

Bettor Up: Assess, Analyze, and Achieve

Tracks – Business of Sports and Open Source ID 1548878

1. Introduction

With the repeal of the "Professional and Amateur Sports Protection Act" (PASPA) betting on athletic competition in the United States is now taking on a modicum of respectability. Our focus will be investing on baseball games. At the heart of sports betting is calculating the probability of winning the game in general and the wager in particular. Accurately quantifying matchups is essential for prediction consistency and reproducibility. Concurrently sizing the stake (bet) is the foundation to enhancing profitability. Figure 1 profiles the process to be undertaken.

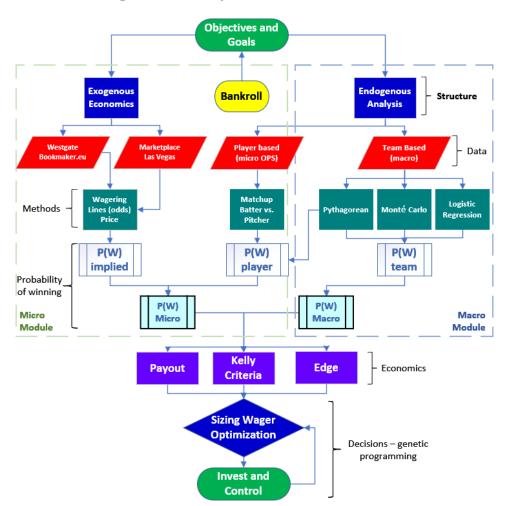


Figure 1- Pathway to Economic Achievement

Baseball is unique in sports from a *micro* perspective with the matchup between batters and pitchers and from a *macro* view as a team. Several research questions present themselves, can we:

- 1. Identify inequities between the wagering line(s) and game's expected production,
- 2. Capitalize on such inequities so as to profit from the investment,
- 3. Build an investment model to optimally select and size each wager in order to maximize profits.

To answer these questions, it is essential to measure the match-ups between individual players (*micro*) and the competing teams (*macro*). By quantifying match-ups the probability of winning the game may be ascertained. Combining the probability of winning with the betting lines the economics of the wager will be measured. Sounds simple enough, but just how?

The schematic in Figure 1 shows the process that we'll be undertaking and will be addressed in the following sections:

- Exogenous Economics,
- Endogenous Analysis,
- Sizing Wager Optimization.

As a reference terms and nomenclature are provided in Appendix A. Let's proceed into the hinter land of sports gambling!

2. Exogenous Economics

At the foundation of economics are those who provide the service or product and those who consume them. The meeting point is the price. The *moneyline* is the price of the wager and starts when published. First notice is usually provided by the Westgate Casino in Las Vegas or on the Internet by Bookmaker.eu.

Stated simply the odds or line may be quoted as:

Houston Astros -150 (favorite), Washington Nationals +140 (underdog)

This means a winning \$100 bet on Houston would net a \$66¹ profit. In the case of the Nationals, a winning \$100 wager would yield \$140². From the house's perspective:

Collect \$100 for the Houston bet and pay out \$166 (return of \$100 bet plus \$66)

Should the Nationals win:

Collect \$100 on the Nationals and pay out \$240 (return of original bet plus \$140)

² Nationals profit calculations with a line of 140: \$100*(140/100) = \$140

¹ Astros profit calculations with a line of -150: 100*(100/|150|) = 66

The House's objective is to balance the lines so as to make a profit. The difference between moneylines of -150 and +140 is -10, know is a "dime line". The line can be converted to an implied probability of winning³.

2.1. Implied probability of winning⁴

In this case the implied probability of winning for the Houston and Nationals respectively are:

- $|150| / (|150| + 100) = 60\% \Rightarrow 60\% / (60\% + 42\%) = 58.8\%$
- $100 / (|140| + 100) = 42\% \Rightarrow 42\% / (60\% + 42\%) = 41.2\%$

Normalizing for the house's profit (the juice or vig⁵) generates P(W) for Houston of 58.8% and Nationals of 41.2%.

A question arises, are all things fair in Mudville⁶? Specifically, over a season, is a team's winning percentage about the same as its implied probability of winning (value⁷)?

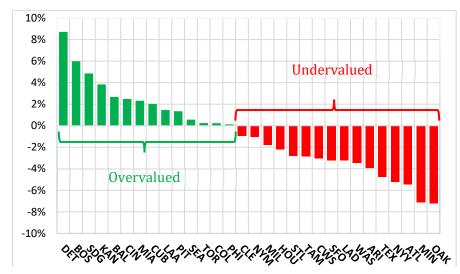


Figure 2 - Team Relative Wager Value 2019 Season

Source: https://sportsbookreviewsonline.com/scoresoddsarchives/mlb/mlboddsarchives.htm Tabulated: by authors

3

³ Probability of "i" winning will be abbreviated as: P(W)_i

⁴ The implied probability of winning is the conversion of odds (line) into a percentage - while taking into account the bookmaker's profit. https://www.pinnacle.com/en/esports-hub/betting-articles/educational/implied-probability-odds-conversion/72m2z3g3g22m5tps

⁵ Vig is short for vigorish.

⁶ https://www.baseball-reference.com/bullpen/Mudville_Nine

⁷ Value = (Actual Winning % - Implied probability of winning P(W))

Figure 2 demonstrates that over the 2019 season a team's value varied quite widely. The Tigers on average were overvalued by 8% while Oakland was undervalued by the same amount. Hence, we now know that if we can estimate the actual probability and compare it to the implied probability of winning, we may then measure the economic *edge*⁸. Let's move on to measuring team and player performances and resultant probabilities of winning.

3. Endogenous Analysis (probability of winning)

Considering that baseball has more data available than a Microsoft Cloud Server, we must narrow the scope of our inquiry. A simple question, what baseball statistics from an offensive and defensive perspective correlate well with a team's winning percentage? Ranking a team's batting and pitching production variables and relating them with winning percentage generates a correlation matrix and is shown in its entirety in Appendix B, partially summarized in Table 1.

Table 1- Coefficients of Correlation Selected Variables with Winning

	Batting			Pitching	
Varia ble	%Win	Rank	Variable	%Win	Rank
∆(OPS)	0.933	7 1	Δ(OPS)	0.933	1
OBP	0.811	2	Wins	0.851	2
R	0.776	3	ERA	0.793	3
RBI	0.763	4	ER	0.782	4
OPS	0.758	5	OBP	0.764	5
Scr-Al	0.706	6 لم	OPS	0.753	6
SLG	0.692	7	BAA	0.736	7
BB	0.684	8	Scr-Alw	0.706	- 8
TB	0.670	9	Losses	0.704	9
TPA	0.666	10	SLG	0.695	10
XBH	0.631	11	K/BB	0.656	11
AVG	0.621	12	SHO	0.641	12
HR	0.571	13	SV	0.640	13
Н	0.569	14	IP	0.577	14
AB/HR	0.542	15	DIP%	0.568	15

Source: Appendix B

It is significant that the difference between a team's batters' and pitchers' on base percentages (Δ OPS) is actually more highly correlated with winning than runs scored and runs allowed (SCR-AL) e.g., .933 vs. .706. This result will be useful in building a more accurate game prediction model.

⁸ The *edge* is the: (calculated probability of winning – implied probability of winning)

0

3.1 Baseball's Pythagorean Theorem

Deep in the lore of baseball analytics is the work of Bill James⁹. One of his many contribution to the literature was identifying a nonlinear relationship between runs scored and runs allowed. It was specifically postulating that:

Because of equation (1)'s format, it was dubbed Baseball's Pythagorean Theorem. Mathematically derived, the exponent in actuality is about 1.77 for Major League Baseball (seasons 2015-19). Since OPS is a more accurate variable for measuring the winning percentage the following defines ΔOPS as:

$$\Delta OPS_{home} = (OPS_{batting} - OPS_{pitching})_{home}$$
 (2)

$$\Delta OPS_{road} = (OPS_{batting} - OPS_{pitching})_{road}$$
 (3)

Hence, a new equation evolves:

Probability of Winning_{home} =
$$(\Delta OPS_{home})^{\alpha} / ((\Delta OPS_{home})^{\alpha} + (\Delta OPS_{road})^{\alpha})$$
 (4)

Where $\alpha = 3.374^{10}$

Equation (4) is the predictor and provides a more accurate mechanism to calculate the probability of winning *a priori* in contrast to having to use estimators for runs scored and allowed. It will next be incorporated into a player-based matchup model.

3.2 Matchups

Competitive matchups can be measured from two major perspectives. First is a *micro* vantage point of player vs. player and second is a *macro* or team view. Each will be examined.

3.2.1 Matchups: Player-based OPS

The matchup between batter and pitcher is one of the most unique characteristics of baseball as a team sport. Player performance is affected by whether they are playing at home or on the road. In a similar fashion, pitchers and batters facing their left and right counterparts yield different results. On October 25th the Houston Astros traveled to Washington D.C to meet the Nationals in the third game of the 2019 World Series. Table 2 shows the player by player matchups between the Astros and Nationals. Incorporating the resultant OPS team calculations in Table 2 with Equation (4) yields the following:

Probability Houston winning =
$$.7988^{3.374} / (.7988^{3.374} + .7279^{3.374}) = 58\%$$
 (5)

This equation represents a player-based estimation of the probability of winning. Viable data needs to cure before it decays. The most reliable time period for a batters' data was a moving 12-month aggregation while a pitchers' statistics were most representative over a 24-month horizon. Moving from a player-based example let's proceed to look at team-based profiles.

⁹ Bill James ushered in the Sabermetric era by publishing the book *The Bill James Baseball Abstract*. ¹⁰ Calculation in Appendix C.

_

Table 2 - OPS Player Match-up Houston at Nationals

-		-150	140	-4%	1%	HOU Best Bet	Bet					Pytk	Pyth Exponent 3.374	3.374
20192723	HOU at WSH	:	OPS		P(Wh)	OddO	Opposing Pitcher	er					PA>=	20
		ПОН			Md	45578 Anibal Sanchez R	al Sanche:	<u>د</u>				_		
	Friday, October 25, 2019	0.799	0.728	-9%	42%								Home P	Pitcher
		4	1	1%	42%	L	Pitching			Batting		- C C	vs LHB	vs. RHB
Road	Houston Astros					Away	T	Home	Ą	Away	Home	5 6	0.7172	0.7872
11		Club	Pos	Bats	Throws	vs LHB	vs. RHB vs LHB vs. RHB	vs. RHB	vs LHP	vs. RHP	vs LHP vs. RHP	44	0.8052	0.7970
31734	31734 Zack Greinke	ПОН	Ь	R	R	0.6477	0.6759 0.6178		0.6446 1.0380	0.5904 0.9374	74 0.5331	1 127		0.6888
55877	55877 Jose Altuve	НОП	2B	æ	В				0.8680	0.8153 1.0057	57 0.9445	5 1,147		0.8012
49264	49264 Michael Brantley	ПОН	5	٦	٦				0.7682	0.9803 0.7913	13 1.0097	7 1,268	0.8837	
70907	70607 Alex Bregman	ПОН	3B	œ	œ				1.1750	1.0102 0.9881	81 0.8495	5 1,395		0.8987
33829	33829 Robinson Chirinos	ПОН	С	æ	æ				0.7121	0.6392 0.9317	17 0.8362	2 863		0.7132
100502	100502 Carlos Correa	НОП	SS	æ	В				0.8712	0.8015 1.0668	68 0.9815	5 789		0.7943
51408	51408 Yuli Gurriel	HOU	1B	R	В				0.8084	0.7683 0.9280	80 0.8819	9 1,185		0.7777
26609	56609 Josh Reddick	НОП	RF	L	R				0.8144	0.6663 0.7635	35 0.6247	7 1,037	0.7268	
65992	65992 George Springer	ПОН	RF	~	~				1.0115	1.0229 0.9069	69 0.9171	1 1,176		0.9050
	-											6	HOU OFS	0.7988
													Р(W) HOU	2663
													OPS Adv	5%
						oddO	Opposing Pitcher	er						
						31734 Zack Greinke	Greinke	œ				Tean	Team's OPS	_
											_	_	BOADB	+chor
							4041			1			0111	
o mon	alenoiteM nothinidaeM	<u>-</u>	_			VEWA		Home	Ž	Datiiiig	Home	Toal	VS LITE	VS. NTD
30	9		Pos	Bats	Throws	vs I HB vs.	RHB vs I HB	VS. RHB	HISA	VS. RHP VS IHP	IP VS. RHP	A A	0.8086	0.6875
45578	45578 Anibal Sanchez	WSH	Ь	æ	٣	0.7529	0.8263 0.7172			0.4065	_	5 100		0.4237
45398	45398 Asdrubal Cabrera	WSH	3B	S	œ				0.6668	0.7524 0.7885	85 0.8896	5 1,106	0.7687	
67746	67746 Adam Eaton	WSH	RF	٦	Γ				0.6944	0.8497 0.7454	54 0.9121	1,026	0.7799	
70755	70755 Anthony Rendon	WSH	3B	٣	Я				1.0112	0.9684 1.0851	51 1.0392	2 1,243		0.8575
104023	104023 Victor Robles	WSH	P.	۳	۳				0.7261	0.6581 0.8457	57 0.7665	5 683		0.7212
107182	107182 Juan Soto	WSH	H	٦	٦				0.8283	0.9519 0.9631	31 1.1068	3 1,153	0.8773	
49076	49076 Kurt Suzuki	WSH	C	٣	۳				0.7989	0.6871 0.9263	63 0.7967	7 697		0.7363
70917	70917 Trea Turner	WSH	SS	۳	۳				0.8278	0.8288 0.8601	0.8612	2 1,309		7685
45623	45623 Ryan Zimmerman	WSH	1B	ĸ	ч				0.9129	0.5901 0.8665	65 0.5601	1 513		X 6180
												σ	WSH CPS	0.7279

Source: https://legacy.baseballprospectus.com/sortable/
Tabulated by authors

6

3.2.2 Matchups: Team-Based Averages

To place a perspective on performance, looking at a team's ability to score and allow runs is fundamental. Using the average runs per game in Table 3 provides details from the 2019 season.

Matching up the Astros and Nationals generates a probability of winning (Astros) by combining estimates of run production from Table 3, relative park factor¹¹, Equation (1), and derived exponent 1.77 into Table 4.

Table 4 - Estimated Astros Probability of Winning Team Based Data

Team based Pro	obability of Winr	ning Astros vs Nationa	als October 25	5, 2019
	Scored	Allowed by	Net EV	Adj Park Factor
		Competing Team	runs	
Astros (road)	5.272	4.741	5.006	4.924
Nationals (home)	5.593	3.926	4.759	4.759
Pythagorean P(W) Astros	4	.9241.77 / (4.9241.77 +	4.7591.77) =	51.5%

Table 4 demonstrates how the net expected run production is used to calculate the probability of winning.

3.2.3 Matchups: Team-Based Rankings

Identifying the overall comparative advantage in a simple to understand calculation would be helpful in the decision-making process. In Table 3, each team has four rankings, specifically:

- a = Scoring by road team,
- b = Runs allowed by home team,
- c = Scoring by home team,
- d = Runs allowed by road team.

The ranking value will range between 1 and 30 (30 is best) for each team category. From a home team perspective, the measure of competitive advantage becomes:

Competitive advantage =
$$(c - d) - (a - b)$$
 (6)

In our case:

Nationals competitive advantage =
$$(27 - 30) - (25 - 15) = -13$$
 (7)

A negative number means the Nationals are at a disadvantage. Conversely, the Astros competitive advantage is +13. The competitive advantage rank is highly correlated with the winning percentage. A Spearman Coefficient of .96 adds confidence for using this statistic and its derivation is detailed in Appendix D.

 $^{^{11}}$ Relative park factor levels the p[laying field by scaling the road teams park influence with that of the home team: Park factor Astros / Park factor Nationals = (1.0083 / 1.101) = .9158 http://proxy.espn.com/mlb/stats/parkfactor?order=false

7

Table 3 - MLB 2019 Scoring Profile by Team

;							;	<u> </u>					
YearIVIO	(Mult →			KOAD			YearMo	(Mult →			HOME		
	Road Scori	scoring	Home Allowed	llowed	Scorin	Scoring Rank		Road A	Road Allowed	Home Scoring	coring	Scorin	Scoring Rank
_		StdDev	Avg	StdDev	Road	Home		Avg	>		StdDev	Road	Home
Row Labels	RdScr	RdScr	HmScr	HmScr	Scoring	Allowe		RdScr	RdScr	HmScr	HmScr	Allowe	Scoring
Angels	4.667	3.202	5.346	3.046	13	4	Angels	5.370	3.348	4.827	2.957	∞	17
Astros	5.272	3.798	3.926	3.126	25	30	Astros	3.975	3.661	6.037	4.143	23	29
Athletics	5.444	4.135	4.506	3.009	28	23	Athletics	3.889	2.725	4.963	3.124	27	19
Blue Jays	4.531	3.139	4.914	3.079	∞	4/	Blue Jays	5.309	3.635	4.432	3.346	10	∞
Braves	5.210		4.642	2.865	24	20	Braves	4.531	3.190	5.346	3.171	21	22
Brewers	4.704	3.136	4.889	3.457	15	16	Brewers	4.568	3.691	4.790	2.714	17	15
Cardinals	4.605		4.543	2.971	12	22	Cardinals	3.630	2.857	4.790	3.338	53	15
Cubs	4.840		4.951	3.424	18	11	Cubs	3.901	2,764	5.210	3.545	22	21
Diamondbacks	5.111		4.605	3.559	22	21	Diamondbacks	cks 4.568	2.824	4.926	3.442	17	18
Dodgers	5.494	3.568	4.222	3.098	27	27	Dodgers	3.346	2.486	5.444	3.630	30	24
Giants	5.025	4.071	4.938	3.080	20	12	Giants	4.605	3.145	3.346	2.276	16	1
Indians	4.778	3.708	4.148	3.233	16	59	Indians	3.963	2.799	4.716	2.976	24	14
Mariners	4.827		5.617	3.659	17	Н	Mariners	5.358	3.665	4.531	3.283	6	11
Marlins	3.568	3.146	4.852	3.017	П	18	Marlins	5.123	3.059	4.025	3.539	/ 21	4
Mets	5.074		4.901	3.068	21	15	Mets	4.160	3.160	4.691	2.677	77	43
Nationals	5.185		4.198	2.939	23	28	Nationals	4.741	3.420	5.593	3.653	$\left(\begin{array}{c} 15 \end{array}\right)$	(27
Orioles	4.568	3.178	5.543	3.248	6	က	Orioles	6.568	4.585	4.432	2.898	7	∞
Padres	4.568		5.198	3.393	6	9	Padres	4.543	3.170	3.815	2.330	19	ĸ
Phillies	4.494	3.062	4.926	3.474	7	13	Phillies	4.840	3.341	5.062	3.257	14	20
Pirates	4.691		5.593	3.898	14	2	Pirates	5.654	3.665	4.667	3.557	9	12
Rangers	4.395	3.434	4.889	3.785	9	16	Rangers	5.951	3.860	2.605	2.836	4	28
Rays	5.013	3.196	4.288	3.238	19	25	Rays	3.790	2.553	4.519	2.613	78	10
Red Sox	5.543		4.802	2.861	28	19	Red Sox	5.438	3.337	5.588	3.676	7	56
Reds	4.321	3.247	4.235	3.071	2	56	Reds	4.543	3.241	4.333	3.182	19	7
Rockies	4.136		5.111	3.402	33	6	Rockies	6.716	3.982	6.173	3.438	Н	30
Royals	4.288	3.191	4.988	2.893	4	10	Royals	5.728	3.511	4.247	2.777	2	9
Tigers	3.713		5.113	2.792	2	∞	Tigers	6.222	3.406	3.519	2.784	33	2
Twins	6.136	3.754	4.444	2.725	53	24	Twins	4.864	. 3.327	5.457	3.182	13	25
White Sox	4.580	2.743	5.123	3.276	11	7	White Sox	5.213	3.542	4.175	2.967	11	Ŋ
Yankees	6.210	3.797	5.222	3.237	30	2	Yankees	3.900	3.075	5.425	2.889	56	23
Grand Total	4.834	3.422	4.822	3.221			Grand Total	4.834	3.422	4.822	3.221		

Source: http://www.seanlahman.com/baseball-archive/statistics/ Tabulated by authors

3.2.4 Matchups: Team-Based Monté Carlo

Team Scoring can be represented by an average as in Table 3 but more accurately by density functions. Figure 3 shows the league average runs/game for road and home teams between 2010 and 2018. A negative binomial discrete distribution generates the best fit. As a results, incorporating each team's data requires four distributions:

- 1. Scoring at home,
- 2. Runs allowed at home by road team,
- 3. Scoring on the road,
- 4. Runs allowed on the road by home team.

MLB Road Scoring 2010-18 MLB Home Scoring: 2010-18 RiskNeg8in(3,0.41321) RiskNegBin(4,0.47594) 10.00 10.00 16% 14% 14% Actual 12% 10% Calculated 8% 6% 6% 456 4% 2% 2%

Figure 3 - MLB Home and Road Team Scoring Distributions 2010 - 2018

Source: MLB.com Tabulated by authors

The negative binomial yielded the best fits at the individual team level. Figure 4 identifies examples of the four distributions generated for each team necessary to build the required Monté Carlo matchups. A total of 120 unique distributions are used to matchup each day's competitors. The distributions are updated daily with a rolling six-month time horizon. Again, time-based data is critical enhanced accuracy.

Figure 4 - Negative Binomial Definition Matrix by Team, Road, Home, Runs Scored, and Allowed

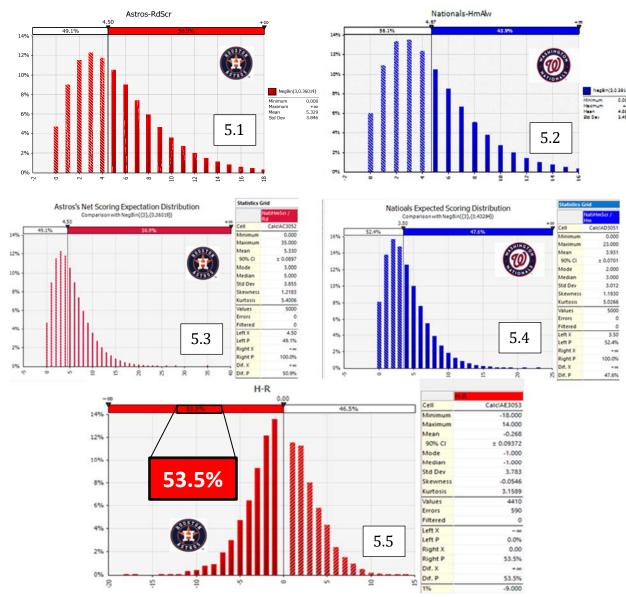
Each Club 4 Negative Binomial Distributions

Figure 5 has five density functions representing the game's Monté Carlo matchups including:

- 5.1 Houston runs scored on the road
- 5.2 Nationals runs allowed on road
- 5.3 Combining 5.1 and 5.2 to generate Astros resultant net scoring
- 5.4 Same as 5.3 but for Nationals net scoring
- 5.5 Aggregate scoring distribution for each team Probability of Astros winning 53.5 %

In Appendix E, the 120 negative binomial distributions are specified for each club as in Figure 4.

Figure 5 (5.1-5.5) - Monté Carlo Density Function Matchups: Astros vs. Nationals



The Monté Carlo simulation places a perspective on the scoring characteristics by each team as well as the likely outcome of the game itself. Figure 5.1 matchup with Figure 5.2 to generate Figure 5.3, the resultant scoring of Houston on the road. In a similar fashion Figure 5.4 (resultant Washington scoring distribution) is the consequence of combining the runs scored distribution by Washington and runs allowed distribution by Houston.

Figure 5.5 shows the scoring distributions resulting in probabilities of winning for Houston of 53.5% and Washington 46.5%.

3.2.5 Matchups: Team-Based Logistic Regression

Logistic regression is used when the dependent variable is binary (win-1, loss-0). It is utilized to build the relationship between one dependent binary variable and one or more independent variables.

Four variables functionally represent a games performance from an offense and defensive posture and include:

- (X_1) = Strikeouts / Base on Balls Road,
- (X_2) = Strikeouts / Base on Balls Home,
- $(X_3) = OBP + SLG (OPS) Road,$
- $(X_4) = OBP + SLG (OPS)$ Home.

Appendix F has the statistical tabulation for the model and its parameters. These are the tools to calculate the probability of winning.

The probability of the home team winning is:

$$P(W)_{H} = \exp(.224 + .066 * X_{1} - .100 * X_{2} - 10.984 * X_{3} + 10.741 * X_{4}) /$$

$$(1 + \exp(.224 + .066 * X_{1} - .100 * X_{2} - 10.984 * X_{3} + 10.741 * X_{4}))$$
(8)

For the Houston vs. Astros game:

$$X_1 = 2.94$$
 (9)

$$X_2 = 2.96$$
 (10)

$$X_3 = .778$$
 (11)

$$X_4 = .737$$
 (12)

$$P(W)_{\text{Nationals}} = \exp(.224 + .066*2.94 - .100*2.96 - 10.984*.778 + 10.7841*.737) / (1 + \exp(.224 + .066*2.94 - .100*2.96 - 10.984*.778 + 10.7841*.737))$$

$$= 36.6\%$$
(13)

$$P(W)_{Astros} = 1 - P(W)_{Nationals} = 53.4\%$$
(14)

Logistic regression is a powerful methodology that provides a direct calculation of the probability of winning using key operational variables.

3.3 Probability of Winning Summary

A multitude of probabilities of winning for our sample game have been calculated and are shown in Table 5:

Table 5. Probabilities Oc	s of Winning: Astros tober 25, 2019	vs Nationals
Type of Measurement	P(W) Astros	Aggregate P(W) Astros
MICRO		58.9%12
a. Implied P(W) Astros (-150)	60.0%	
b. Batter Pitcher OPS matchups	57.8%	
MACRO		52.8% ¹³
c. Pythagorean – team-based	51.5%	
d. Monté Carlo distributions	53.5%	
e. Logistic regression	53.4%	

The implied probability of winning (a) and batter pitcher OPS matchups (b) are responsive to daily changes. The implied probability of winning is a function of the money line. That line will respond to the market place with change in:

- Pitcher designation,
- Injuries,
- Weather,
- Match up characteristics,
- Batting order,
- Other elements.

Likewise, Batter Pitcher OPS matchups will vary with line-ups and recent player performance history. Aggregating these two measures will provide a *micro* or highly responsive estimation of the probability of winning.

In contrast, the Pythagorean (c), Monté Carlo (d), and Logistic regression (e) are all team-based calculations and have a *macro* perspective. It is essential that a viable decision model incorporate both *micro* and *macro* components. Just how that is done will be covered in Section 4.

¹³ Simple average of c., d., and e.

13

¹² Simple average of a. and b.

4. Sizing Wager Optimization

The most critical decision to be made is the level of investment for each wager. Sizing of the economic commitment is determined by a combination of the following factors:

- Probabilities of winning,
- Economics
 - o Edge(s),
 - o Payoff(s),
 - o Return(s) on investment,
 - o Risk,
 - o Bankroll,
- Hot tips from the Gnome of Zurich.

Just how can these elements be brought together to maximize profits? By incorporating genetic programming, it will be possible handle all non-linear and mixed integer variables, impose filtering constraints, and specify secondary objectives.

The objective function will be to maximized profits with the critical measure to be derived is the percentage of bankroll to be invested.

4.1 Probability of Winning

The probability of winning lays at the heart of any wagering decision. In section 3, five methods for calculation the probability of winning were discussed. Table 5 summarizes the probabilities for a single game and high lights the Micro and Macro characteristics. A primary constraint of the model will be that the probability of winning will be a convex combination of *micro* and *macro* probabilities (Equation 15) and determined within the model itself.

$$1 = P(W)_{\text{micro}} + P(W)_{\text{macro}}, \text{ where } P(W)_{\text{micro}} \text{ and } P(W)_{\text{micro}} >= 0$$
 (15)

The coefficients of those variables will show the relative impact of a team's aggregate performance versus the market place and direct batter matchups. At this juncture, the introduction of economics becomes the task.

4.2 Edge

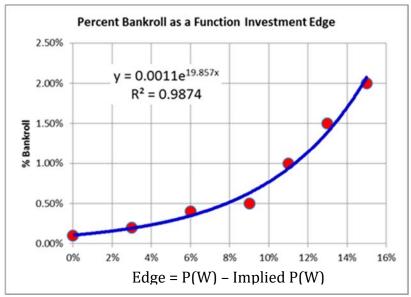
The Edge is defined as:

Joe Peta built a wagering model¹⁴ that calculated percent bankroll to invest with the *edge* as the governing variable and is shown in Figure 6.

¹⁴ Peta, Joe, (2013), *Trading Bases*, 1st Edition, Penguin Group, New York, New York

_

Figure 6 - Percent Bankroll to Invest as a Function of Competitive "Edge"



Source: Joe Peta, Trading Bases, 1_{st} Edition, New York, New York, 2013. Tabulated by authors

Having an *edge* is not only intuitively logical, but a real economic mandate. The formulation in Figure 6 will become part of our decision model.

4.3 Payoffs

Knowing the consequence of an investment is a basic requirement and essential in the decision-making process. The games moneyline defines the price of the wager as well as its payoff. From footnotes 1 and 2 (page 2) details of the calculations are provided. The lines (odds) usually change after they are first published. Since the US moneyline is discontinuous, tabulations will first be converted to the decimal equivalents as demonstrated in Appendix G. These changes impact the results of the wager and must be an integral part of the decision model.

4.4 Kelly Criteria (Return on investment based)

In 1956 John Larry Kelly published a seminal work on sizing the bet based upon maximizing the expected growth rate. The original formula was postulated as:

$$f = (bp - q) / b$$
 (17)

where:

f = fraction of the bankroll to bet

b = net odds received on the wager ("b to 1")

p = probability of winning

q = probability of losing (same as 1 - p)

The b term is a bit cumbersome for those familiar with US nomenclature. Equation (18) can be incorporated as a substitute for the b term.

$$b = (100/(|US Moneyline|)) if(USMoneyline < 0, 1, -1)$$
(18)

The Kelly Criteria averaged about 13% of bankroll per bet over the 2018 and 2019 seasons. This level of financial commitment is just a bit too risky for most investors. However, the formulation is viable for inclusion in our decision model as long as the influence of the Kelly Criteria is scaled.

4.5 Decision Model

It's time to make sausage.

The model itself is comprised of two parts, Phase I calculates the optimal size of the wager for every game. Phase II selects which games in which to actually invest.

4.5.1 Phase I Decision Model - Sizing Investment

Now the components of our analysis are ready to be integrated and include the following:

Objective function:

Maximize Profits

Subject to:

micro P(W) + macro P(W) = 1

weighted Kelly criteria

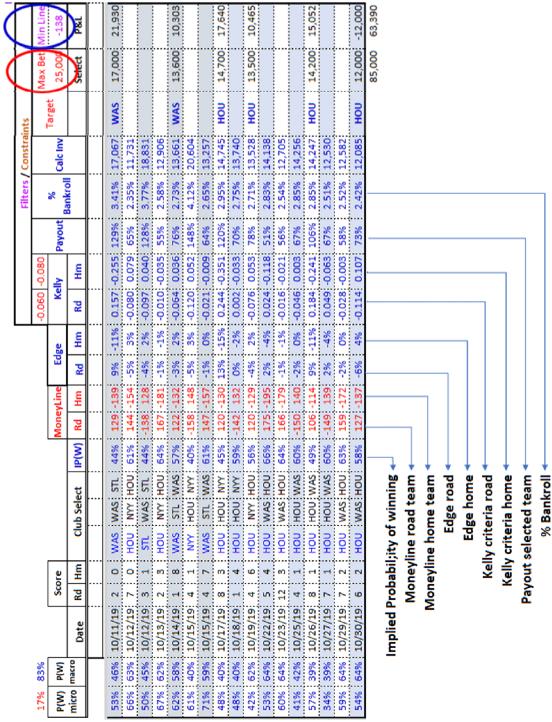
weighted Edge function

weighted Payoff function

management guidelines on bankroll and maximum exposure to risk

Table 6 is an annotated version of the model worksheet. showing the salient variables incorporated into the decision-making process. The critical level of a wager (expressed as a % bankroll) and selected team are noted for each game. From this juncture, each game will be filtered according to our risk sensitive criteria.

Table 6 - Decision Model, League Championship Series 2019



Tabulated by Authors

4.5.2 Phase II Decision Model - Risk Filtering

The specific team and bet size will now be narrowed based upon the calculations from Section 4.5.2.

First, the minimum odds line was derived not to fall lower than -138 (shown in Table 6). This is where the level of risk is not economically justified.

Second, the relative competitive advantage (Section 3.2.3) must be below -13 for the road team or above +15 for the home team to qualify for entry into the selection.

Third, maximum size bet is set by management based upon the size of the bankroll and risk tolerances, and exposure to casino warning flags (see Table 6).

Once the afore referenced constraints are satisfied, the investment is calculated and rounded to the nearest \$100.

5. Results

Outlined in Section 1 were three objectives for the study:

1. "Identify inequities between the wagering line(s) and each game's expected production,"

- o Section 2 quantified the over and under valuation for each team (inconsistency between betting odds and actual results).
- o Section 4.2 measured the *edge* for each team identifying economic expectations.
- Section 3.2.1 introduced using OPS to accurately compare both batter-pitcher matchups and team level probability of winning.
- o Quantifying the probability of winning:
 - Five measures of P(W) were used
 - P(W) was aggregated into *micro* and *macro* components

2. "Capitalize on such inequities so as to profit from the investment."

- Inequities between the market place (odds) and performance (P(W)) were exploited using:
 - Kelly Criteria in Section 4.4,
 - *Edge* valuation in Section 4.2
 - Optimizing algorithm of genetic programming Section 4.5.
- Competitive advantage rankings 3.2.3

3. "Build an investment model to optimally select and size each wager in order to maximize profits."

- o Section 4 brings together the elements of:
 - Probabilities of winning
 - Economic consequences
 - Methods of selection and sizing
 - Kelly criteria
 - *Edge* based identification
- o Figure 7 shows actual results between 8/1/2019 and 9/25/2019
 - Growing \$500K bankroll to over \$800K with level betting
 - Demonstrating how applying sizing investment function would improve results through compounding.
- o Table 6 demonstrates how applying investment model to the League Championship series generated a profit \$63K while investing \$85K while risking just \$17!
- o Time dynamics played a roll throughout all aspects of the study.

Figure 7 - MLB 2019 Season: Investment and P&L 8/1-9/25 Level Wagering vs. Applying Wagering Size Model

Tabulated by authors

6. Conclusions

"At gambling, the deadly sin is to mistake bad play for bad luck."

Ian Fleming

Sports gambling's focus is on making a profit, not just picking winners. The importance of accurately accessing the probability of winning is essential for wagering success. Using Δ OPS, dynamic time lines, *micro / macro* perspectives, multiple investment tactics honed the source data. Employing multiple analytical tools concurrently with enhanced data generated an investors competitive edge against the "house."

Wagering success followed in the wake of applying the refined data base and complementary analytical methodologies. Coupling responsive data and innovative analytics with sound management constraints (filters) created one of the most profitable baseball models.

The overall approach presented can be applied to baseball management in order to determine:

- Game day player selection
- Player expected performance
- Batting order
- Over and under-valued batters and pitchers
- Matchups to capitalize on players' strength and weaknesses

Appendix H contains may mathematical functions (VBA for EXCEL) that can be helpful in the modeling process.

With the tools presented, it's time: "Bettor Up"!

References

- [1] Kelly, J. L. (1956). "A New Interpretation of Information Rate" (PDF). *Bell System Technical Journal*. **35** (4): 917–926.
- [2] Lewis, Michael, (2003), *Moneyball: The Art of Winning an Unfair Game*, W.W. Norton & Co., New York
- [3] Peta, Joe, (2003), *Trading Bases*, Penguin Group, 1st Edition, New York, New York.
- [4] Thorp, Edward, (1962), Beat the Dealer, Vintage Books Edition, New York
- [5] Mezrich, Ben, (2002), *Bringing down the House*, Atria Paperback, New York

Appendix A

Terms and Nomenclature

Abbreviation	Description
@RISK	bet investment at risk
α	Gamma function shape parameter
β	Gamma function scale parameter
В	Batter as a prefix
color-up	Gambling slang for exchanging for higher valued chips
Δ	Delta variation or change
dawg	southern for underdog
EDGE	betting edge: P(W _i) - IP(Wi)
EV	Expected value as a prefix
	expected value runs event i
EVR _i	1
EVRA _i	expected value runs allowed event i
EVRS _i	expected value runs scored event i
EVROI	expected value return on investment
EW%	Expected winning percentage
Favorite	Money Line < -100
γ	parameter
Hm	Home team
Γ(α, β)	Gamma distribution
IP(W _i)	implied probability of winning for variable i
K	strike outs
K/BB	ratio: strikeouts/base on balls (walks)
MAD	mean absolute deviation
ML	money line
MLB	major league baseball
μ	population mean
N	size of sample data set
n	size of sample subset
MLB	Major League Baseball
NIP(W _i)	normalized implied probability of winning for variable i
OBP	on-base percentage
OPS	on-base percentage plus slugging percentage
P	Pitcher as a prefix
O/U	over under
P(W _i)	probability of winning for team i
PF_i	park factor field i
r	coefficient of correlation
r^2	r-squared value coefficient of determination
RA _i	Runs allowed team i
Rd	road team
Rs _i	runs scored
S S	sample standard deviation
s^2	sample variance
δ	1
$\frac{\delta}{\delta^2}$	population standard deviation
	population variance
SLG	slugging percentage (total bases/AB)
Underdog	Money Line > 100
wager 	payout for a bet @risk
X V	sample mean
\mathbf{X}_{i}	X variable team i

Appendix B Coefficient of Correlation: %Win with Selected Variables

	Batting			Pitching	
Variable	%Win	Rank	Variable	%Win	Rank
Δ(OPS)	0.933	1	Δ(OPS)	0.933	1
OBP	0.811	2	Wins	0.851	2
R	0.776	3	ERA	0.793	3
RBI	0.763	4	ER	0.782	4
OPS	0.758	5	ОВР	0.764	5
Scr-Al	0.706	6	OPS	0.753	6
SLG	0.692	7	BAA	0.736	7
BB	0.684	8	Scr-Alw	0.706	8
ТВ	0.670	9	Losses	0.704	9
TPA	0.666	10	SLG	0.695	10
XBH	0.631	11	K/BB	0.656	11
AVG	0.621	12	SHO	0.641	12
HR	0.571	13	SV	0.640	13
Н	0.569	14	IP	0.577	14
AB/HR	0.542	15	DIP%	0.568	15
2B	0.427	16	SVO	0.555	16
SO	0.409	17	QS	0.537	17
IBB	0.393	18	RS	0.528	18
SF	0.386	19	SO	0.474	19
FB	0.274	20	K/9	0.450	20
AB	0.256 21 0.222 22 0.218 23		R	0.417	21
HBP			SV%	0.352	22
PH-BA			GP	0.321	23
CS	0.209	24	3B	0.271	24
GDP PH-H SB%	0.179	25	P/PA	0.260	25
	0.177	26	WHIP	0.231	26
	0.161	27	2B	0.226	27
CI	0.148	28	ТВ	0.209	28
3B	0.137	29	IBB	0.206	29
GB	0.136	30	Н	0.190	30
PH-AB	0.125	31	CG	0.190	31
SB	0.029	32	ВВ	0.189	32
SH	0.014	33	ВК	0.182	33
G/F	0.010	34	BLSV	0.174	34
			WP	0.149	35
			CS	0.136	36
			HBP	0.129	37
			CS%	0.083	38
			HR	0.077	39
			ERC%	0.071	40

Source: http://www.espn.com/mlb/stats/team/_/stat/
Tabulated by authors

24

Appendix C Derivation of Exponent for Baseball's Pythagorean OPS Based Theorem

									3.3740	.6%
Club Year	TEAM	YEAR	Win%	OPS _s	OPS _a	OPS _(s-a)	Runss	Runsa	PythCalc	ABS(Δ)
ANA 2016	ANA	2016	0.457	0.726	0.772	-0.046	717	727	0.4484	0.0086
ANA 2017	ANA	2017	0.494	0.712	0.742	-0.030	710	709	0.4652	0.0288
ANA 2018	ANA	2018	0.494	0.726	0.737	-0.011	721	722	0.4873	0.0067
ANA 2019	ANA	2019	0.495	0.775	0.776	-0.001	457	460	0.4989	0.0039
ARI 2016	ARI	2016	0.426	0.752	0.799	-0.047	752	890	0.4490	0.0230
ARI 2017	ARI	2017	0.574	0.774	0.705	0.069	812	659	0.5781	0.0041
ARI 2018	ARI	2018	0.506	0.707	0.696	0.011	693	644	0.5132	0.0072
ARI 2019	ARI	2019	0.505	0.770	0.739	0.031	464	411	0.5346	0.0296
ATL 2016	ATL	2016	0.422	0.705	0.741	-0.036	649	779	0.4581	0.0361
ATL 2017	ATL	2017	0.444	0.738	0.774	-0.036	732	821	0.4599	0.0159
ATL 2018	ATL	2018	0.556	0.742	0.682	0.060	759	657	0.5706	0.0146
ATL 2019	ATL	2019	0.593	0.800	0.746	0.054	491	432	0.5587	0.0343
BAL 2016	BAL	2016	0.549	0.760	0.748	0.012	744	715	0.5134	0.0356
BAL 2017	BAL	2017	0.463	0.747	0.799	-0.052	743	841	0.4435	0.0195
BAL 2018	BAL	2018	0.290	0.689	0.819	-0.130	622	892	0.3582	0.0682
BAL 2019	BAL	2019	0.303	0.704	0.838	-0.134	375	540	0.3571	0.0541
BOS 2016	BOS	2016	0.574	0.810	0.709	0.101	878	694	0.6105	0.0365
BOS 2017	BOS	2017	0.574	0.736	0.711	0.025	785	668	0.5291	0.0449
BOS 2018	BOS	2018	0.667	0.792	0.698	0.094	876	647	0.6050	0.0620
BOS 2019	BOS	2019	0.544	0.807	0.749	0.058	509	451	0.5626	0.0186
CHA 2016	CHA	2016	0.481	0.727	0.744	-0.017	686	715	0.4805	0.0005
CHA 2017	CHA	2017	0.414	0.731	0.786	-0.055	706	820	0.4391	0.0251
CHA 2018	CHA	2018	0.383	0.703	0.761	-0.058	656	848	0.4335	0.0505
CHA 2019	СНА	2019	0.488	0.726	0.798	-0.072	378	449	0.4209	0.0671
CHN 2016	CHN	2016	0.640	0.772	0.632	0.140	808	556	0.6626	0.0226
CHN 2017	CHN	2017	0.568	0.775	0.711	0.064	822	695	0.5722	0.0042
CHN 2018	CHN	2018	0.583	0.744	0.696	0.048	761	645	0.5560	0.0270
CHN 2019	CHN	2019	0.522	0.788	0.732	0.056	455	400	0.5619	0.0399
CIN 2016	CIN	2016	0.420	0.724	0.798	-0.074	716	854	0.4186	0.0014
CIN 2017	CIN	2017	0.420	0.761	0.807	-0.046	753	869	0.4507	0.0307
CIN 2018	CIN	2018	0.414	0.729	0.780	-0.051	696	819	0.4432	0.0292
CIN 2019	CIN	2019	0.471	0.712	0.700	0.012	368	341	0.5143	0.0433
CLE 2016	CLE	2016	0.584	0.759	0.710	0.049	777	676	0.5561	0.0279
CLE 2017	CLE	2017	0.630	0.788	0.673	0.115	818	564	0.6300	0.0000
CLE 2018	CLE	2018	0.562	0.766	0.713	0.053	818	648	0.5602	0.0018
CLE 2019	CLE	2019	0.568	0.739	0.726	0.013	396	369	0.5150	0.0530
COL 2016	COL	2016	0.463	0.794	0.788	0.006	845	860	0.5064	0.0434
COL 2017	COL	2017	0.537	0.781	0.768	0.013	824	757	0.5142	0.0228
COL 2018	COL	2018	0.558	0.757	0.735	0.022	780	745	0.5249	0.0331
COL 2019	COL	2019	0.494	0.779	0.802	-0.023	490	488	0.4755	0.0185
DET 2016	DET	2016	0.534	0.769	0.740	0.029	750	721	0.5324	0.0016
DET 2017	DET	2017	0.395	0.748	0.810	-0.062	735	894	0.4332	0.0382
DET 2017	DET	2017	0.395	0.680	0.761	-0.081	630	796	0.4062	0.0382
DET 2019	DET	2019	0.329	0.675	0.803	-0.128	311	470	0.3576	0.0112
HOU 2016	HOU	2019	0.519	0.735	0.737	-0.128	724	701	0.3370	0.0280
HOU 2017	HOU	2017	0.623	0.733	0.719	0.104	896	700	0.4377	0.0213
HOU 2017	HOU	2017	0.636	0.754	0.640	0.104	797	534	0.6348	0.0110
HOU 2019	HOU	2018	0.633	0.734	0.692	0.114	458	367		0.0012
KCA 2016								712	0.6356	0.0026
KCA 2016 KCA 2017	KCA	2016 2017	0.500	0.712	0.748	-0.036	675		0.4585	0.0415
	KCA		0.494	0.731	0.764	-0.033	702 629	791	0.4628	
KCA 2018	KCA	2018	0.358	0.697	0.787	-0.090	638	833	0.3990	0.0410

Source: http://www.espn.com/mlb/stats/team/_/stat/ Tabulated by authors

0.958

Appendix DRank Correlation and Competitive Edge

Spearman Rank Correlation: Ranks of Competitive Advantage vs. Winning Percentage 2018 Regular Season

					8 5 0.				
	Scorin	g Runs	Runs Al	lowed					
Club	Hm	Rd	Hm	Rd	Mean Rank	Rank of Means	Win %	Ranks of Win%	(ΔRanks) ² =
Angels	13	17	15	14	14.75	17	49.4%	17	0
Astros	17	28	30	28	25.75	1	63.6%	2	1
Athletics	16	30	17	26	22.25	6	59.9%	4	4
Blue Jays	15	15	4	7	10.25	23	45.1%	21	4
Braves	23	20	28	13	21	9	55.6%	10	1
Brewers	21	19	20	25	21.25	8	58.9%	5	9
Cardinals	11	26	19	16	18	12	54.3%	13	1
Cubs	20	22	29	17	22	7	58.3%	6	1
Diamondbacks	14	11	24	21	17.5	13	50.6%	15	4
Dodgers	12	29	27	29	24.25	3	56.4%	7	16
Giants	5	1	16	20	10.5	22	45.1%	21	1
Indians	28	21	26	18	23.25	4	56.2%	8	16
Mariners	3	23	13	19	14.5	18	54.9%	12	36
Marlins	2	9	1	23	8.75	25	39.1%	27	4
Mets	1	25	9	26	15.25	15	47.5%	20	25
Nationals	25	16	23	9	18.25	11	50.6%	15	16
Orioles	10	2	2	4	4.5	30	29.0%	30	0
Padres	4	4	11	8	6.75	26	40.7%	25	1
Phillies	18	7	10	15	12.5	20	49.4%	17	9
Pirates	8	17	12	24	15.25	15	50.9%	14	1
Rangers	26	5	14	1	11.5	21	41.4%	23	4
Rays	19	14	18	30	20.25	10	55.6%	10	0
Red Sox	30	26	22	22	25	2	66.7%	1	1
Reds	22	8	8	3	10.25	23	41.4%	23	0
Rockies	27	10	20	6	15.75	14	55.8%	9	25
Royals	9	5	7	2	5.75	29	35.8%	29	0
Tigers	7	3	5	9	6	28	39.5%	26	4
Twins	24	13	6	11	13.5	19	48.1%	19	0
White Sox	5	12	3	5	6.25	27	38.3%	28	1
Yankees	29	24	25	12	22.5	5	61.7%	3	4
								Σd^2	189
								6 *Σ d²	1134
								n/(n ² - 1)	26970

Sperman Rank Correlation: $r_R = 1 - \left\{ \left(6 * \Sigma_{i=1}^n d_i^2\right) / \left(n/(n^2-1)\right) \right\}$

Source: mlb.com Tabulated by authors

Appendix E
Negative Binomial Parameters by Team, Road, Home, Runs Scored, Runs Allowed

3/21/2019	10/21	/2019									
Team & Status	Param1	Param2									
Angels-HmAlw	5	0.48406	Cubs-RdAlw	3	0.37900	Nationals-HmAlw	3	0.39130	Red Sox-RdAlw	6	0.55955
Angels-HmScr	6	0.55281	Cubs-RdScr	3	0.38436	Nationals-HmScr	4	0.41727	Red Sox-RdScr	4	0.42740
Angels-RdAlw	8	0.59636	Diamondbacks-Hm	6	0.57111	Nationals-RdAlw	3	0.42359	Reds-HmAlw	3	0.39089
Angels-RdScr	3	0.38818	Diamondbacks-Hm	4	0.44796	Nationals-RdScr	4	0.43085	Reds-HmScr	3	0.41089
Astros-HmAlw	2	0.33080	Diamondbacks-Rd	3	0.39320	Orioles-HmAlw	3	0.31021	Reds-RdAlw	4	0.48186
Astros-HmScr	3	0.33376	Diamondbacks-Rd	3	0.36641	Orioles-HmScr	5	0.53109	Reds-RdScr	3	0.41026
Astros-RdAlw	3	0.43284	Dodgers-HmAlw	3	0.46667	Orioles-RdAlw	7	0.55894	Rockies-HmAlw	4	0.37178
Astros-RdScr	3	0.36019	Dodgers-HmScr	4	0.42424	Orioles-RdScr	3	0.41197	Rockies-HmScr	7	0.53059
Athletics-HmAlw	4	0.51104	Dodgers-RdAlw	3	0.41311	Padres-HmAlw	3	0.39901	Rockies-RdAlw	4	0.44208
Athletics-HmScr	6	0.54484	Dodgers-RdScr	3	0.34969	Padres-HmScr	9	0.70164	Rockies-RdScr	4	0.49608
Athletics-RdAlw	5	0.52109	Giants-HmAlw	4	0.46927	Padres-RdAlw	5	0.49076	Royals-HmAlw	5	0.46485
Athletics-RdScr	4	0.40945	Giants-HmScr	5	0.60694	Padres-RdScr	3	0.39806	Royals-HmScr	4	0.48164
Blue Jays-HmAlw	3	0.36192	Giants-RdAlw	5	0.50124	Phillies-HmAlw	4	0.45378	Royals-RdAlw	7	0.58507
Blue Jays-HmScr	3	0.40097	Giants-RdScr	2	0.28419	Phillies-HmScr	4	0.44262	Royals-RdScr	3	0.41709
Blue Jays-RdAlw	6	0.55219	Indians-HmAlw	3	0.43310	Phillies-RdAlw	3	0.38015	Tigers-HmAlw	7	0.53406
Blue Jays-RdScr	4	0.47230	Indians-HmScr	5	0.51899	Phillies-RdScr	4	0.46039	Tigers-HmScr	3	0.45570
Braves-HmAlw	4	0.46639	Indians-RdAlw	2	0.32046	Pirates-HmAlw	4	0.41500	Tigers-RdAlw	8	0.60845
Braves-HmScr	6	0.53180	Indians-RdScr	3	0.37500	Pirates-HmScr	3	0.38906	Tigers-RdScr	5	0.57269
Braves-RdAlw	6	0.56335	Mariners-HmAlw	4	0.42564	Pirates-RdAlw	4	0.41837	Twins-HmAlw	4	0.45455
Braves-RdScr	5	0.48969	Mariners-HmScr	3	0.40226	Pirates-RdScr	4	0.45957	Twins-HmScr	6	0.52850
Brewers-HmAlw	2	0.31086	Mariners-RdAlw	4	0.41969	Rangers-HmAlw	4	0.40147	Twins-RdAlw	6	0.57679
Brewers-HmScr	10	0.67645	Mariners-RdScr	3	0.37795	Rangers-HmScr	12	0.68050	Twins-RdScr	4	0.39532
Brewers-RdAlw	4	0.44804	Marlins-HmAlw	6	0.54066	Rangers-RdAlw	3	0.38132	White Sox-HmAlv	3	0.36176
Brewers-RdScr	4	0.46316	Marlins-HmScr	2	0.33401	Rangers-RdScr	3	0.41000	White Sox-HmScr	4	0.49175
Cardinals-HmAlw	3	0.45470	Marlins-RdAlw	6	0.55324	Rays-HmAlw	5	0.57377	White Sox-RdAlw	4	0.44326
Cardinals-HmScr	3	0.39426	Marlins-RdScr	2	0.36321	Rays-HmScr	9	0.66432	White Sox-RdScr	6	0.56552
Cardinals-RdAlw	5	0.52503	Mets-HmAlw	3	0.41157	Rays-RdAlw	3	0.41447	Yankees-HmAlw	3	0.43294
Cardinals-RdScr	3	0.39698	Mets-HmScr	8	0.62938	Rays-RdScr	5	0.49751	Yankees-HmScr	9	0.62963
Cubs-HmAlw	4	0.50774	Mets-RdAlw	6	0.54665	Red Sox-HmAlw	4	0.42932	Yankees-RdAlw	5	0.49771
Cubs-HmScr	4	0.43272	Mets-RdScr	5	0.49820	Red Sox-HmScr	4	0.41997	Yankees-RdScr	5	0.43870

Tabulated by authors

Appendix FProbability of Winning Calculated through Logistic Regression

Analysis: Logistic Regression

Updating: Static
Variable: HwinFlag

Logistic Regression for HwinFlag

Summary Measures

Null Deviance	14454.87
Model Deviance	6481.25
Improvement	7973.62
p-Value	< 0.0001

	Coefficient	Standard	Wald	p-Value	Lower	Upper
Regression Coefficients		Error	Value		Limit	Limit
Constant	0.224	0.177	1.261	0.2073	-0.12	0.57
K/BBRd	0.066	0.012	5.357	< 0.0001	0.04	0.09
K/BBHm	-0.100	0.013	-7.455	< 0.0001	-0.13	-0.07
OBP+SLGRd	-10.984	0.249	-44.051	< 0.0001	11.47	-10.50
OBP+SLGHm	10.741	0.240	44.837	< 0.0001	10.27	11.21

	-	•	. creent	
Classification Matrix			Correct	
1	4828	718	87.05%	
0	780	4129	84.11%	
				Consistency between

Summary Classification

Correct 85.67%

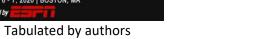
Base 53.05%

Improvement 69.48%

Pov

Powerful improvement through model

Source: MLB.com



Appendix G

Implied Probabilities of Winning (ImP(W)) Conversions: US Lines, Odds, and Decimal Lines

Gaming Conversions

Favorite							
US	Decimal	Fractional	ImpP(W)				
-100	2.000	1/1	50.0%				
-105	1.952	20/21	51.2%				
-105							
-115	1.909	10/11	52.4% 53.5%				
	1.870	87/100					
-120	1.833	5/6	54.5%				
-125	1.800	4/5	55.6%				
-130	1.769	77/100	56.5%				
-135	1.741	37/50	57.4%				
-140	1.714	71/100	58.3%				
-145	1.690	69/100	59.2%				
-150	1.667	4/6	60.0%				
-155	1.645	13/20	60.8%				
-160	1.625	5/8	61.5%				
-165	1.606	61/10	62.3%				
-170	1.588	59/10	63.0%				
-175	1.571	4/7	63.6%				
-180	1.556	14/25	64.3%				
-185	1.541	27/50	64.9%				
-190	1.526	53/100	65.5%				
-195	1.513	51/100	66.1%				
-200	1.500	1/2	66.7%				
-210	1.476	12/25	67.7%				
-220	1.455	9/20	68.8%				
-230	1.435	43/100	69.7%				
-240	1.417	21/50	70.6%				
-250	1.400	2/5	71.4%				
-260	1.385	19/50	72.2%				
-270	1.370	37/100	73.0%				
-280	1.357	9/25	73.7%				
-290	1.345	17/50	74.4%				
-300	1.333	1/3	75.0%				
-325	1.308	31/100	76.5%				
-350	1.286	2/7	77.8%				
-375	1.267	27/100	78.9%				
-400	1.250	1/4	80.0%				
-425	1.235	6/25	81.0%				
-450	1.222	2/9	81.8%				
-475	1.211	21/100	82.6%				
-500	1.200	1/5	83.3%				
-550	1.182	9/50	84.6%				
-600	1.167	17/100	85.7%				
-700	1.143	7/50	87.5%				
-800							
	1.125	12/100	88.9%				
-900	1.111	11/100 1/10	90.0%				
-1000	1.100	1710	90.9%				

Underdog						
US Decimal Fractional ImpP(W)						
100	2.000	1/1	50.0%			
105	2.050	21/20	48.8%			
110	2.100	11/10	47.6%			
115	2.150	100/87	46.5%			
120	2.200	6/5	45.5%			
125	2.250	5/4	44.4%			
130	2.300	100/77	43.5%			
135	2.350	50/37	42.6%			
140	2.400	100/71	41.7%			
145	2.450	100/69	40.8%			
150	2.500	6/4	40.0%			
155	2.550	20/13	39.2%			
160	2.600	8/5	38.5%			
165	2.650	10/61	37.7%			
170	2.700	10/59	37.0%			
175	2.750	7/4	36.4%			
180	2.800	25/14	35.7%			
185	2.850	50/27	35.1%			
190	2.900	100/53	34.5%			
195	2.950	100/51	33.9%			
200	3.000	2/1	33.3%			
210	3.100	25/12	32.3%			
220	3.200	20/9	31.3%			
230	3.300	100/43	30.3%			
240	3.400	50/21	29.4%			
250	3.500	5/2	28.6%			
260	3.600	50/19	27.8%			
270	3.700	100/37	27.0%			
280	3.800	25/9	26.3%			
290	3.900	50/17	25.6%			
300	4.000	3/1	25.0%			
325	4.250	100/31	23.5%			
350	4.500	7/2	22.2%			
375	4.750	100/27	21.1%			
400	5.000	4/1	20.0%			
425	5.250	25/6	19.0%			
450	5.500	9/2	18.2%			
475	5.750	100/21	17.4%			
500	6.000	5/1	16.7%			
550	6.500	50/9	15.4%			
600	7.000	100/17	14.3%			
700	8.000	50/7	12.5%			
800	9.000	100/12	11.1%			
900	10.000	100/11	10.0%			
1000	11.000	10/1	9.1%			

Appendix H(1/5)

Useful VBA Functions Applicable for Insertion into an EXCEL Module

'Version 19.4

Function EVROI(probwin As Double, Line As Double)

'Keyword - EVROI - Expected Value of Return on Investment

- ' probwin probability of winning, 55
- ' line US line, -150

If Line < 0 Then

EVROI = (probwin * 100 / Abs(Line)) - (1 - probwin)

Else

EVROI = (probwin * Line / 100) - (1 - probwin)

End If

End Function

Function ALPHA(xbar As Double, sigma As Double)

'Keyword - ALPHA - first parameter for Gamma distribution

- ' xbar average value from data
- ' sigma standard deviation from data

ALPHA = (xbar ^ 2) / (sigma ^ 2)

End Function

Function BETA(xbar As Double, sigma As Double)

'Keyword - BETA - second parameter for Gamma distribution

- xbar average value from data
- ' sigma standard deviation from data

 $BETA = (sigma ^ 2) / xbar$

End Function

Function ROILINE(Line As Double)

'Keyword - ROI return on investment calculated from betting line

' line - US line, -150

If Line < 0 Then
ROILINE = 100 / -(Line)
Else

Appendix H (2 / 5)

ROILINE = Line / 100

End If End Function

Function Dec2US(DecLine As Double)

'Keyword - Dec2US conversion decimal line to US line

' DecLine - decimal line, 1.65, 2.22

If DecLine < 2 Then
Dec2US = -100 / (DecLine - 1)
Else
Dec2US = (DecLine * 100) - 100
End If
End Function

Function US2Dec(USLine As Double)

'Keyword - US2Dec conversion US line to decimal line

' USLine - USline, -155, 165

If USLine >= 100 Then
 US2Dec = (100 + USLine) / 100
 Else
 US2Dec = (100 - USLine) / -USLine

End If End Function

Function Prob2USLine(Prob As Double)

'Keyword - Prob2USLine calculation probability of winning to US line

' Prob - probability of winning, .56, .44

```
If Prob >= 0.5 Then
  Prob2USLine = 100 * Prob / (Prob - 1)
  Else
     Prob2USLine = (100 * (1 - Prob)) / Prob
End If
End Function
```


Appendix H (3 / 5)

Function Stake(Ab As Double, At As Double, W As Double, XO As Double, EVROI As Double)

'Keyword - Stake % bankroll, multiplier from EVROI and selected bounder parameters

- ' Ab Lower limit boundry % bankroll .05
- ' At Upper limit boundry % bankroll .20
- ' W width of edge values, .005 .15
- ' X0 Variable selection point .06
- ' EVROI Expected value return on investment (scaleable)

```
Stake = Ab + ((At - Ab) / (1 + Exp(-(EVROI - X0) / W)))
```

End Function

Function LineProbwin(Line As Double)

'Keyword - LineProbWin - Calculate Implied probability of winning from US line

' Line - US line, -150, 135

```
If Line < 0 Then
  LineProbwin = Abs(Line) / (Abs(Line) + 100)
  Else
  LineProbwin = 100 / (Line + 100)</pre>
```

End If End Function

Function Payout(Inv As Double, Line As Double)

'Keyword - Payout - calculate payout given investment and US line

```
' Inv - Investment 10000, 500
```

```
Line - US line, -150, 125
```

```
If Line < 0 Then
Payout = Inv * (100 / -Line)
Else
Payout = Inv * (Line / 100)
End If
End Function
```


Appendix H (4/5)

Function NImProb(Line1 As Double, Line2 As Double)

```
'Keyword - NImProb, Normalized implied probability of winning, both moneyline values
```

- ' Line1 moneyline value 1 -150
- ' Line2 moneyline value 2 140

```
Prob1 = Prob2 = 0

If Line1 < 0 Then
    Prob1 = -Line1 / (-Line1 + 110)
    Else
        Prob1 = 100 / (Line1 + 110)

End If

If Line2 < 0 Then
    Prob2 = -Line2 / (-Line2 + 110)
    Else
        Prob2 = 100 / (Line2 + 110)

End If

NImProb = Prob2 / (Prob1 + Prob2)
```

End Function

Function Kelly(PW As Double, Line As Double)

'Keyword - Kelly, % bankroll to invest

- ' PW probability of winning .56
- ' Line US line, -150

Kelly = ((PW * US2Dec(Line)) - 1) / (US2Dec(Line) - 1)

End Function

Function IPW(Line As Double)

'Keyword - IPW, Implied probability of winning f(Moneyline)

' Line, US Moneyline, -150,

```
If Line < 0 Then
  IPW = Abs(Line) / (Abs(Line) + 100)
  Else
  IPW = 100 / (Abs(Line) + 100)</pre>
```


Appendix H (5 / 5)

End If

End Function

Function LRPW(p0, p1, p2, p3, P4, x1, x2, x3, x4)

'Keyword - LRPW - Logistic regression probability of winning up to 4 variables

' po,p1... - coefficients from logistic regression

' x1,x2,...- variable value in location x1,

$$y1 = Exp(p0 + p1 * x1 + p2 * x2 + p3 * x3 + P4 * x4)$$

LRPW = y1 / (1 + y1)

End Function

Coded by authors

