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Abstract

We present Possession Sketches, a new machine learning method for organizing and exploring a
database of basketball player-tracks. Our method organizes basketball possessions by offensive struc-
ture. We first develop a model for populating a dictionary of short, repeated, and spatially registered
"actions”. Each action corresponds to an interpretable type of player movement. We examine statisti-
cal patterns in these actions, and show how they can be used to describe individual player behavior.
Leveraging this “vocabulary” of actions, we develop a hierarchical model to characterize interactions
between players. Our approach draws on the topic-modeling literature, extending Latent Dirichlet Allo-
cation (LDA) through a novel representation of player movement data which uses techniques common
inanimation and video game design. We show that this model is able to group together possessions with
similar offensive structure, allowing efficient search and exploration of the entire database of player-
tracking data. We show that our model finds repeated offensive structure in teams (e.g. strategy), pro-
viding a much more sophisticated, yet interpretable lens into basketball player-tracking data.

1 Introduction

Player-tracking data present a unique challenge for basketball analytics. Some believe that there is a
windfall of quantitative insight available in these data, hidden in spatiotemporal patterns that coaches
and analysts typically process with human intuition. While there has been work toward quantifying
player ability [6], possession value [4, 3], and play classification based on small set of labeled plays [13],
methods for automatically organizing, summarizing, and interpreting basketball possessions have not
delivered.

As an example, consider the following use case for defensive scouting: an analyst is tasked with
finding all possessions in which James Harden drives to the basket and passes the ball to a teammate for
aright corner three-point attempt. Ad hoc engineering solutions for this scenario are easy to imagine:
first sub-select Rockets possessions with a right corner three-point attempt and then look for passes
from Harden that originate in the paint. However, adding search criteria quickly renders this ad hoc
solution intractable: find sequences where Harden uses a high screen before driving to the basket and
then passes to the corner for a three-point attempt; find sequences where Harden uses a high screen,
drives to the basket, passes to the corner and that teammate drives to the basket; find sequences where
any rocket uses a high screen, drives to the basket, etc. The landscape of relevant basketball scenarios
is far too vast for ad hoc search solutions.

Furthermore, this type of sequential query is only one approach to gaining insight from player-
tracking data. We can imagine starting a research project by simply asking — what leads to a corner
three? What sort of patterns are employed by different offenses in order to get an open three-point
attempt? What sorts of actions do specific players tend to do in order to generate an open three-point
attempt? Existing methodology falls short of extracting this information from player-tracking data.

In this work, we bridge this gap by formulating a novel machine learning method to describe an
entire database of player-tracks. Our method uncovers characteristic patterns of offense in a way that
is searchable and interpretable. We first describe individual player’s actions by building a data-driven
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dictionary of action templates derived from a novel statistical model. We then construct a model of
possessions that describes patterns in these action templates — common co-occurrences that create a
signature of offensive strategy. For each play, this yields a possession sketch, a concise summary of the
offense’s actions in a basketball possession. We show that this model structure at multiple levels — in
dynamic actions taken by individual players, as well as collective actions present in each possession.

Importantly, we construct our model out of interpretable pieces — each action template can be in-
terpreted as a type of on- or off-ball cut. Further, pairs of actions are also interpretable — some clearly
correspond to on- and off-ball screens, others correspond drives and passes to various wings. Our use
of probabilistic graphical models on an interpretable representation of the data allows for easier-to-
understand model output and inferences than recent deep learning approaches [13].

In the following section we describe the components of our method that generate action templates
and possession sketches. After describing our method, we explore the structure it reveals by looking at
three of the different organizational tools it makes possible:

e team possession maps: low-dimensional visualization of all of the offensive possessions of a team
— exploring this map reveals different set calls used by a team.

e shot possession maps: low-dimensional visualization of possessions that led to a particular type
of shot — we examine the different types of actions that lead to corner threes.

» possession basis: common and repeated actions discovered by the model — this establishes the
types of player interaction that make up the “vocabulary” of a basketball possession.

By integrating machine learning methods, statistics, and visualization, this work shows that we can
organize and systematically explore NBA possessions, allowing us to drive useful basketball intelligence
from the NBA's vast and growing store of player-tracking data.

2 Methods

This section details the machine learning model we construct to recognize patterns at two resolutions:
spatiotemporal patterns in individual player trajectories (action templates), and co-occurrence of ac-
tions in each possession (possession sketches).

Before we go into further detail, the overall procedure behind our method can be broadly decom-
posed into the following steps

e Segmentation: We cut possession-length (e.g. 5-24 second) player trajectories into shorter, more
manageable segments (e.g. .6-8 second) based on moments of sustained low-velocity.

e Learning action templates: We formulate a novel statistical clustering algorithm to learn which
action is represented by each short segment.

 Possession modeling: We represent each possession as a “bag” of pair-actions, and fita possession-
level hierarchical model inspired by the document modeling and natural language processing lit-
erature.

The following subsections describe the process of applying the above steps to a large data set of bas-
ketball player-tracks.

2.1 Data and preprocessing

We analyze a database of player-tracks from the 2014-2015 season of the NBA. The data are organized
into over N = 190,000 possessions (and possessions into quarters and games). For each possession
(indexed by n), we model the trajectories of players on offense. For each player (indexed by j) in posses-
sion n, we cut their trajectory (denoted ac;n)) into short segments at locations of sustained low-velocity.
To do this, we first detect moments of low velocity by inspecting the smoothed first difference of the
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Figure 1: Examples of trajectory segments resulting from the “sustained-low-velocity-moment” finding
algorithm. In each example, the left plot depicts the spatial trajectory with cut points denoted by the red
dots (with the order of the cuts labeled). The right plot depicts the approximate magnitude of the velocity

at each moment during the possession, with the corresponding cut points.

trajectory. At sustained moments of low velocity (> .25 seconds below a threshold of .1 feet per sec-
ond), we cut the possession, resulting in a collection of shorter segments. Figure 1 depicts four example
trajectories, cut into various number of segments.

We refer to these shorter segments as acgf), . :cgs), where it is understood that .S varies from pos-
session trajectory to trajectory. The resulting short segments are on average 2.25 seconds (the interior
95 percentiles ranges from 0.6 to 7.96 seconds). Applying this preprocessing step to the full 2014-2015

regular season creates a data set of roughly 4.5 million segment observations.

2.2 Action Templates: Segment Clustering

Our method assumes that each short trajectory segment represents some discrete action, and each
player performs a series of actions throughout the course of a possession. For instance, a player might
(i) make a cut along the baseline and then (ii) camp out in the corner. Alternatively, a player can (i)
make a cut along the 3-point line, (ii) stand at the break, and then (iii) cut toward the basket. In order
to decompose a player’s trajectory into a set of actions, we must first infer a meaningful set of actions
that all players share. We use a data-driven approach to infer this set of actions, each action’s structure,
and the action label for each trajectory segment.

To accomplish this, we construct a probabilistic clustering algorithm tailored for functional data
(i.e. continuous trajectories). Our model posits that each trajectory segment represents one of V' dis-
crete actions, where each action is characterized by a template. Each template can be thought of as a
cluster center in a clustering model — each trajectory segment is centered around a cluster with some
deviation. We specify each template as a Bezier curve - a tool commonly used to model movement in the
computer graphics community - which specifies a function B(¢) that maps time to a two-dimensional
point, B : [0,1] — R2. This maps out a dynamic curve through space, which describes the movement
of each action. See the appendix for technical details.

Figure 2 depicts a sampling of learned templates resulting from fitting a mixture of V' = 250 Bezier
curves to the processed trajectory segments. The result of the model fit allows us to succinctly represent
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Figure 2: A sampling of action templates. Our method automatically builds a taxonomy of commonly
repeated movements shared amongall players (i.e. actions). In each column, the top plot depicts the spatial
trajectory for a single action template. The light blue lines are real segment trajectories that fall in that
cluster. Below each action plot is a histogram of segment lengths (in seconds) for all segments that fall into
that cluster — some actions are shorter or longer (on average) than others. For a more dynamic picture
of an action template, please view this animated figure: https://youtu.be/-a6_0t6etmk

each trajectory segment as a single discrete integer, v = 1,...,250. We view these actions as a kind of
vocabulary — each possession combines words in the vocabulary to describe structured interactions
that characterize the possession. Following this thread, we turn to statistical methods originally devised
for modeling documents, and adapt them to basketball sequences.

2.3 Possession Model

Offensive possessions are highly structured. When James Harden drives toward the basket, drawing
defender attention, his teammates are not distributed randomly on the floor — it is likely at that least
one teammate is in the corner waiting for a pass; it is likely that other teammates vacate the paint,
and begin jockeying for a rebounding position. The structure of an offensive possession can be viewed
as structure in the actions that each player performs throughout the possession. Which actions tend
to simultaneously co-occur? Which actions tend to precede or follow other actions? Our possession
model seeks to answer these questions by first observing that these actions are a lot like words. Words
are interwoven sequentially to express a coherent idea; player actions are interwoven sequentially to
implement a coherent strategy. We run with this analogy by adapting topic models [1] to describe se-
quences of actions in basketball possessions.

We use Latent Dirichlet Allocation (LDA) [2], a topic model for unsupervised structure discovery in
a corpus of text documents. LDA is a latent factor model, similar to factor analysis or principal compo-
nents analysis. In document modeling, LDA describes each document as a mixture topics, where each
topic is a distribution over the entire vocabulary of words. As a concrete example, LDA applied to a
corpus of Science articles finds topics corresponding to cancer (e.g. probable words are “tumor”, "cell”,
”"cancer”, etc.), neuroscience (“synaptic”, “neurons”, “hippocampal’, etc.), among many others (see [8, 1]).

We use LDA to describe each possession as a mixture of strategies, where each strategy is a distribu-

tion over co-occurring actions that are frequently observed in the data. LDA requires that we represent
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Figure 3: The “bag of words” construction of each possession. Each “word” represents two actions that
occur simultaneously throughout the course of the possession. In the toy example depicted, we have three
players, each performing a sequence of actions (corresponding to the four colors). Ateach momentin time,
we enumerate all unique pairs of actions. We represent the entire possession as a bag of these pair-action
counts.

each possession as a vector of “word counts”. To do this, we need to first establish a vocabulary.* Our
first approach was to simply count the number of v = 1,...,V actions that occur in each possession.
This approach is appealing in its simplicity, and does reveal interesting structure. However, this repre-
sentation completely ignores temporal structure in the possession.

In this work, we use a vocabulary of pair-actions, where each “word” in the vocabulary is a unique
pair of of the V" actions, (v;, v;) for v;,v; € {1,...,V} and v; # v;. We then represent each possession
as a “bag of simultaneous pair-actions”, mapping the “bag of words” concept from topic models to bas-
ketball actions. For each possession, we simply count the number of times each unique pair of actions
(v = 1,...,V) occurred simultaneously. We string these counts into a single vector, which represent
possession n

Y,,.q = # times action action pair d = (v1,v2) appears in possession n. (D

Figure 3 illustrates the construction of our pair-action vocabulary that we use to succinctly represent
each possession. This representation allows us to easily apply LDA to basketball possessions. To scale
this model to the over 190,000 possessions in the season, we use a newly developed scalable Bayesian
inference technique [9]. See the appendix for technical details.

This model yields a low-dimensional embedding of every NBA play that allows us to quickly as-
sess similarities between possessions and explore the space of team offensive strategies. We can create
interactive graphics (a dynamic version of Figure 5a), where each point in space represents an NBA pos-
session and nearby points indicate “similar” possessions — possessions that share the same pattern of
actions. The following section dives deeper into this exploration tool, and what it can afford an analyst.
The topics themselves encode strategic co-occurrences of actions, and using these topics we can shed
light on the fundamental building blocks of collective action on the basketball court. Inspecting these
topics can help us quantify what exactly makes a unique offense unique.

3 Analysis

In this section, we explore the output of the possession level model to see which patterns are repre-
sented. We focus on the following aspects of model output

*In document modeling, the vocabulary is typically the vocabulary of the language itself, with minimal preprocessing. Bi-
grams and tri-grams are sometimes included as vocabulary words to improve the model.
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Figure 4: The result of fitting a K = 100 topic possession model. A “topic” in our framework corresponds
to a distribution over pairs of actions. Above, we show common pairs of actions from 8 of the 100 top-
ics. We observe that topics tend to pick up on combinations of actions that include common actions. For
instance, the top two pair-actions in topic 0 includes a cut along the 3-point line while a teammate cuts
nearby (perhaps setting an off-ball screen).

 basketball topics: we see which pair-actions are represented by each of the K = 100 topics. This
tells us not only which pair-actions occur frequently, but which pair-actions co-occur in posses-
sions — this will reveal structure

 possession sketch: each possession can be described as a distribution over topics, and “similarity”
can be measured using this topic-loading vector. We explore what “similarity” means for bas-
ketball possessions according to our model, and we empirically test this notion of similarity by
measuring distances between set plays we know are similar.

In the following sections we explore the above concepts by visualizing and exploring possessions in
ways newly afforded by our framework.

3.1 Basketball Topics

Figure 4 graphically depicts a small sampling of “topics” discovered by the possession model. The top-
ics reveal which pair-actions are most common in our data set, and we do see patterns emerge. As a
concrete example, if a particular possession “loads” onto topic 3% then that possession is more likely
to include the pair-actions depicted in Figure 4d — a cut to the basket while a teammate is standing in
either of the two corners. Topic 5 prominently includes possessions with a baseline cut from the right
block to the left break. Note that there are many more pair-actions with significant probability than the
ones depicted, and there are many more topics than we depict.

%i.e. the possession sketch vector is large along the dimension corresponding to topic 3
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tances

Figure 5: Left: map of 2014-2015 Warriors Possessions, with a small set of known “weave” plays high-
lighted in red. The weave plays tend to cluster together in this visualization. We verify this by computing
the average distance between two weave possessions and between a weave and a random warriors pos-
session of a similar length. This indicates that our topic-model-based representation is picking up on

patterns that are able to (mostly) distinguish between semantically different plays.

Sparsity We also notice that each possession topic vector is quite sparse — on average only 8 of the
100 entries are non-zero (on average). This makes intuitive sense — each possession can only include
a small number of offensive patterns from the wide array of available tactics.

3.2 Possession Map Exploration

Each possession has an associated possession sketch — a per-topic vector that describes how much of
each of the basketball topics (a subset illustrated in Figure 4) are featured in that possession. We can
use these possession sketches to reason about large sets of basketball possessions. In this section we se-
lect the offensive possessions of the 2014-2015 Golden State Warriors (over 6,000 possessions). With
each possession succinctly described by a (sparse) 100-dimensional topic vector, we use the dimen-
sionality reduction technique t-SNE [10] to visualize these vectors in 2-dimensions. This method finds
a 2-dimensional representation of each 100-dimensional vector such that the distance in 2-d is simi-
lar to the distance in 100-d (emphasizing the preservation of local distances).®> Figure 5 visualize all
warriors possessions in 2014-2015.

We test the notion of “similarity” in topic space by examining a group of hand-labeled set plays, a
“weave play”. We animate two examples of the weave play in this animated figure: https://youtu.
be/KRDsTLMm7FY. We hand-label 40 weave plays in the 2014-2015 season, and visualize them in the
t-SNE Warriors map (Figure 5a, in red). We can visually verify in Figure 5 that the possession sketch
preserves this notion of similarity — weave plays tend to cluster around other weave plays.

We can further measure this clustering by comparing two distributions of possession sketch dis-
tances: (i) the distribution of distances between two weave plays, and (ii) the distribution of distances
between one weave, and one non-weave play. Figure 5b illustrates these two distributions. The aver-
age distance between the known weave plays is much smaller than the average distance between weave
and non-weave plays. In fact, the nearest neighbor of each weave play is most often itself a weave play,

3For intuition, t-SNE tends to yield a visualization where locally clustered points are close in distance in the full, 100-
dimensional topic space; points that are farther away from each other tend to be far, but could also be close.
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(a) frame 1: (left) Aaron Brooks brings the ball
along the left; (right) Deron Williams brings
the ball along the left
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(c) frame 3: (left) Aaron Brooks curls around
the screen and drives; (right) Brook Lopez sets
a high screen for Deron Williams
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‘@ Johnson

(b) frame 2: (left) Taj Gibson sets a high screen
in the left frame; (right) Deron Williams waits
for a screen in the right frame.
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@ Johnson

(d) frame 4: (left) Aaron Brooks attacks the
basket; (right) Deron Williams curls around
the screen and drives

Figure 6: An example of two very similar possessions: each sub-figure displays key frames from two pos-
sessions — one where Chicago has the ball and one where Brooklyn has the ball. These frames highlight
similar features between the two possessions. For a clearer picture of “possession similarity”, please nav-
igate to https://youtu.be/0J1j6xekxel to see these plays animated.

highlighting the potential of our technique to quickly find a collection of plays similar to a chosen play.

3.3 Between Team Nearest Neighbors

Our method also identifies similar possession structure between different teams. To highlight this, we
select a play at random, and search through the entire database of 190,000 possession sketches to find
the most similar play. The resulting two possessions are compared in Figure 6. Chicago is on offense in
our first possession, and Brooklyn is on offense in the nearest-neighbor possession.

We examine what exactly is similar between these two possessions — which basketball patterns are
being modeled by our method. There are a handful of salient similarities: (i) the point guard brings the
ball up the left side of the floor in each possession; (ii) a player sets a high screen on the left side, and
the point guard curls around the screen toward the middle with the ball; (iii) through both possessions
a player camps out in the weak-side corner three; (iv) the point guard attacks through the middle of
the paint. The possession sketch contains this information — and we can further inspect the particular
basketball topics for this possession to see how this information is summarized in our model.

3.4 Corner Threes

In this section we explore possession sketch similarity in the context of a particular type of shot — a
corner three. We first sub-select the 2014-2015 data to possessions that include corner three-point
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(b) Left cluster example: key frames (c) Right cluster example: key frames

Figure 7: Corner Three. The left pane cluster examples are similar in that they include a drive to the
basket, and a pass to a teammate camping out in the corner. The right pane cluster esamples are similar
in that they include a baseline cut toward the corner in which the shot is taken. Please see the animated
figures at https://youtu.be/hUuPkE06rX4 (left), and https://youtu.be/mMcWuqgrjlw (right).

shots for three teams: the Warriors, the Rockets, and the Spurs. We then apply t-SNE to visualize the
resulting shots in Figure 7a. We can immediately notice that the possession sketches that lead to corner
threes overlap significantly between teams, however there are some regions of the space in which the
Rockets are more likely to inhabit than the Spurs.

We examine the structure of the possession-map clusters by zooming in on two groups on the op-

2017 Research Papers Competition
G Presented by:

LYTIC



https://youtu.be/hUuPkE06rX4
https://youtu.be/mMcWuqgrj1w

O MIT SLOAN
gzl SPORTS ANALYTICS CONFERENCE

MARCH 3 - 4, 2017 HYNES CONVENTION CENTER

posite side of the map. Figure 7 compares two possessions in the cluster in the left-pane to two pos-
sessions in the cluster in the right pane. An immediate difference between the two clusters is that the
right pane includes a baseline cut toward the corner in which the shot is taken, whereas the left pane
includes a drive into the middle, and a pass out to a player camping out in the corner.* Indeed, these
are two very different ways of ending up with a corner three point attempt, and our method identifies
this and allows us to efficiently explore this different structure.

4 Discussion

Related work This paper develops a framework for exploring interpretable patterns in player-tracking
data — applications of this framework can enhance player evaluation and media consumption. A similar
system for measuring play similarity was developed in [12], based on point-wise similarities in trajec-
tories. We take a more data-driven and global approach — we use scalable machine learning techniques
to fit a probabilistic model to an entire season’s worth of player tracking data, directly modeling player
interactions. The result is a more interpretable, succinct, and scalable decomposition of possessions.

In [4, 3], the authors propose a stochastic process model to measure the moment-by-moment ex-
pected possession value (EPV) of a basketball sequence. They handcraft a set of basketball states that
are used in the model. Our approach is more of a data-driven decomposition of basketball states that we
use for exploration (but could be used within an EPV model). Other examples that develop data-driven
representations from player-tracking data can be found in [11, 7, 6].

Future work and conclusion There are multiple avenues for future work. Firstly, we can improve
the action-template method by inferring the number of actions using more sophisticated methods, such
as Bayesian nonparametrics. The action templates should also have more temporal structure — auto-
correlation and dynamic variance. Further, our possession sketch ignores much of the temporal infor-
mation in each possession (a trade-off for statistical and computational efficiency). A future project
could further describe the time-varying nature of possession strategies, which, for example, would al-
low us to identify which possessions may have started out in a “weave” set, but broke down into a
different sequence.

Insight derived from player-tracking data has been promised more than delivered. We reduce this
gap by devising a method that will have a profound impact on the use of player-tracking data for analy-
sis — from summarizing situational statistics (e.g. how often did the “weave” play succeed?), to search-
ing for similar plays (e.g. for post-game analysis), to discovering and quantifying previously unknown
habits of interaction between players (e.g. for team-specific scouting).
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A Appendix

A.1 Segment Clustering Model Details

Our clustering model specifies V' Bezier curve components, B, : [0,1] — R?, each parameterized by
6, € RP*2 where P is the number of control points used to characterize the curve.®

B, (t:0,) = 01 Dp (1) @)

Dp(t) = (I;)tp(l—t)Pp forp=0,...,P—1) (3)

Importantly, each curve can be specified as a linear function with respect to parameters 6,, with a non-
linear (but fixed) basis in time, Dp(t). Bezier curves are a natural choice for these data — they are
flexible, concisely parameterized, and easy to fit. The non-linear basis in time allows for a wide variety
of template shapes.

The complete functional clustering model is specified as

zj(?) ~ Pr(action|r) action type 4)

335?)75 ~ N (B,(t,0,),%,) location at moment ¢ (5)

We use maximum likelihood to learn parameters 6,,, 7, and ¥, (and therefore each action) directly from
the data set of 4.5 million trajectory segments. To do so efficiently, we devise expectation maximization
[5] updates that exploit the linear structure of Bezier curves — each maximization step can be computed
using weighted least squares. Further, each expectation step can operate on each segment in parallel,
allowing us to scale our method up to the 4.5 million trajectory segments. We omit the technical details
of the inference procedure in this writeup for brevity.

A.2 Topic Model Details

Conceptually, LDA defines K topics, ¢y, each a distribution over actions. Each observed possession is
characterized by some latent distribution over topics, 7(™), which describes the probability that a par-
ticular topic is expressed in possession n. These two distributions — possession-specific proportions
and global topics — determine the probability of observing any particular action in possession n. LDA
posits the following data generating process to give rise to the matrix of counts

¢ ~Diry(ag) fork=1,.... K (6)
7 ~Dirg(a) forn=1,...,N (7
Ym: ~ Mult(Mn7p = Zﬁlin)(bk) [8)

k

where M, is the total number of actions present in possession n (a fixed constant). We use statistical
inference techniques to infer both the global topics, ®, and the possession-specific proportions, 7(™)
for all possessions. Due to the size of the dataset, we use stochastic variational inference [9], a scalable
method for Bayesian inference in hierarchical models.

SMore control points allow for more flexibility in fitting shapes — we use 10 control points in our experiments
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