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1. Introduction

Recent play in Major League Baseball (MLB) has showcased many attempts to achieve an advantage

through smart selection of pitcher-batter matchups. One such case in the 2018 postseason had the

Los Angeles Dodgers’ manager, Dave Roberts, selecting an all right-handed batting lineup to face both

Chris Sale andDavid Price in games one and twoof theWorld Series. Both pitchers are left-handed, and

the choice certainly tailors to thewell-known lefty-righty handednessmatchup strategy [10]. Further-

more, this choice was inline with the platoon system that the Dodgers had employed throughout the

2018 regular season [15], often starting all right-handed batting lineups against left-handed starters,

seemingly with great success.

Although attempts have been made to optimize pitcher-batter matchup strategies in the sabermet-

rics [2, 7, 9] literature (e.g., [5, 6]), these approaches have tended to apply averages of large data sets

in an attempt to ϐine tune some matchup data. For example, Hirotsu and Wright used the handedness

(i.e., left handed or right handed) of both the pitcher and the batter to adjust average batting statistics

in an attempt to optimize the choice of pitcher substitution [6]. In this approach, if a batter’s dominant

hand is opposite to that of a pitcher’s dominant hand, then the offensive statistics of the batter are as-

sumed to be enhanced slightly for that speciϐic matchup. Also, if a batter’s dominant hand is the same

as that of a pitcher, then the offensive statistics of the batter are assumed to be degraded slightly for

that speciϐic matchup. The authors of [6] furthermore adjust these statistics based on team matchup

data, assuming that above average offensive teams will have an enhanced advantage when facing be-

low average defensive teams, etc. Although these adjustments are likely steps in the right direction

towards optimal game strategy, the author’s are unaware of any advanced individual pitcher-batter

matchup data used to improve estimated results of the matchups.

Techniques such as those described in [6] attempt to compensate for the lack of statistically signiϐi-

cant individual pitcher-batter matchup data in Major League Baseball by using average performance

statistics in place of speciϐic matchup statistics. To truly optimize with respect to matchup data, each

pitcher-battermatchup should be tested in isolation until the data for thatmatchup is statically signiϐi-

cant. Although handedness has proven to affect the overall statistics, there exist caseswhere this trend

does not hold. That is, the statistics regarding somepitcher-battermatchups seem to defy the accepted

truth that a batter is better off facing a pitcher with the opposite dominant hand as himself. A clearer
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estimate of offensive and defensive output, therefore, requires an extensive amount of pitcher-batter

matchup data, which unfortunately will never exist for all possible pitcher-batter matchups. This is

always true in the case of rookie players, where the players simply have not been playing long enough

to generate meaningful matchup data; but it also holds true for long-time players who may have been

in opposite leagues (i.e., American or National Leagues) or divisions for much of their careers.

This paper outlines a novel technique for optimizing pitcher-batter matchups in a Major League Base-

ball game from the defensive (pitching) point of view. Although this knowledge is always useful, it

becomes particularly important in must-win scenarios, e.g., towards the end of a regular season and

during the postseason. We address two problems in this work: 1) how one can ϐind an optimal pitch-

ing strategy for facing a set number of consecutive batters when statistically meaningful data is avail-

able for each pitcher-batter matchup, and 2) how one can repeat the process when certain potential

pitcher-batter matchups have only occurred a small number of times (perhaps even zero times) in the

real world.

The rest of the paper is outlined as follows. Section 2 motivates the research by investigating some

early results ofmatchup speciϐic optimizations over one inning of play. Section 3 presents the technical

aspects of our techniques in detail. Full results of matchup optimizations with both dense and sparse

data sets are given in Section 4. Finally, we offer conclusions of our work in Section 5.

2. Motivation

Before going to great lengths to devise techniques to optimize pitcher-batter matchups in a Major

League Baseball game, we ϐirst need to motivate the idea by showing that optimizing a matchup strat-

egy is worth a signiϐicant number of runs to a team. If all strategies are reasonably close to equivalent

in terms of expected outcomes, or if following the lefty-righty handedness rule will deliver results that

are essentially optimal, then there may be no need for additional research.

The intuition behind using individualmatchup data to predict results in anMLB game follows from

one of the themes discussed at the MIT Sloan Sports Analytics Conference in 2017 [12], where several

professional athletes on panels expressed the desire for analysts to prescribe optimal strategies for the

individual athlete, rather than the average athlete. For example, Jason Gore, an American professional

golfer, told how a certain golf hole (a short par-4) should apparently be approached with a driver off

the tee for the average player. Averaging over years of statistical data on that particular hole shows

that players who tee off with a driver score better on the hole. However, Gore himself told how this

approach would have been foolish for him to follow, since it would then likely require a second shot

that is an obvious weakness in his own game [4]. Analyzing Gore’s data alone draws this point out and

prevents a poor strategic choice for him when playing the hole.

2.1. Importance of Matchups in Game Strategy

Figure 1 shows early results of this research that motivate additional investigation. Note herein that

we have found a case with nine batters and ϐive pitchers for which all 45 matchups have at least 30

at-bats between the 2000 and 2017 MLB seasons, inclusive [1]. The individual matchup data were

then used to estimate probabilities of outcomes for each pitcher-batter matchup, and 500,000 innings
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Table 1: Pitcher and batter names by index for the experiment portrayed in Figs. 1 and 2. Herein, R:

right-handed, L: left-handed, B: switch hitter.

Index Pitcher - Throws R/L Batter - Bats R/L/B

1 Jeremy Guthrie - R Elvis Andrus - R

2 Felix Hernandez - R José Bautista - R

3 Jon Lester - L Asdrúbal Cabrera - B

4 Rick Porcello - R Melky Cabrera - B

5 Ervin Santana - R Robinson Canó - L

6 - Nelson Cruz - R

7 - Edwin Encarnación - R

8 - Paul Konerko - R

9 - Joe Mauer - L

of play were simulated using a computer program for every possible pitching strategy against a ϐixed

batting lineup. More on this technique is given in Section 3, but the important thing to note here is that

the number of expected runs for this particular group of pitchers and batters ranges between0.39 runs

and 0.95 runs per inning. Thus, it appears on the outset that setting the matchups right can be worth

more than half a run per inning! The strategies are labeled on the ϐigure for both the best and worst

cases, and indicate the pitcher chosen to face each batter for up to 10 consecutive batters.

For example, the optimal pitching strategy is shown in the ϐigure to be {4333311111}. This means

the 4th pitcher should face the lead off batter, and then be replaced by the 3rd pitcher to face the next

four batters. If the inning is not yet complete, the 1st pitcher should then come in to face the next ϐive

batters. The pitchers and batters used for this simulation are given in Table 1, and clearly represent a

hypothetical situation. Some of these players are currently retired, and this “game” was never actually

played in real life. Pitcher andbatter dominant hands are also included in the table,whereinwe see that

the optimal strategy follows the lefty-righty convention for handednessmuch of the time. The coloring

of Figure 1 is chosen to show the pitcher that faces batter three (Asdrúbal Cabrera) in the simulation.

It was determined by inspection after the simulation that this one matchup is the best single-matchup

estimator for the overall scoring in the inning. Rick Porcello seems to be the worst pitching choice to

face this batter, and Jon Lester is the best. Thus, deϐining a small number of matchups correctly may

provide most of the beneϐit of the process.

2.2. Overcoming Sparse Matchup Data

The early results in Figure 1 are encouraging, but require a reasonably large number of matchups for

all pitcher-batter combinations in the sets. Even ϐinding cases like this in the historical data is challeng-

ing, and the sets of pitchers and batters tend to be comprised of both retired and active players. These

shortcomings bring about an obvious question as to whether the technique can actually be used in

practice. We investigated the correlation between all 45 matchups used to generate Figure 1, and per-

formed a clustering algorithm based on these correlations. The results are shown in Figure 2, where

we see that one can formmeaningful clustering so as to group matchups into “types.” Since this is the

case, it appears that not all matchups are as different as theymay seem, and classiϐication of amatchup
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Figure 1: Average number of runs per pitching inning for each strategy with optimal and worst strate-

gies labeled. Labels are for Pitcher ID assignments for 10 batters.
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Figure 2: Constellation plot demonstrating clusters among the 45 different pitcher-batter (labeled as

Px-Bx) matchups.

into a proper type can then allow the type statistics to take the place of the matchup statistics in game

simulation. Doing so allows one to estimate an optimal pitching strategy based on matchups, even

when matchup data is sparse. The open questions are: 1) how many types should be chosen, 2) how

should the decision algorithm be structured to properly classify sparse-data matchups into one of the

established types (so as to minimize error in the estimate), and 3) how close is the estimate to the

truth. These questions are addressed in Section 3.3.

3. Methods

Although the initial results in Section2used only regular seasonmatchupdata from2000-2017, for the

rest of this paper we use a slightly larger data set that includes 2000-2017 postseason data as well as

2000-2018 regular season data. The event-level data is from retrosheets.org [1], and consists of more

than 3.59millionmatchup results. We screen these data to include only active players in the 2018MLB

season. The main reason we select our data in this way is to enable simulation of the actual matchup

scenarios that occurred in the 2018 postseason as a special case in Section 4. Thus, we include only
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data pertinent to active players that would have been available to MLB teams in October of 2018. We

deϐine statistically signiϐicant matchups as those occurring at least N times in our data set, and we’d

like to ϐind data structures that maximizeN .

3.1. Finding Bicliques in Big (Matchup) Data

In order to validate our clustering techniques, we need to locate data sets that are extensive enough

to act as the “truth” for our algorithms. Although we have no way of knowing the exact truth without

thousands of data points for each matchup, we would like to ϐind pitcher and batter sets where all

matchups have occurred as many times as possible. We can then use the maximum-likelihood esti-

mates for probabilities of events for each matchup, which amounts to taking the ratio of occurrences

of the event (say a single, or a strike out) divided by the total number ofmatchups. Matchups that have

occurred at leastN = 30 times are reasonably signiϐicant from a statistical point of view [13].

Let G signify a simple bipartite graph with bipartitions on the vertex set of V and U . Here V is a set

of vertices that is comprised of pitchers who have faced at least one batterN or more times, and U is

a set of vertices or nodes that is comprised of batters who have faced at least one pitcher N or more

times. Edges inG connect pitchers and batters who have faced each other at leastN times.

In order to simulate a game of baseball using realmatchup data that is statistically signiϐicant, we need

at least nine batters inU such that all nine batters have faced the same set of pitchers at leastN times.

In other words, we need to ϐind a subgraph of G, say G′, with at least nine vertices in V ′ ⊆ V that

forms a complete bipartite graph with a set of pitchers U ′ ⊆ U . This structure is called a biclique

or a complete bipartite subgraph of G in graph theory [3], and ϐinding bicliques of maximal size with

efϐicient algorithms has been an area of research since the 1960s [11, 16]. We employ an adaptation

of the technique in [16], that was developed with applications in genome research in mind, to ϐind

a maximum biclique in our pitcher-batter matchup data in the following sense. We desire at least

|U ′| = 5 pitchers to choose from to form optimal strategies, with the number of batters in the biclique

|V ′| ≥ 9. Note that | · | indicates the cardinality of a set. We search for the biclique with |V ′| ≥ 9 and
|U ′| = 5 that maximizesN , the number of matchups required for a pitcher-batter pair to be connected

with an edge inG [3].

The algorithm is straightforward givenG(U, V ). We cycle through all possible choices of U ′ such that

|U ′| = 5, and calculate the intersection of the neighborhoods of all vertices in U ′, where the neighbor-

hood of a vertex is the collection of vertices connected to that vertex by an edge inG. If this intersection

consists of at least nine vertices in V , then we call it V ′, store U ′ and V ′ as a biclique matching our re-

quirements, and continue to search for additional bicliques. We run this algorithm for decreasing N ,

until the program returns at least one biclique. For our dataset, we found exactly one bicliquewith ϐive

pitchers and 10 batters when N = 36. No bicliques exist with at least ϐive pitchers and nine batters

withN > 36. The biclique found is given in Table 2. Notice similarities in the biclique in Table 1 with

this new biclique. This should not be surprising, as we are looking for sets of players that have played

long enough to face sets of opponents at leastN times. Players tend to be All-Star veterans in bicliques

such as these.
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Table 2: Biclique of active players in 2018 thatmaximizes the number of occurrences for eachmatchup

atN = 36with ϐive pitchers and 10 batters. Herein, R: right-handed, L: left-handed, B: switch hitter.

Index Pitcher - Throws R/L Batter - Bats R/L/B

1 Felix Hernandez - R Robinson Canó - L

2 David Price - L Brett Gardner - L

3 Ervin Santana - R Curtis Granderson - L

4 James Shields - R Ian Kinsler - R

5 Justin Verlander - R Nick Markakis - L

6 - Joe Mauer - L

7 - Adrián Beltré - R

8 - Elvis Andrus - R

9 - Nelson Cruz - R

10 - Dustin Pedroia - R

3.2. Pitcher-Batter Matchup Strategy Simulation

There are many ways of generating estimates of probabilities of events for speciϐic pitcher-batter

matchups. One technique was just presented in the previous section, and requires one to ϐind all

matchup data for the pitcher-batter matchup in question, and form probability estimates using the

maximum-likelihood ratio-of-occurrences rule [13]. If the pitchers and batters in question have faced

each other a large number of times, then these estimates tend to be fairly reliable, and can be used to

simulate innings of baseball, and hence, to classify pitching strategies in terms of matchups. Another

technique for estimating event probabilities in a matchup is laid out in the section following, where

probability estimates are made without a signiϐicant amount of matchup data. In this section, we dis-

cuss our technique for simulating innings so as to rank pitching strategies in terms of their ability to

prevent runs by the opposing batting lineup. Weuse the biclique fromTable 2, and omit the 10th batter

to create a ϐictional nine-batter lineup.

Let the set of available pitchers in a bullpen be P = {p1, p2, . . . , p|P |}. A pitching strategy is a

sequence of numbers that indicate the index of the pitcher to face each batter. That is, let

S = {s1, s2, . . . , s|S|} (1)

signify a pitching strategy for |S| batters in a single inning. Each si for i = 1, 2, . . . , |S|, must be in

{1, 2, . . . , |P |}, and identical integers in S must occur consecutively (since replacing a pitcher makes

him ineligible to pitch for the rest of the game by the rules of baseball [14]). By way of example, the

strategy {33111} indicates that pitcher p3 should pitch against the ϐirst two batters of the inning, and

then pitcher p1 should face the next three batters. Note that the strategy is to be formed before play

begins for the inning, although real managers could decide to update strategies many times during an

inning of play.

The scenario we simulate is a single inning of play with up to |S| = 10 consecutive batters. A

simulated inning is deemed complete if three outs are made, or if |S| batters have been faced. In our

simulations, the percentage of innings where 10 batters were faced without recording three outs is

roughly 0.39%, meaning less often than 1 out of 250 innings simulated. We arbitrarily restrict the
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Table 3: Possible outcomes for each at-bat. Probabilities for each of these events must be estimated

for each pitcher-batter matchup to simulate innings.

HR: home run T: triple D: double

S: single W: walk FO: ϐly out

GO: ground out K: strike out HBP: hit by pitch

“manager” to using no more than three pitchers per inning, but this could be likewise adjusted. Con-

sider, for example, the case where a manager is trying to decide whether to replace a pitcher or not.

The manager could consider strategies of up to two pitchers, where one of the pitchers is the current

pitcher.

Our simulations step through all possible pitching strategies that use three or less pitchers to cover

up to 10 batters in an inning, and we simulate 500,000 innings for every possible pitcher-batter strat-

egy under these constraints. There exist 2345 different strategies, for these constraints, and each can

be compared against all others using the simulation technique.

Within play, probability estimates of matchup events are used to simulate outcomes of at-bats by

generating random numbers and ϐitting them to the probability mass function of possible outcomes.

At-bats can result in the set of outcomes given in Table 3. We let P(X) signify the probability of event X

occurring, where X takes on all possible outcomes in the table.

Rules of the simulation include the following:

• the batting lineup is ϐixed,

• up to three pitchers may be used to form a pitching strategy,

• runners on base advance on a ϐlyout with probability 0.0715∗,

• runners on base take an extra base on singles and doubles with probability 0.3356∗,

• double plays are turned successfully with probability 0.6892∗,

• the lead runner is put out with probability 0.5 in an unsuccessful double play attempt, else the

batter is put out,

• base runners advance on ground balls with probability 0.25,

• no bases are stolen,

• no errors, wild pitches, or passed balls occur, and

• base runners are not picked off or thrown out going for extra bases.

The symbol ∗ is used to indicate event probabilities that are estimated from the event-level historical

data [1]. All other rules of simulation are set for ease of simulation, andmany simplify the game to the

point where a computer can “play” an inning of baseball using a random number generator. Results of

this inning simulation technique are highlighted in Section 4 for the biclique in Table 2, and other sce-

narios encountered in the MLB postseason during 2018. Figure 1 shows the results of our simulation

techniques using the biclique from Table 1.
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3.3. Clustering for Classifying Pitcher-Batter Matchups

Since the aforementioned model and simulation require statistics for the individual pitcher-batter

matchups, an algorithm is necessary for classifying those matchups for which the data is sparse (i.e. a

small number of at-bats for a given pitcher-batter pair).

This is performed by analyzing the pitcher-batter matchups for which there are a large number of

at-bats for the pair. We identiϐied 5170 pitcher-batter matchups for which there were 35 or more

at-bats for the pair during the last 19 years. A clustering algorithm, applying Ward’s Method [8], is

implemented which calculates the “distance” between each of these 5170 pitcher-batter matchups

and sorts them in a sequence such that any pitcher-battermatchup is positioned beside its next-closest

matchup in terms of correlation. The output of such a process is the dendrogram presented in Figure

3. We lump doubles and triples together and ignore HBP when performing the clustering to prevent

the algorithm from building cluster types for rare, and somewhat random, events (i.e., T and HBP).

Figure 3 indicates 15 groupings which generally discriminate the full matchup space into clusters.

Therefore, each individualmatchup is closer tomatchupswithin its owncluster thananyothermatchup

outside of its cluster. The statistics from the 5170 pitcher-batter matchups are likewise presented in

the form of a cell plot beside the dendrogram of Figure 3. The seven statistics used in the cluster-

ing algorithm are shown with higher probabilities in red and lower probabilities in blue. Groupings

can be seen in this cell plot which are expressed into the clusters calculated on the right dendrogram.

For example, the ϐirst cluster at the top (shown in red), has a relatively high probability of singles,

P(S), for the matchup. The last cluster, at the bottom, has a high probability of walks, P(W). The other

matchups between these will have different relative probabilities for homeruns, strike-outs, ground-

outs, ϐly-outs, andmultiple-base hits (doubles or triples). These data can be seen in various groupings

or types within the cell plot with their corresponding section of the dendrogram on the right.

This can also be seen in the constellation map of Figure 4 where each matchup location is repre-

sented in a tree-like structure with the relative distance betweenmatchups found through traveling to

a common link or node. For example, a matchup found in the green cluster (bottom right) is closer to

matchups in the red cluster (also bottom right) through a node which is only one step away from the

root node (indicated with a large circle). Thus these red and green matchups are more similar to each

other than they are to matchups in the blue cluster (top left) which is many nodes away.

The statistics for each cluster are presented in Figure 5 through a parallel plot which presents the

“statistical thumprint” of a particular cluster. Since each cluster is composed of 100s of matchups, the

plots show the full range of statistics assigned to that cluster. However, careful observation of these

plots reveal cluster differences that can be used to classify matchups outside of the initial training set

(i.e., the 5170 pitcher-batter matchups). For example, thematchups of Cluster 12 are characterized by

a high probability of strike-outs and low probability of doubles or triples, P(DT), but with a somewhat

higher probability of home runs, P(HR). Cluster 13 is similar to Cluster 12 but with a lower probability

of home runs. In contrast, Cluster 4 has a higher than normal probability of home runs and multiple-

base hits but with low P(K) and thus favors the hitter in the relationship. Other clusters have high

probabilities of ϐly-outs and ground-outs, such as Clusters 8 and 2, respectively, while one cluster has

a highwalk probability, P(W). Other clusters retain different combinations of high probabilities across

the seven statistics including singles P(S), ϐly-outs P(FO), ground-outs P(GO), and strike-outs P(K).
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Figure 3: The resultant dendrogram from the clustring algorithmof 5170 high at-batmatchups. Differ-

ent colors discriminate between the 15 clusters identiϐied. Eachmatchup is closer tomatchups within

its own cluster than any other matchup outside of its cluster.
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Figure 4: Constellation map presenting the tree-like structure for classifying the matchups into 15

clusters through relative distances of the statistics.

Ultimately, each matchup can be classiϐied into one of the 15 matchup types deϐined by these clusters.

Ideally, the statistics of a matchup can be extracted from the actual data, but since the number of at-

bats for many matchups are insufϐicient, the “matchup type” may be useful to predict the result for a

more accurate simulation.

The speciϐic number of 15 cluster types was selected based on a comparison of the parallel plot of the

16th cluster with those of the other 15. Since no discernable difference to some of the other plots was

observed in deϐining these matchups, the law of diminishing returns appears to have been reached.

The selection of 15 clusters was considered to be the best balance between a sufϐiciently large set of

clear matchup types while keeping the number of matchups per cluster high tomaximize signiϐicance.

Thus, the remaining 823,594 matchups with low numbers of at-bats, which are not used in the cre-

ation of the clusters, can be classiϐied according to their closeness to these 15 types. This process is

summarized in Figure 6 where a subset of training data is presented in the left-most plot using two

notional statistics. In this case, the clustering algorithm ϐinds three clusters and designates them as 1,

2 and 3 respectively with red circles, green triangles, and blue diamonds as shown in the middle plot.

The mean value for the particular cluster across the two statistics is represented with a ϐilled in circle,

triangle, or diamond on the far right plot with the cluster number indicated. The three matchups, A, B

and C, whichwere not used in the clustering process are assigned a cluster based upon their “distance”

to the mean value in each cluster. Therefore, A is assigned to Cluster 3, B is assigned to Cluster 2 (even
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Figure 5: The probability statistics of each of the 15 clusters presented in parallel plots
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Figure 7: Validation examples of matchup type classiϐication algorithm with 15 and 10 at-bats for the

matchups shown, respectively, on the left and right. Shaded bands in the background show cluster

tendencies from the training dataset.

though it could be closer to some individualmatchups of Cluster 1), and C is assigned to Cluster 1 since

it is slightly closer to the Cluster 1 mean than the Cluster 3 mean.

This classiϐication is applied to all the matchups, even those with only one at-bat, to deϐine all 828,764

matchups from the last 19 years. This classiϐication process can be likewise explored by comparing

the new matchups statistics to the cluster training set. The left plot in Figure 7 shows the statistical

probabilities of 10 matchups, all with only 15 at-bats, overlaid onto the training data for Cluster 1.

These data align well with the clustering statistics, validating the performance of the clustering and

classiϐication algorithms described above. The plot on the right in Figure 7 shows a similar result but

with only 10 at-bats per matchup occurring during the last 18 years. The alignment and correlation is

positive but the alignment is beginning to break down due to a low sample size. However, compared to

all the other clusters this is still the best classiϐication with the highest correlation and therefore each

of these 10 matchups remain classiϐied as Type 1. In other words, the distance from these matchups

to the cluster means for all the other clusters is expectedly much larger. Therefore, this is the best

classiϐication that can occur based on the low number of at-bats for these speciϐic matchups.

4. Results

In this section, we test our clustering techniques against “truth” data, and calculate correlations. We

also compare our results to the casewhere only handedness determines thematchups. Finally, we end
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with two case studies, and offer analysis of two playoff teams from 2018 when pitching in a must-win

scenario.

4.1. Veriϐication of Clustering

Although we label the maximum-likelihood estimates based on matchup data as “truth,” these esti-

mates could clearly be improved with additional occurrences of each matchup. In essence, our clus-

tering technique allows us to do this, as long as matchups can be sorted accurately into their types.

However, we should be careful to verify that strategies are consistently classiϐied, e.g., as good or bad,

regardless of the approach taken.

In Figure 8, we show simulation results of 500,000 innings for all pitching strategies using three dif-

ferent sets of probabilities, allowing us to compare and contrast the three techniques. The “truth” data

in the ϐigure uses the actual matchup statistics to estimate event probabilities using the maximum-

likelihood rule, and provides the ϐirst set of probabilities. The second set are derived from the 15

cluster type data, where each matchup is sorted into its closest cluster type, and then the cluster type

statistics provide estimates for the probabilities. We note that the two approaches appear to match

each other well across all pitching strategies in Figure 8. The consistency of the ranking of strategies

is further veriϐied in Figure 9, where the average runs per inning in the 15-clusters data is plotted

against the same quantity when the truth data are used to form probabilities. A correlation coefϐi-

cient of 0.9286 is calculated between these two data sets, thus verifying that the clustering technique

preserves the matchup data sufϐiciently to identify good, bad, and mediocre pitching-batter matchup

strategies.

Following lefty-righty matchup tradition provides the third approach to estimating the needed proba-

bilities for simulating innings of baseball. We sort allmatchups into only two clusters for this approach:

1) when the dominant hands of pitchers and batters are identical, and 2) when the dominant hands of

pitchers and batters are opposite. When a batter is a switch hitter, we assumehe batswith the opposite

handedness of the pitcher. We average all matchups according to only these two clusters, and then use

these probabilities to simulate innings of baseball. These are shown in Figure 8 as lefty-righty cluster

type data. Here we see that sorting only according to handedness destroys much of the validity of the

simulation. Figure 9 also includes the lefty-righty cluster type data plotted against the truth data, and

we see that the correlation between the two simulations is much smaller than in the 15 cluster type

data case. The correlation coefϐicient of these two data vectors is calculated only to be 0.4666. Cer-

tainly this indicates that the handedness of opponents has something to say about matchup results,

but we can capture almost all of the subtleties of matchup strategy if we allow for 15 cluster types.

4.2. 2018 Postseason Test Cases

Although we assume that some Major League teams are already taking advantage of matchup data

where it exists,weare, however, uncertainof howteamsare currentlydealingwith caseswherepitcher-

battermatchup data are sparse or nonexistent. As a ϐirst step towards analysis of Major League teams,

and their ability to adequately choose good pitching strategies, we take two cases from the 2018 post-

season. Since our approach does not yet take into accountmulti-game scheduling, we look atmust-win

scenarios only, judging thatwinning an elimination game is a casewhere all available resources should
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Figure 8: Average number of runs per inning for each pitching strategy. The “Truth” data (blue circles)

indicate the expected runs from the simulations using the original biclique probability statistics while

the “15Cluster Types” data (red circles) use clustermeans, and “Lefty-Righty Cluster Type” data (green

circles) employ the lefty-righty clustering.
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Figure 9: Comparison of the three approaches to estimating event probabilities used in the simulations

from Figure 8. Using the “15 Clusters” data provides signiϐicantly higher correlation (0.93) between

the expected runs per strategy from the “Truth” data as compared to the “Lefty-Righty Cluster Type”

data (0.47).
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Table 4: Selection of ϐive New York Yankees pitchers and the opposing Boston Red Sox lineup for the

9th inning of Game 4 in the ALDS 2018. Herein, R: right-handed, L: left-handed, B: switch hitter.

Index Pitcher - Throws R/L Batter - Bats R/L/B

1 Aroldis Chapman - L Steve Pearce - R

2 Chad Green - R J. D. Martinez - R

3 Jonathan Holder - R Xander Bogaerts - R

4 Lance Lynn - R Ian Kinsler - R

5 J. A. Happ - L Eduardo Núñez - R

6 - Jackie Bradley Jr. - L

7 - Christian Vázquez - R

8 - Mookie Betts - R

9 - Andrew Benintendi - L

be utilized to prolong a team’s season. As such, we even consider starting pitchers as being available

for relief pitching in some cases.

For the sake of even comparisons, we investigate two elimination games against the Boston Red Sox.

One with the New York Yankees in the American League Division Series (ALDS), and one with the

Houston Astros in the American League Championship Series (ALCS). For each case, we investigate

the exact scenario in the top of the 9th inning when both the Yankees and the Astros trailed in their

respective elimination games and compare their pitching strategies to the optimal ones. We should

be careful to point out that pitching strategies in real games are chosen in real time, and real-time

decisions are always conditioned on the state of the game. We produce strategies for the entire inning,

and do not rerun our simulations at any point in the inning conditioned on actual events occurring.

Thus, it is possible that decisions later in the inning may be better or worse than we indicate in our

results. Optimal real-time decisions would require us to rerun our simulations after each at-bat.

4.2.1. Boston Red Sox vs. New York Yankees - Game 4 ALDS

The Boston Red Sox led the New York Yankees 4-1 in the top of the 9th inning in Game 4 of the ALDS

in 2018. If the Yankees lost this game, their season would be over. Let us see how well the Yankees

optimized their ϐinal inning of pitching in 2018. The opposing Red Sox lineup, startingwith the lead-off

batter in the 9th inning, and a selection of ϐive Yankee pitchers who were available to pitch that inning

are given in Table 4. Figure 10 shows the average number of runs that the Red Sox were expected to

score in the 9th inning as a function of pitching strategy, highlighting some of the best andworst cases.

Although we present 10-batter strategies, as we did earlier in the paper, the Yankees selected Aroldis

Chapman, Pitcher 1, to pitch the 9th inning, and he made three consecutive outs. Thus, we can only

verify the correctness of the pitching strategy up to the ϐirst three batters. For the ϐirst three batters

only, we see in Figure 10 a nice strategy consistent with this choice of {1112555555}, and so we must

give the Yankees high marks, even if the choice of pitching Chapman seemed like an obviously good
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Figure 10: Average number of runs per inning for each pitching strategywith optimal andworst strate-

gies labeled for the ϐinal inning of the 2018 American League Division Series. Labels are for Pitcher ID

assignments for 10 batters.
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Table 5: Selection of ϐive Houston Astros pitchers and the opposing Boston Red Sox lineup for the 9th

inning of Game 5 in the ALCS 2018. Herein, R: right-handed, L: left-handed, B: switch hitter.

Index Pitcher - Throws R/L Batter - Bats R/L/B

1 Gerrit Cole - R Jackie Bradley Jr. - L

2 Dallas Keuchel - L Mookie Betts - R

3 Roberto Osuna - R Andrew Benintendi - L

4 Ryan Pressly - R J. D. Martinez - R

5 Héctor Rondón - R Xander Bogaerts - R

6 - Mitch Moreland - L

7 - Ian Kinsler - R

8 - Rafael Devers - L

9 - Sandy León - B

choice. We see that Chapman was, in fact, the optimal choice to start the inning, but only for the ϐirst

two batters, although letting him pitch to the third batter didn’t give much advantage to the opponent.

We also see a number of other reasonably good strategies that do not include Chapman at all, e.g.,

{4442555555}.

Let us ask the question, however, would the “all-Chapman” approach have been the best, given the

other four pitchers that were available, if more than three batters had been faced in that inning? The

all-Chapman strategy {1111111111} is clearly a suboptimal choice, as labeled in the ϐigure at the far

left. Furthermore, the green data in the ϐigure show all strategies consistent with the ϐirst four batters

being faced by {1112}, while the red data in the ϐigure show all strategies consistent with the ϐirst four

batters being faced by {1111}. After three batters, sticking with Chapmanwould have presentedmore

of a risk than having him face just the ϐirst three batters. While the Yankees strategy wasn’t “optimal”

(i.e., they did not employ {112} as speciϐied by the simulations), it did strike a nice balance between

using resources (pitchers), and keeping the opponents’ expected scoring low.

Many of the worst possible strategies, labeled at the top of Figure 10, still use Chapman, but only after

Pitcher 3 faces the ϐirst two batters. It appears that this combinationwould have been particularly bad

for the Yankees, and hence good for the Red Sox.

4.2.2. Boston Red Sox vs. Houston Astros - Game 5 ALCS

Our second case study takes the Boston Red Sox vs. the Houston Astros in the top of the 9th inning

of Game 5 of the ALCS, where the Red Sox again led 4-1. The Astros’ available pitchers included the

pitcher of record after the 8th inning, Roberto Osuna, and he actually pitched the entirety of the 9th

inning as well. A selection of ϐive available pitchers and the Red Sox lineup beginning in the 9th inning

are shown in Table 5. Figure 11 shows the average number of runs that the Red Sox were expected to

score in the 9th inning as a function of pitching strategy, again, highlighting some of the best andworst

cases.

Osuna’s pitching index is 3 for our simulation, and he actually faced only three batters in the top of

the ninth, sowehave the sameproblemaswedid for the Yankee’s test case. Still, we choose to highlight
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Figure 11: Average number of runs per inning for each pitching strategywith optimal andworst strate-

gies labeled for the ϐinal inning of the 2018 American League Championship Series. Labels are for

Pitcher ID assignments for 10 batters.
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(in green) all strategies consistentwithOsuna facing the ϐirst three batters in Figure 11. Although none

of these were the optimal strategies, we see a number of them that are very good. Hence, wemust give

the Astros relatively high marks, just as we did for the Yankees.

At this point, we wish to discuss the tradeoff between optimal matchup strategies, and the value of

resources (pitchers). While we see other strategies that were slightly better than Osuna facing the

ϐirst three batters, they are not much better, indicating that a manager may choose to leave Osuna

in to conserve other pitchers. If the Astros had been able to tie the game in the bottom of the 9th

inning, necessitating extra innings of play, they would have found themselves in a stronger position

by not using additional pitchers to get through the 9th inning. Thus we see that a perfectly acceptable

approach tousing this strategy in real lifemaybe to simply let themanager choosehowmany resources

he is comfortable using to get through any one inning. Simulations can be run with these constraints

in place to ϐind a good strategy that strikes the right balance between favorablematchups and thewise

utility of pitchers.

5. Conclusion

Wehave presented a technique for classifying pitcher-battermatchups to provide a set of cluster types,

by which all matchups can be sorted. The training requires statistically signiϐicant matchup data, and

veriϐication of our techniques requires the presence of large bicliques in high pitcher-batter matchup-

count bipartite graphs. Upon ϐinding said bicliques, innings of play may be simulated, and various

strategies can be compared against the “truth” data (data obtained by using the maximum-likelihood

estimates of event probabilities within pitcher-batter matchups for inning simulation). In this paper,

we use this approach to verify the utility of selecting 15 cluster types within the matchup data. We

then show how these cluster types can be used to simulate potential matchups where data is sparse

or nonexistent in the real world. The result is a set of algorithms that can be used to identify optimal

pitcher-battermatchup strategies in both cases whenmatchup data is abundant andwhen it is sparse.

Finally, the 15 Cluster approach outperforms the Lefty-Righty Cluster approach by a signiϐicantmargin

to predict the simulated output for pitcher-batter matchups.
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