacción o hacia el depósito de acumulación.

Sistemas modulares para alta potencia

La gama PACIFICA PRO permite la creación de sistemas modulares de hasta 5 unidades, Ofrecen una solución eficaz y sencilla para instalaciones de gran escala dónde se requieran equipos de alta potencia, pudiendose alcanzar hasta 600 kW.

🎇 hasta 600 kW 🛮 hasta 660 kW 💍

El montaje modular se realiza con una interconexión fácil y rápida. Además, ofrecen una importante solución redundante y contínua gracias a la arquitectura modular y la independencia eléctrica de cada módulo.

KWEB

2055

5060

2"

44000

44000

2

800 EC-Z

1153

1161

KAAED			20	133	20	130	20	J J	30	00	
Frecuencia del compreso	or (Hz)		fnom	fmax	fnom	fmax	fnom	fmax	fnom	fmax	
		kW	29,2	37,4	38,4	48,9	47,2	59,8	49,8	65,3	
	Potencia frigorífica nominal (1)	TR	8,5	10,5	11	14	13,5	17	14	18,5	
		kBTU/h	102	126	132	168	162	204	168	222	
	Potencia absorbida (2)	kW	9,9	14,8	14,0	21,6	17,0	26,7	17,9	27,1	
Modo Refrigeración	EER (3)	kW/kW	2,94	2,53	2,75	2,26	2,77	2,24	2,79	2,41	
	ELIX (3)	BTU/(h*W)	10,03	8,62	9,38	7,73	9,46	7,64	9,51	8,22	
	SEER (4)	kWh/kWh	4,4		4	4,5		4,4		4,3	
	ηs,c (5)	%	174	1,7%	175	175,3%		173,7%		168,3%	
	Potencia calorífica nominal (6)	kW	35,4	43,1	48,1	57,1	57,0	65,9	60,0	75,8	
	Potencia absorbida (2)	kW	9,1	12,7	12,3	17,6	14,4	20,5	17,0	24,0	
Modo Calefacción	COD (3)	kW/kW	3,87	3,39	3,90	3,24	3,97	3,21	3,53	3,16	
30/35	COP (3)	BTU/(h*W)	13,21	11,57	13,30	11,06	13,55	10,95	12,05	10,79	
	SCOP (9)	kWh/kWh	4,8		4	,7	4	9	4	4,5	
	ηs,h (9) (5)	%	187	7,4%	18	6%	193	,4%	176	,9%	
	Potencia calorífica nominal (6)	kW	32,0	40,0	44,0	54,2	54,4	70,0	54,4	70,0	
	Potencia absorbida (2)	kW	12,3	16,9	16,5	23,0	22,3	31,0	22,3	31,0	
Modo Calefacción	COP (3)	kW/kW	2,61	2,37	2,67	2,36	2,44	2,25	2,44	2,25	
47/55		BTU/(h*W)	8,92	8,08	9,12	8,04	8,33	7,69	8,33	7,69	
	SCOP (9)	kWh/kWh	3	,6	3	,7	3,	3	3,	5	
	ηs,h (9) (5)	%	142	2,0%	143,6%		136,3%		136	136,3%	
	Potencia calorífica nominal (6)	kW	31	-	42,3	-	51,1	-	52,2	-	
	Potencia absorbida (2)	kW	14	-	19,2	-	22,5	-	25,7	-	
Modo Calefacción	COP (3)	kW/kW	2,15	-	2,20	-	2,27	-	2,03	-	
55/65	201 (3)	BTU/(h*W)	7,33	-	7,52	-	7,75	-	6,93	-	
	SCOP (9)	kWh/kWh	3	,1	3,2		3,3	3,	3,0		
	ηs,h (9) (5)	%	122	2,2%	123	3,7%	127	,4%	118%		
CARACTERÍSTICAS TÉC	NICAS										
Alimentación eléctrica						400 V / III / 50	Hz con neutro				
	Fluido Frigorífico / GWP	kg CO₂					90/3				
Circuito Frigorífico	Nº circuitos / compresores				1,	/1			2,	/2	
	Nº etapas de potencia		25-1	100%	25-1	100%	25-100%		12,5-	100%	
	Caudal de agua calefacción (12)	m³/h	6,1	7,5	8,3	9,9	9,9	11,4	10,4	13,1	
	Caudal de agua refrigeración	m³/h	5,0	6,4	6,6	8,4	8,1	10,3	8,6	11,3	
Circuito Hidráulico	Tipo de intercambiador						le acero inoxidable				
c carto i naradireo	Nº intercambiadores			1		1		l	2	:	

2035

2050

2"

22000

22000

800 EC-Z

666

672

(1) Potencia frigorífica nominal para una Ta de entrada/salida de agua de 12/7°C (53.6/44.6°F) y Ta de aire exterior de 35°C (95°F). Potencias calculadas con factor de ensuciamiento en intercambiador de placas de 0.43*10E-4 (m2K/W).

1 1/2'

22000

22000

1

800 EC-Z

640

646

(2) Potencia nominal absorbida por compresores y ventiladores exteriores.

Cap. depósito inercia – versión H

(inch)

m³/h

m³/h

mm

kg

kg

dB(A)

Ø conexiones hidráulicas

Número de ventiladores

Ø y Tipo de ventilador

Peso en vacío

Peso en servicio

Caudal aire exterior verano

Caudal aire exterior invierno

(3) EER y COP calculados según norma EN 14511-2022.

Ventilador exterior

Pesos (versión S)

Presión sonora equipo (Lp10) (9)

- (4) Eficiencias Estacionales calculadas conforme a EN 14825:2022.
- (5) Valores ης, c en cumplimiento con el Reglamento de Ecodiseño EU 2016/2281 para aplicaciones de Confort. Valores ης, h conformes al diseño ecológico en virtud del Reglamento UE 813/2013 para la aplicación de bomba de calor.
- (6) Potencia calorífica nominal para una T^a de entrada/salida de agua de 30/35°C (86/95°F) y T^a de aire exterior de 7°C (44.6°F). Potencias calculadas con factor de ensuciamiento en intercambiador de placas de 0.43*10E-4 (m2K/W).

Serie 2

Dimensiones (mm)				
Chásis	L	Α	Н	
S/P	1875	1100	2375	
Н	2975	1100	2375	

2"

22000

22000

800 EC-Z

639

706

datos técnicos

WEB			50	70	61	00	612	20	
ecuencia del compreso	or (Hz)		fnom fmax		fnom	fnom fmax		fnom fmax	
		kW	58,1	74,2	76,8	97,8	94,4	119,5	
	Potencia frigorífica nominal (1)	TR	16,5	21	22	28	27	34	
		kBTU/h	198	252	264	336	324	408	
	Potencia absorbida (2)	kW	20,4	30,3	27,9	43,1	34,0	53,3	
Modo Refrigeración		kW/kW	2,85	2,45	2,75	2,27	2,77	2,24	
	EER (3)	BTU/(h*W)	9,72	8,37	9,39	7,73	9,47	7,65	
	SEER (4)	kWh/kWh	4	4	4	.5	4,	4	
	ηs,c (5)	%	172	,9%	176	,6%	174,	,7%	
	Potencia calorífica nominal (6)	kW	70,7	86,2	96,2	114,3	114,0	131,7	
	Potencia absorbida (2)	kW	18,9	26,0	24,7	35,2	28,7	41,0	
Modo Calefacción		kW/kW	3,75	3,31	3,90	3,24	3,97	3,21	
30/35	COP (3)	BTU/(h*W)	12,79	11,31	13,31	11,07	13,56	10,95	
	SCOP (9)	kWh/kWh	1-,11	,	,.	,	.0,20	,	
	ηs,h (9) (5)	%	186	,2%	186	,6%	194,	,0%	
	Potencia calorífica nominal (6)	kW	64,0	80,1	88,1	108,3	105,6	125,6	
	Potencia absorbida (2)	kW	25,1	34,4	32,9	45,9	38,5	54,1	
Modo Calefacción		kW/kW	2,55	2,33	2,67	2,36	2,74	2,32	
47/55	COP (3)	BTU/(h*W)	8,71	7,95	9,12	8,04	9,35	7,92	
	SCOP (9)	kWh/kWh		,6	3,12		3,55		
	Ns,h (9) (5)	%		,1%	143		148,		
	Potencia calorífica nominal (6)	kW	61,5		84,7	,9 /0	102,1	,370	
	Potencia absorbida (2)	kW	29,2	-	38,4	-	44,9	-	
	Potericia absorbida (2)			-		-		=	
Modo Calefacción 55/65	COP (3)	kW/kW	2,10	-	2,21	-	2,27	-	
55/05		BTU/(h*W)	7,18	-	7,52	=	7,75	-	
	SCOP (9)	kWh/kWh	3,1		3,2		3,3		
	ηs,h (9) (5)	%	121	,4%	124	,0%	127,	,6%	
ARACTERÍSTICAS TÉC	NICAS								
Alimentación eléctrica					400 V / III / 50	Hz con neutro			
	Fluido Frigorífico / GWP	kg CO₂			R29				
Circuito Frigorífico	Nº circuitos / compresores		2,	/2	2/2		2/2		
	Nº etapas de potencia		12,5-	100%	12,5-	100%	12,5-1	100%	
	Caudal de agua calefacción (12)	m³/h	12,3	14,9	16,7	19,8	19,8	22,8	
	Caudal de agua refrigeración	m³/h	10,0	12,8	13,2	16,8	16,2	20,6	
	Tipo de intercambiador				placas soldadas de acero inoxidable				
Circuito Hidráulico	Nº intercambiadores			2	2		2"		
	Cap. depósito inercia – versión H	(L)	. 20	00	375		. 37	375	
	Ø conexiones hidráulicas	(inch)			2 1		2 1,		
	Caudal aire exterior verano	m³/h	440		44000		440		
	Caudal aire exterior invierno	m³/h	440						
Ventilador exterior	Número de ventiladores	/ !!		2	44000 2		44000 2		
	Ø y Tipo de ventilador	mm		- EC-Z	800		800 E		
Presión sonora equipo		dB(A)	52	54	51	52	53	54	
colori sonora equipo	Peso en vacío	kg	11		13				
Pesos (versión S)	Peso en servicio	ka		61	14		14:		

(7) Potencia calorífica nominal para una Ta de entrada/salida de agua de 47/55°C (86/95°F) y Ta de aire exterior de 7°C (44.6°F). Potencias calculadas con factor de ensuciamiento en intercambiador de placas de 0.43*10E-4 (m2K/W)

1161

1405

- (8) Potencia calorífica nominal para una Tª de entrada/salida de agua de 55/65°C (86/95°F) y Tª de aire exterior de 7°C (44.6°F). Potencias calculadas con factor de ensuciamiento en intercambiador de placas de 0.43*10E-4 (m2K/W).
- (9) Coeficiente de rendimiento estacional (SCOP) y eficiencia energética estacional de calefacción (ης,h) calculados para aplicaciones a baja temperatura y clima medio.

kg

- (10) Coeficiente de rendimiento estacional (SCOP) y eficiencia energética estacional de calefacción (ns.h) calculados para aplicaciones a media temperatura y clima medio.
 (11) Coeficiente de rendimiento estacional (SCOP) y eficiencia energética estacional de calefacción (ns.h) calculados para aplicaciones a media temperatura y clima medio.
 (11) Coeficiente de rendimiento estacional (SCOP) y eficiencia energética estacional de calefacción (ns.h) calculados para aplicaciones a alta temperatura y clima medio.
 (12) Caudal calculado con una Ta de entrada/salida de agua de 30/35°C (86/95°F) y Ta de aire exterior de 7°C (44.6°F)

- (13) Nivel de presión sonora en dB(A) en campo libre, a 10 m de distancia de la fuente y directividad 1.

Peso en servicio

Serie 5

Dimensiones (mm) Chásis L Α Н 1100 S/P 3260 2375 4360 1100 2375

Serie 6

1431

Dimensiones (mm)				
Chásis	L	Α	Н	
S/P	3920	1100	2375	
Н	5020	1100	2375	

KWEB

especificación de gama

Características generales

Refrigerante	R290	✓
	Equipo con carga de refrigerante	\checkmark
	Detector de fugas	✓
	Ventilador axial de extracción de refrigerante ATEX	✓
	Ventilador centrífugo de extracción de refrigerante ATEX	•
	Indicador luminoso en caso de fuga	✓
	Chasis/Gabinete autoportante en acero galvanizado con tratamiento de pintura poliéster termoendurecible curada al horno	✓
	Color personalizado para adaptarse a las necesidades de la instalación	•
	Compartimento cerrado para los componentes frigoríficos con paneles aislados con propileno de 10 mm	✓
Carrocería	Recinto para los componentes hidráulicos con paneles aislados con propileno de 10 mm	✓
	Aislamiento de propileno de 20 mm para compartimento frigorífico y recinto hidráulico	•
	Recinto cerrado con panel sandwich de lana de roca de 20 mm para los componentes hidráulicos	•
	Suplementos antivibratorios	•
	Tecnología scroll inverter	✓
Compresores	Soportes antivibratorios de compresores	✓
	Camisa de aislamiento acústico	✓
Válvulas de expansión	Válvulas de expansión electrónica	✓

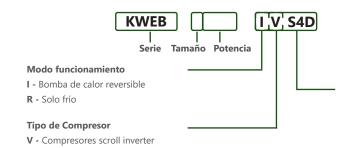
Ventiladores

Ventiladores exteriores	Ventiladores axiales EC con tobera curva integrada	✓
	Control de presión de condensación	✓
	Ventiladores axiales EC potenciados	•
	Ventiladores radiales plug-fan EC	•
	Toberas exteriores curvas (sólo disponibles con ventiladores EC potenciados)	•
	Difusores AxiTop para ventiladores axiales (sólo disponibles con ventiladores EC potenciados)	•

Intercambiadores

Patrića:	Baterías de tubos Cu y aletas Al	✓
	Batería de tubos Cu / aletas Al prelacado de poliuretano	•
Baterías	BLYGOLD: tubos Cu / aletas Al con recubrimiento de Blygold	•
	COPPERFIN: tubos Cu / aletas Cu	•
Intercambiadores	Intercambiador propano-agua, placas acero inoxidable AISI 316L, soldadas con cobre y aislado térmicamente	✓

Energía



	Recuperación parcial de energía de condensación para ACS	•
Recuperación de energía	Bomba en circuito de recuperación del calor de condensación	•
	Resistencia eléctrica anti-hielo en intercambiador de placas de recuperación para. ACS	•

✓ Incluido de estándar

 Opcional
 No aplic

Codificación:

Versión Hidráulica

- S Equipo estándar / P Versión con grupo hidráulico /
- **H** Versión con grupo hidráulico y depósito de inercia

Alimentación eléctrica

- 4 400V/III/50Hz con neutro
- 3 400V/III/50Hz sin neutro

Refrigerante

D - R290

especificación de gama

Hidráulico (*) Bomba simple presión disponible normal (7-12 m.c.a.) Bomba simple alta presión disponible (15-20 m.c.a.) Bomba simple muy alta presión disponible (25-30 m.c.a.) Bomba simple muy alta presión disponible (25-30 m.c.a.) Bomba con variador de velocidad Bomba de reserva (presión estándar, alta presión y muy alta presión disponible) Bomba electrónica Bomba de reserva electrónica Bomba de reserva electrónica Cit de baja temperatura para funcionamiento con T³ de salida de agua < 0 °C Kit de baja temperatura exterior Conexiones flexibles de entrada y salida de agua Filtro de agua Instalación de manómetros a la entrada y salida del equipo para la versión S ■

Instalación

Rejillas de protección	Rejilla de protección de baterías	•
Aislamiento	Aislamiento térmico en todas las líneas metálicas frías (de refrigerante o de agua)	•
Alimentación Eléctrica	400 V / III ph / 50 Hz con neutro	✓
	400 V / III ph / 60 Hz	•
	Otras tensiones eléctricas (consultar diferentes opciones disponibles)	•
Embalaje	Embalaje para transporte marítimo	•

Módulo independiente con depósito de inercia disponible de 200 litros / 375 litros / 725 litros + Resistencias eléctricas

Control

	Control electrónico programable AQUAMATIX	✓
Control Electrónico y	Terminal de usuario Climatix HMI para control AQUAMATIX	✓
Comunicación	Interfaz de comunicación RS485 para comunicación ModBus	✓
	Comunicación Modbus TCP/IP y BACnet IP	✓
	Interruptor general en cuadro eléctrico	✓
	Protecciones magnetotérmicas de compresores, ventiladores y bombas	✓
	Interruptores diferenciales	•
Elementos adicionales de	Interruptor de baja presión para la protección de la bomba	•
control y seguridad	Relé de control de fases PREMIUM, con detección de fallo de fase y protección del sentido de rotación	✓
	Relé de control de fases EXCELLENT, añade detección de desequilibrio de fases, sobretensión y subtensión	•
	Triple protección del intercambiador de placas con interruptor de flujo de agua y protecciones antihielo de agua y freón	✓
	Medidor de energía	•
	Cuadro eléctrico aislado contra fugas de refrigerante	✓
	Cuadro eléctrico totalmente cableado, con protección IP54	✓
Cuadro eléctrico	Ventilación forzada del cuadro eléctrico	✓
	Diseño de aparamenta eléctrica para alta temperatura	✓
	Cuadro eléctrico tropicalizado	•
	Enchufe para usos comunes	•
	Resistencia eléctrica anti-hielo en cuadro eléctrico para bajas temperaturas exteriores	•

Disponible en tres versiones atendiendo a los elementos hidráulicos que incorporen:

- O— Versión S Equipo estandar, sin grupo hidraulico.
- O— Versión P Equipo con grupo hidráulico, bomba hidráulica incluida y sin depósito de inercia.
- Versión H Equipo con grupo hidráulico, bomba hidráulica y depósito de inercia incluidos.

KWEB

Refrigerante del presente y del futuro avanzando hacia la Descarbonización

LÍDERES EN TECNOLOGÍA DE **BOMBA DE CALOR**

