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1. Introduction

Recent play in Major League Baseball (MLB) has showcased many attempts to achieve an advantage
through smart selection of pitcher-batter matchups. One such case in the 2018 postseason had the
Los Angeles Dodgers’ manager, Dave Roberts, selecting an all right-handed batting lineup to face both
Chris Sale and David Price in games one and two of the World Series. Both pitchers are left-handed, and
the choice certainly tailors to the well-known lefty-righty handedness matchup strategy [10]. Further-
more, this choice was inline with the platoon system that the Dodgers had employed throughout the
2018 regular season [15], often starting all right-handed batting lineups against left-handed starters,
seemingly with great success.

Although attempts have been made to optimize pitcher-batter matchup strategies in the sabermet-
rics [2, 7, 9] literature (e.g., [5, 6]), these approaches have tended to apply averages of large data sets
in an attempt to fine tune some matchup data. For example, Hirotsu and Wright used the handedness
(i.e., left handed or right handed) of both the pitcher and the batter to adjust average batting statistics
in an attempt to optimize the choice of pitcher substitution [6]. In this approach, if a batter’s dominant
hand is opposite to that of a pitcher’s dominant hand, then the offensive statistics of the batter are as-
sumed to be enhanced slightly for that specific matchup. Also, if a batter’s dominant hand is the same
as that of a pitcher, then the offensive statistics of the batter are assumed to be degraded slightly for
that specific matchup. The authors of [6] furthermore adjust these statistics based on team matchup
data, assuming that above average offensive teams will have an enhanced advantage when facing be-
low average defensive teams, etc. Although these adjustments are likely steps in the right direction
towards optimal game strategy, the author’s are unaware of any advanced individual pitcher-batter
matchup data used to improve estimated results of the matchups.

Techniques such as those described in [6] attempt to compensate for the lack of statistically signifi-
cant individual pitcher-batter matchup data in Major League Baseball by using average performance
statistics in place of specific matchup statistics. To truly optimize with respect to matchup data, each
pitcher-batter matchup should be tested in isolation until the data for that matchup is statically signifi-
cant. Although handedness has proven to affect the overall statistics, there exist cases where this trend
does nothold. That s, the statistics regarding some pitcher-batter matchups seem to defy the accepted
truth that a batter is better off facing a pitcher with the opposite dominant hand as himself. A clearer
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estimate of offensive and defensive output, therefore, requires an extensive amount of pitcher-batter
matchup data, which unfortunately will never exist for all possible pitcher-batter matchups. This is
always true in the case of rookie players, where the players simply have not been playing long enough
to generate meaningful matchup data; but it also holds true for long-time players who may have been
in opposite leagues (i.e.,, American or National Leagues) or divisions for much of their careers.

This paper outlines a novel technique for optimizing pitcher-batter matchups in a Major League Base-
ball game from the defensive (pitching) point of view. Although this knowledge is always useful, it
becomes particularly important in must-win scenarios, e.g., towards the end of a regular season and
during the postseason. We address two problems in this work: 1) how one can find an optimal pitch-
ing strategy for facing a set number of consecutive batters when statistically meaningful data is avail-
able for each pitcher-batter matchup, and 2) how one can repeat the process when certain potential
pitcher-batter matchups have only occurred a small number of times (perhaps even zero times) in the
real world.

The rest of the paper is outlined as follows. Section 2 motivates the research by investigating some
early results of matchup specific optimizations over one inning of play. Section 3 presents the technical
aspects of our techniques in detail. Full results of matchup optimizations with both dense and sparse
data sets are given in Section 4. Finally, we offer conclusions of our work in Section 5.

2. Motivation

Before going to great lengths to devise techniques to optimize pitcher-batter matchups in a Major
League Baseball game, we first need to motivate the idea by showing that optimizing a matchup strat-
egy is worth a significant number of runs to a team. If all strategies are reasonably close to equivalent
in terms of expected outcomes, or if following the lefty-righty handedness rule will deliver results that
are essentially optimal, then there may be no need for additional research.

The intuition behind using individual matchup data to predict results in an MLB game follows from
one of the themes discussed at the MIT Sloan Sports Analytics Conference in 2017 [12], where several
professional athletes on panels expressed the desire for analysts to prescribe optimal strategies for the
individual athlete, rather than the average athlete. For example, Jason Gore, an American professional
golfer, told how a certain golf hole (a short par-4) should apparently be approached with a driver off
the tee for the average player. Averaging over years of statistical data on that particular hole shows
that players who tee off with a driver score better on the hole. However, Gore himself told how this
approach would have been foolish for him to follow, since it would then likely require a second shot
that is an obvious weakness in his own game [4]. Analyzing Gore’s data alone draws this point out and
prevents a poor strategic choice for him when playing the hole.

2.1. Importance of Matchups in Game Strategy

Figure 1 shows early results of this research that motivate additional investigation. Note herein that
we have found a case with nine batters and five pitchers for which all 45 matchups have at least 30
at-bats between the 2000 and 2017 MLB seasons, inclusive [1]. The individual matchup data were
then used to estimate probabilities of outcomes for each pitcher-batter matchup, and 500,000 innings
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Table 1: Pitcher and batter names by index for the experiment portrayed in Figs. 1 and 2. Herein, R:
right-handed, L: left-handed, B: switch hitter.

Index | Pitcher - Throws R/L Batter - Bats R/L/B
1 Jeremy Guthrie - R Elvis Andrus - R
2 Felix Hernandez - R José Bautista - R
3 Jon Lester - L Asdrubal Cabrera - B
4 Rick Porcello - R Melky Cabrera - B
5 Ervin Santana - R Robinson Cané - L
6 - Nelson Cruz - R
7 - Edwin Encarnaciéon - R
8 - Paul Konerko - R
9 - Joe Mauer - L

of play were simulated using a computer program for every possible pitching strategy against a fixed
batting lineup. More on this technique is given in Section 3, but the important thing to note here is that
the number of expected runs for this particular group of pitchers and batters ranges between 0.39 runs
and 0.95 runs per inning. Thus, it appears on the outset that setting the matchups right can be worth
more than half a run per inning! The strategies are labeled on the figure for both the best and worst
cases, and indicate the pitcher chosen to face each batter for up to 10 consecutive batters.

For example, the optimal pitching strategy is shown in the figure to be {4333311111}. This means
the 4th pitcher should face the lead off batter, and then be replaced by the 3rd pitcher to face the next
four batters. If the inning is not yet complete, the 1st pitcher should then come in to face the next five
batters. The pitchers and batters used for this simulation are given in Table 1, and clearly represent a
hypothetical situation. Some of these players are currently retired, and this “game” was never actually
played inreal life. Pitcher and batter dominant hands are also included in the table, wherein we see that
the optimal strategy follows the lefty-righty convention for handedness much of the time. The coloring
of Figure 1 is chosen to show the pitcher that faces batter three (Asdrubal Cabrera) in the simulation.
It was determined by inspection after the simulation that this one matchup is the best single-matchup
estimator for the overall scoring in the inning. Rick Porcello seems to be the worst pitching choice to
face this batter, and Jon Lester is the best. Thus, defining a small number of matchups correctly may
provide most of the benefit of the process.

2.2. Overcoming Sparse Matchup Data

The early results in Figure 1 are encouraging, but require a reasonably large number of matchups for
all pitcher-batter combinations in the sets. Even finding cases like this in the historical data is challeng-
ing, and the sets of pitchers and batters tend to be comprised of both retired and active players. These
shortcomings bring about an obvious question as to whether the technique can actually be used in
practice. We investigated the correlation between all 45 matchups used to generate Figure 1, and per-
formed a clustering algorithm based on these correlations. The results are shown in Figure 2, where
we see that one can form meaningful clustering so as to group matchups into “types.” Since this is the
case, it appears that not all matchups are as different as they may seem, and classification of a matchup
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Figure 1: Average number of runs per pitching inning for each strategy with optimal and worst strate-
gies labeled. Labels are for Pitcher ID assignments for 10 batters.
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Figure 2: Constellation plot demonstrating clusters among the 45 different pitcher-batter (labeled as
Px-Bx) matchups.

into a proper type can then allow the type statistics to take the place of the matchup statistics in game
simulation. Doing so allows one to estimate an optimal pitching strategy based on matchups, even
when matchup data is sparse. The open questions are: 1) how many types should be chosen, 2) how
should the decision algorithm be structured to properly classify sparse-data matchups into one of the
established types (so as to minimize error in the estimate), and 3) how close is the estimate to the
truth. These questions are addressed in Section 3.3.

3. Methods

Although the initial results in Section 2 used only regular season matchup data from 2000-2017, for the
rest of this paper we use a slightly larger data set that includes 2000-2017 postseason data as well as
2000-2018 regular season data. The event-level data is from retrosheets.org [1], and consists of more
than 3.59 million matchup results. We screen these data to include only active players in the 2018 MLB
season. The main reason we select our data in this way is to enable simulation of the actual matchup
scenarios that occurred in the 2018 postseason as a special case in Section 4. Thus, we include only
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data pertinent to active players that would have been available to MLB teams in October of 2018. We
define statistically significant matchups as those occurring at least NV times in our data set, and we’d
like to find data structures that maximize N.

3.1. Finding Bicliques in Big (Matchup) Data

In order to validate our clustering techniques, we need to locate data sets that are extensive enough
to act as the “truth” for our algorithms. Although we have no way of knowing the exact truth without
thousands of data points for each matchup, we would like to find pitcher and batter sets where all
matchups have occurred as many times as possible. We can then use the maximum-likelihood esti-
mates for probabilities of events for each matchup, which amounts to taking the ratio of occurrences
of the event (say a single, or a strike out) divided by the total number of matchups. Matchups that have
occurred at least N = 30 times are reasonably significant from a statistical point of view [13].

Let (G signify a simple bipartite graph with bipartitions on the vertex set of V and U. Here V is a set
of vertices that is comprised of pitchers who have faced at least one batter N or more times, and U is
a set of vertices or nodes that is comprised of batters who have faced at least one pitcher N or more
times. Edges in G connect pitchers and batters who have faced each other at least N times.

In order to simulate a game of baseball using real matchup data that is statistically significant, we need
atleast nine batters in U such that all nine batters have faced the same set of pitchers at least IV times.
In other words, we need to find a subgraph of G, say G’, with at least nine vertices in V/ C V that
forms a complete bipartite graph with a set of pitchers U’ C U. This structure is called a biclique
or a complete bipartite subgraph of G in graph theory [3], and finding bicliques of maximal size with
efficient algorithms has been an area of research since the 1960s [11, 16]. We employ an adaptation
of the technique in [16], that was developed with applications in genome research in mind, to find
a maximum biclique in our pitcher-batter matchup data in the following sense. We desire at least
|U’| = 5 pitchers to choose from to form optimal strategies, with the number of batters in the biclique
|[V'] > 9. Note that | - | indicates the cardinality of a set. We search for the biclique with |[V’| > 9 and
|U’| = 5 that maximizes N, the number of matchups required for a pitcher-batter pair to be connected
with an edge in G [3].

The algorithm is straightforward given G(U, V). We cycle through all possible choices of U’ such that
|U’| = 5, and calculate the intersection of the neighborhoods of all vertices in U’, where the neighbor-
hood of a vertex is the collection of vertices connected to that vertex by an edge in . If this intersection
consists of at least nine vertices in V, then we call it V/, store U’ and V" as a biclique matching our re-
quirements, and continue to search for additional bicliques. We run this algorithm for decreasing N,
until the program returns at least one biclique. For our dataset, we found exactly one biclique with five
pitchers and 10 batters when N = 36. No bicliques exist with at least five pitchers and nine batters
with N > 36. The biclique found is given in Table 2. Notice similarities in the biclique in Table 1 with
this new biclique. This should not be surprising, as we are looking for sets of players that have played
long enough to face sets of opponents at least IV times. Players tend to be All-Star veterans in bicliques
such as these.
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Table 2: Biclique of active players in 2018 that maximizes the number of occurrences for each matchup
at N = 36 with five pitchers and 10 batters. Herein, R: right-handed, L: left-handed, B: switch hitter.

Index | Pitcher - Throws R/L | Batter - Bats R/L/B
1 Felix Hernandez - R Robinson Can6 - L
2 David Price - L Brett Gardner - L
3 Ervin Santana - R Curtis Granderson - L
4 James Shields - R Ian Kinsler - R
5 Justin Verlander - R Nick Markakis - L
6 - Joe Mauer - L
7 - Adrian Beltré - R
8 - Elvis Andrus - R
9 - Nelson Cruz - R
10 - Dustin Pedroia - R

3.2. Pitcher-Batter Matchup Strategy Simulation

There are many ways of generating estimates of probabilities of events for specific pitcher-batter
matchups. One technique was just presented in the previous section, and requires one to find all
matchup data for the pitcher-batter matchup in question, and form probability estimates using the
maximume-likelihood ratio-of-occurrences rule [13]. If the pitchers and batters in question have faced
each other a large number of times, then these estimates tend to be fairly reliable, and can be used to
simulate innings of baseball, and hence, to classify pitching strategies in terms of matchups. Another
technique for estimating event probabilities in a matchup is laid out in the section following, where
probability estimates are made without a significant amount of matchup data. In this section, we dis-
cuss our technique for simulating innings so as to rank pitching strategies in terms of their ability to
prevent runs by the opposing batting lineup. We use the biclique from Table 2, and omit the 10th batter
to create a fictional nine-batter lineup.

Let the set of available pitchers in a bullpen be P = {p1,p2,...,pp|}. A pitching strategy is a
sequence of numbers that indicate the index of the pitcher to face each batter. That is, let

S ={s1,52,..., 85/} (D
signify a pitching strategy for |S| batters in a single inning. Each s; fori = 1,2,...,|S|, must be in
{1,2,...,|P|}, and identical integers in S must occur consecutively (since replacing a pitcher makes

him ineligible to pitch for the rest of the game by the rules of baseball [14]). By way of example, the
strategy {33111} indicates that pitcher p3 should pitch against the first two batters of the inning, and
then pitcher p; should face the next three batters. Note that the strategy is to be formed before play
begins for the inning, although real managers could decide to update strategies many times during an
inning of play.

The scenario we simulate is a single inning of play with up to |S| = 10 consecutive batters. A
simulated inning is deemed complete if three outs are made, or if |S| batters have been faced. In our
simulations, the percentage of innings where 10 batters were faced without recording three outs is
roughly 0.39%, meaning less often than 1 out of 250 innings simulated. We arbitrarily restrict the

42 AnAaLyir ]

2019 Research Papers Competition
Presented by:




Z== SPORTS ANALYTICS CONFERENCE

MARCH 1 - 2, 2018 | BOSTON, MA
proseniod by

Table 3: Possible outcomes for each at-bat. Probabilities for each of these events must be estimated
for each pitcher-batter matchup to simulate innings.

HR: home run | T: triple D: double
S: single W: walk FO: fly out
GO: ground out | K: strike out | HBP: hit by pitch

“manager” to using no more than three pitchers per inning, but this could be likewise adjusted. Con-
sider, for example, the case where a manager is trying to decide whether to replace a pitcher or not.
The manager could consider strategies of up to two pitchers, where one of the pitchers is the current
pitcher.

Our simulations step through all possible pitching strategies that use three or less pitchers to cover
up to 10 batters in an inning, and we simulate 500,000 innings for every possible pitcher-batter strat-
egy under these constraints. There exist 2345 different strategies, for these constraints, and each can
be compared against all others using the simulation technique.

Within play, probability estimates of matchup events are used to simulate outcomes of at-bats by
generating random numbers and fitting them to the probability mass function of possible outcomes.
At-bats can result in the set of outcomes given in Table 3. We let P(X) signify the probability of event X
occurring, where X takes on all possible outcomes in the table.

Rules of the simulation include the following:

e the batting lineup is fixed,

e up to three pitchers may be used to form a pitching strategy,

e runners on base advance on a flyout with probability 0.0715%,

e runners on base take an extra base on singles and doubles with probability 0.3356%,
e double plays are turned successfully with probability 0.6892%,

e the lead runner is put out with probability 0.5 in an unsuccessful double play attempt, else the
batter is put out,

¢ base runners advance on ground balls with probability 0.25,
e no bases are stolen,
¢ no errors, wild pitches, or passed balls occur, and

¢ base runners are not picked off or thrown out going for extra bases.

The symbol * is used to indicate event probabilities that are estimated from the event-level historical
data [1]. All other rules of simulation are set for ease of simulation, and many simplify the game to the
point where a computer can “play” an inning of baseball using a random number generator. Results of
this inning simulation technique are highlighted in Section 4 for the biclique in Table 2, and other sce-
narios encountered in the MLB postseason during 2018. Figure 1 shows the results of our simulation
techniques using the biclique from Table 1.
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3.3. Clustering for Classifying Pitcher-Batter Matchups

Since the aforementioned model and simulation require statistics for the individual pitcher-batter
matchups, an algorithm is necessary for classifying those matchups for which the data is sparse (i.e. a
small number of at-bats for a given pitcher-batter pair).

This is performed by analyzing the pitcher-batter matchups for which there are a large number of
at-bats for the pair. We identified 5170 pitcher-batter matchups for which there were 35 or more
at-bats for the pair during the last 19 years. A clustering algorithm, applying Ward’s Method [8], is
implemented which calculates the “distance” between each of these 5170 pitcher-batter matchups
and sorts them in a sequence such that any pitcher-batter matchup is positioned beside its next-closest
matchup in terms of correlation. The output of such a process is the dendrogram presented in Figure
3. We lump doubles and triples together and ignore HBP when performing the clustering to prevent
the algorithm from building cluster types for rare, and somewhat random, events (i.e., T and HBP).

Figure 3 indicates 15 groupings which generally discriminate the full matchup space into clusters.
Therefore, each individual matchup is closer to matchups within its own cluster than any other matchup
outside of its cluster. The statistics from the 5170 pitcher-batter matchups are likewise presented in
the form of a cell plot beside the dendrogram of Figure 3. The seven statistics used in the cluster-
ing algorithm are shown with higher probabilities in red and lower probabilities in blue. Groupings
can be seen in this cell plot which are expressed into the clusters calculated on the right dendrogram.
For example, the first cluster at the top (shown in red), has a relatively high probability of singles,
P(S), for the matchup. The last cluster, at the bottom, has a high probability of walks, P(W). The other
matchups between these will have different relative probabilities for homeruns, strike-outs, ground-
outs, fly-outs, and multiple-base hits (doubles or triples). These data can be seen in various groupings
or types within the cell plot with their corresponding section of the dendrogram on the right.

This can also be seen in the constellation map of Figure 4 where each matchup location is repre-
sented in a tree-like structure with the relative distance between matchups found through traveling to
a common link or node. For example, a matchup found in the green cluster (bottom right) is closer to
matchups in the red cluster (also bottom right) through a node which is only one step away from the
root node (indicated with a large circle). Thus these red and green matchups are more similar to each
other than they are to matchups in the blue cluster (top left) which is many nodes away.

The statistics for each cluster are presented in Figure 5 through a parallel plot which presents the
“statistical thumprint” of a particular cluster. Since each cluster is composed of 100s of matchups, the
plots show the full range of statistics assigned to that cluster. However, careful observation of these
plots reveal cluster differences that can be used to classify matchups outside of the initial training set
(i.e., the 5170 pitcher-batter matchups). For example, the matchups of Cluster 12 are characterized by
a high probability of strike-outs and low probability of doubles or triples, P(DT), but with a somewhat
higher probability of home runs, P(HR). Cluster 13 is similar to Cluster 12 but with a lower probability
of home runs. In contrast, Cluster 4 has a higher than normal probability of home runs and multiple-
base hits but with low P(K) and thus favors the hitter in the relationship. Other clusters have high
probabilities of fly-outs and ground-outs, such as Clusters 8 and 2, respectively, while one cluster has
a high walk probability, P(W). Other clusters retain different combinations of high probabilities across
the seven statistics including singles P(S), fly-outs P(FO), ground-outs P(GO), and strike-outs P(K).
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Figure 3: The resultant dendrogram from the clustring algorithm of 5170 high at-bat matchups. Differ-
ent colors discriminate between the 15 clusters identified. Each matchup is closer to matchups within
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Figure 4: Constellation map presenting the tree-like structure for classifying the matchups into 15
clusters through relative distances of the statistics.

Ultimately, each matchup can be classified into one of the 15 matchup types defined by these clusters.
Ideally, the statistics of a matchup can be extracted from the actual data, but since the number of at-
bats for many matchups are insufficient, the “matchup type” may be useful to predict the result for a
more accurate simulation.

The specific number of 15 cluster types was selected based on a comparison of the parallel plot of the
16th cluster with those of the other 15. Since no discernable difference to some of the other plots was
observed in defining these matchups, the law of diminishing returns appears to have been reached.
The selection of 15 clusters was considered to be the best balance between a sufficiently large set of
clear matchup types while keeping the number of matchups per cluster high to maximize significance.

Thus, the remaining 823,594 matchups with low numbers of at-bats, which are not used in the cre-
ation of the clusters, can be classified according to their closeness to these 15 types. This process is
summarized in Figure 6 where a subset of training data is presented in the left-most plot using two
notional statistics. In this case, the clustering algorithm finds three clusters and designates them as 1,
2 and 3 respectively with red circles, green triangles, and blue diamonds as shown in the middle plot.
The mean value for the particular cluster across the two statistics is represented with a filled in circle,
triangle, or diamond on the far right plot with the cluster number indicated. The three matchups, A, B
and C, which were not used in the clustering process are assigned a cluster based upon their “distance”
to the mean value in each cluster. Therefore, A is assigned to Cluster 3, B is assigned to Cluster 2 (even
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Figure 5: The probability statistics of each of the 15 clusters presented in parallel plots
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Figure 6: Generalized schema for the clustering algorithm and classifying of pitcher-batter matchup
types using notional data for two statistics
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Figure 7: Validation examples of matchup type classification algorithm with 15 and 10 at-bats for the
matchups shown, respectively, on the left and right. Shaded bands in the background show cluster
tendencies from the training dataset.

though it could be closer to some individual matchups of Cluster 1), and C is assigned to Cluster 1 since
it is slightly closer to the Cluster 1 mean than the Cluster 3 mean.

This classification is applied to all the matchups, even those with only one at-bat, to define all 828,764
matchups from the last 19 years. This classification process can be likewise explored by comparing
the new matchups statistics to the cluster training set. The left plot in Figure 7 shows the statistical
probabilities of 10 matchups, all with only 15 at-bats, overlaid onto the training data for Cluster 1.
These data align well with the clustering statistics, validating the performance of the clustering and
classification algorithms described above. The plot on the right in Figure 7 shows a similar result but
with only 10 at-bats per matchup occurring during the last 18 years. The alignment and correlation is
positive but the alignment is beginning to break down due to a low sample size. However, compared to
all the other clusters this is still the best classification with the highest correlation and therefore each
of these 10 matchups remain classified as Type 1. In other words, the distance from these matchups
to the cluster means for all the other clusters is expectedly much larger. Therefore, this is the best
classification that can occur based on the low number of at-bats for these specific matchups.

4. Results

In this section, we test our clustering techniques against “truth” data, and calculate correlations. We
also compare our results to the case where only handedness determines the matchups. Finally, we end
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with two case studies, and offer analysis of two playoff teams from 2018 when pitching in a must-win
scenario.

4.1. Verification of Clustering

Although we label the maximum-likelihood estimates based on matchup data as “truth,” these esti-
mates could clearly be improved with additional occurrences of each matchup. In essence, our clus-
tering technique allows us to do this, as long as matchups can be sorted accurately into their types.
However, we should be careful to verify that strategies are consistently classified, e.g., as good or bad,
regardless of the approach taken.

In Figure 8, we show simulation results of 500,000 innings for all pitching strategies using three dif-
ferent sets of probabilities, allowing us to compare and contrast the three techniques. The “truth” data
in the figure uses the actual matchup statistics to estimate event probabilities using the maximum-
likelihood rule, and provides the first set of probabilities. The second set are derived from the 15
cluster type data, where each matchup is sorted into its closest cluster type, and then the cluster type
statistics provide estimates for the probabilities. We note that the two approaches appear to match
each other well across all pitching strategies in Figure 8. The consistency of the ranking of strategies
is further verified in Figure 9, where the average runs per inning in the 15-clusters data is plotted
against the same quantity when the truth data are used to form probabilities. A correlation coeffi-
cient of 0.9286 is calculated between these two data sets, thus verifying that the clustering technique
preserves the matchup data sufficiently to identify good, bad, and mediocre pitching-batter matchup
strategies.

Following lefty-righty matchup tradition provides the third approach to estimating the needed proba-
bilities for simulating innings of baseball. We sort all matchups into only two clusters for this approach:
1) when the dominant hands of pitchers and batters are identical, and 2) when the dominant hands of
pitchers and batters are opposite. When a batter is a switch hitter, we assume he bats with the opposite
handedness of the pitcher. We average all matchups according to only these two clusters, and then use
these probabilities to simulate innings of baseball. These are shown in Figure 8 as lefty-righty cluster
type data. Here we see that sorting only according to handedness destroys much of the validity of the
simulation. Figure 9 also includes the lefty-righty cluster type data plotted against the truth data, and
we see that the correlation between the two simulations is much smaller than in the 15 cluster type
data case. The correlation coefficient of these two data vectors is calculated only to be 0.4666. Cer-
tainly this indicates that the handedness of opponents has something to say about matchup results,
but we can capture almost all of the subtleties of matchup strategy if we allow for 15 cluster types.

4.2. 2018 Postseason Test Cases

Although we assume that some Major League teams are already taking advantage of matchup data
where it exists, we are, however, uncertain of how teams are currently dealing with cases where pitcher-
batter matchup data are sparse or nonexistent. As a first step towards analysis of Major League teams,
and their ability to adequately choose good pitching strategies, we take two cases from the 2018 post-
season. Since our approach does not yet take into account multi-game scheduling, we look at must-win
scenarios only, judging that winning an elimination game is a case where all available resources should
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Figure 8: Average number of runs per inning for each pitching strategy. The “Truth” data (blue circles)
indicate the expected runs from the simulations using the original biclique probability statistics while
the “15 Cluster Types” data (red circles) use cluster means, and “Lefty-Righty Cluster Type” data (green
circles) employ the lefty-righty clustering.
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Figure 9: Comparison of the three approaches to estimating event probabilities used in the simulations
from Figure 8. Using the “15 Clusters” data provides significantly higher correlation (0.93) between
the expected runs per strategy from the “Truth” data as compared to the “Lefty-Righty Cluster Type”
data (0.47).
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Table 4: Selection of five New York Yankees pitchers and the opposing Boston Red Sox lineup for the
9th inning of Game 4 in the ALDS 2018. Herein, R: right-handed, L: left-handed, B: switch hitter.

Index | Pitcher - Throws R/L Batter - Bats R/L/B
1 Aroldis Chapman - L Steve Pearce - R
2 Chad Green - R J. D. Martinez - R
3 Jonathan Holder - R Xander Bogaerts - R
4 Lance Lynn - R [an Kinsler - R
5 J.A.Happ - L Eduardo Nufiez - R
6 - Jackie Bradley Jr. - L
7 - Christian Vazquez - R
8 - Mookie Betts - R
9 - Andrew Benintendi - L

be utilized to prolong a team’s season. As such, we even consider starting pitchers as being available
for relief pitching in some cases.

For the sake of even comparisons, we investigate two elimination games against the Boston Red Sox.
One with the New York Yankees in the American League Division Series (ALDS), and one with the
Houston Astros in the American League Championship Series (ALCS). For each case, we investigate
the exact scenario in the top of the 9th inning when both the Yankees and the Astros trailed in their
respective elimination games and compare their pitching strategies to the optimal ones. We should
be careful to point out that pitching strategies in real games are chosen in real time, and real-time
decisions are always conditioned on the state of the game. We produce strategies for the entire inning,
and do not rerun our simulations at any point in the inning conditioned on actual events occurring.
Thus, it is possible that decisions later in the inning may be better or worse than we indicate in our
results. Optimal real-time decisions would require us to rerun our simulations after each at-bat.

4.2.1. Boston Red Sox vs. New York Yankees - Game 4 ALDS

The Boston Red Sox led the New York Yankees 4-1 in the top of the 9th inning in Game 4 of the ALDS
in 2018. If the Yankees lost this game, their season would be over. Let us see how well the Yankees
optimized their final inning of pitching in 2018. The opposing Red Sox lineup, starting with the lead-off
batter in the 9th inning, and a selection of five Yankee pitchers who were available to pitch that inning
are given in Table 4. Figure 10 shows the average number of runs that the Red Sox were expected to
score in the 9th inning as a function of pitching strategy, highlighting some of the best and worst cases.

Although we present 10-batter strategies, as we did earlier in the paper, the Yankees selected Aroldis
Chapman, Pitcher 1, to pitch the 9th inning, and he made three consecutive outs. Thus, we can only
verify the correctness of the pitching strategy up to the first three batters. For the first three batters
only, we see in Figure 10 a nice strategy consistent with this choice of {1112555555}, and so we must
give the Yankees high marks, even if the choice of pitching Chapman seemed like an obviously good
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Figure 10: Average number of runs per inning for each pitching strategy with optimal and worst strate-
gies labeled for the final inning of the 2018 American League Division Series. Labels are for Pitcher ID

assignments for 10 batters.

2019 Research Papers Competition
Presented by:

42 AnAaLyir

18




Z== SPORTS ANALYTICS CONFERENCE

MARCH 1 - 2, 2018 | BOSTON, MA
proseniod by

Table 5: Selection of five Houston Astros pitchers and the opposing Boston Red Sox lineup for the 9th
inning of Game 5 in the ALCS 2018. Herein, R: right-handed, L: left-handed, B: switch hitter.

Index | Pitcher - Throws R/L Batter - Bats R/L/B
1 Gerrit Cole - R Jackie Bradley Jr. - L
2 Dallas Keuchel - L Mookie Betts - R
3 Roberto Osuna-R | Andrew Benintendi - L
4 Ryan Pressly - R J. D. Martinez - R
5 Héctor Rondén - R Xander Bogaerts - R
6 - Mitch Moreland - L
7 - [an Kinsler - R
8 - Rafael Devers - L
9 - Sandy Leén - B

choice. We see that Chapman was, in fact, the optimal choice to start the inning, but only for the first
two batters, although letting him pitch to the third batter didn’t give much advantage to the opponent.
We also see a number of other reasonably good strategies that do not include Chapman at all, e.g.,
{4442555555}.

Let us ask the question, however, would the “all-Chapman” approach have been the best, given the
other four pitchers that were available, if more than three batters had been faced in that inning? The
all-Chapman strategy {1111111111} is clearly a suboptimal choice, as labeled in the figure at the far
left. Furthermore, the green data in the figure show all strategies consistent with the first four batters
being faced by {1112}, while the red data in the figure show all strategies consistent with the first four
batters being faced by {1111}. After three batters, sticking with Chapman would have presented more
of a risk than having him face just the first three batters. While the Yankees strategy wasn't “optimal”
(i.e., they did not employ {112} as specified by the simulations), it did strike a nice balance between
using resources (pitchers), and keeping the opponents’ expected scoring low.

Many of the worst possible strategies, labeled at the top of Figure 10, still use Chapman, but only after
Pitcher 3 faces the first two batters. It appears that this combination would have been particularly bad
for the Yankees, and hence good for the Red Sox.

4.2.2. Boston Red Sox vs. Houston Astros - Game 5 ALCS

Our second case study takes the Boston Red Sox vs. the Houston Astros in the top of the 9th inning
of Game 5 of the ALCS, where the Red Sox again led 4-1. The Astros’ available pitchers included the
pitcher of record after the 8th inning, Roberto Osuna, and he actually pitched the entirety of the 9th
inning as well. A selection of five available pitchers and the Red Sox lineup beginning in the 9th inning
are shown in Table 5. Figure 11 shows the average number of runs that the Red Sox were expected to
score in the 9th inning as a function of pitching strategy, again, highlighting some of the best and worst
cases.

Osuna’s pitching index is 3 for our simulation, and he actually faced only three batters in the top of
the ninth, so we have the same problem as we did for the Yankee’s test case. Still, we choose to highlight
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Figure 11: Average number of runs per inning for each pitching strategy with optimal and worst strate-
gies labeled for the final inning of the 2018 American League Championship Series. Labels are for
Pitcher ID assignments for 10 batters.
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(in green) all strategies consistent with Osuna facing the first three batters in Figure 11. Although none
of these were the optimal strategies, we see a number of them that are very good. Hence, we must give
the Astros relatively high marks, just as we did for the Yankees.

At this point, we wish to discuss the tradeoff between optimal matchup strategies, and the value of
resources (pitchers). While we see other strategies that were slightly better than Osuna facing the
first three batters, they are not much better, indicating that a manager may choose to leave Osuna
in to conserve other pitchers. If the Astros had been able to tie the game in the bottom of the 9th
inning, necessitating extra innings of play, they would have found themselves in a stronger position
by not using additional pitchers to get through the 9th inning. Thus we see that a perfectly acceptable
approach to using this strategy in real life may be to simply let the manager choose how many resources
he is comfortable using to get through any one inning. Simulations can be run with these constraints
in place to find a good strategy that strikes the right balance between favorable matchups and the wise
utility of pitchers.

5. Conclusion

We have presented a technique for classifying pitcher-batter matchups to provide a set of cluster types,
by which all matchups can be sorted. The training requires statistically significant matchup data, and
verification of our techniques requires the presence of large bicliques in high pitcher-batter matchup-
count bipartite graphs. Upon finding said bicliques, innings of play may be simulated, and various
strategies can be compared against the “truth” data (data obtained by using the maximum-likelihood
estimates of event probabilities within pitcher-batter matchups for inning simulation). In this paper,
we use this approach to verify the utility of selecting 15 cluster types within the matchup data. We
then show how these cluster types can be used to simulate potential matchups where data is sparse
or nonexistent in the real world. The result is a set of algorithms that can be used to identify optimal
pitcher-batter matchup strategies in both cases when matchup data is abundant and when it is sparse.
Finally, the 15 Cluster approach outperforms the Lefty-Righty Cluster approach by a significant margin
to predict the simulated output for pitcher-batter matchups.
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