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Abstract	

This	paper	develops	a	novel	statistical	method	to	detect	abnormal	performances	in	Major	
League	Baseball.	Abnormally	high	levels	of	performance	may	be	caused	by	myriad	factors	including	
performance	enhancing	drugs	(PEDs),	banned	equipment	which	offers	unfair	advantages,	and	
illegal	surveillance	of	opponents.	The	career	trajectory	of	each	player’s	yearly	home	run	total	is	
modeled	as	a	dynamic	process	which	randomly	steps	through	a	sequence	of	natural	ability	classes	
as	the	player	ages.	Performance	levels	associated	with	the	ability	classes	are	also	modeled	as	
dynamic	processes	that	evolve	with	age.	The	resulting	switching	Dynamic	Generalized	Linear	Model	
(sDGLM)	models	each	player’s	natural	career	trajectory	by	borrowing	information	over	time	across	
a	player’s	career	and	locally	in	time	across	all	professional	players	under	study.	Potential	structural	
breaks	from	the	natural	trajectory	are	indexed	by	a	dynamically	evolving	binary	status	variable	that	
flags	unnaturally	large	changes	to	natural	ability,	possibly	due	to	unnatural	causes	such	as	PED	
abuse.	We	develop	an	efficient	Markov	chain	Monte	Carlo	algorithm	for	Bayesian	parameter	
estimation	by	augmenting	a	forward	filtering	backward	sampling	(FFBS)	algorithm	commonly	used	
in	dynamic	linear	models	with	a	novel	Polya-Gamma	parameter	expansion	technique.	We	validate	
the	model	by	examining	the	career	trajectories	of	several	known	PED	users	and	by	predicting	home	
run	totals	for	the	2006	season.	The	method	is	capable	of	identifying	both	Barry	Bonds	and	Mark	
McGwire	as	players	whose	performance	increased	abnormally,	and	the	predictive	performance	is	
competitive	with	a	Bayesian	method	developed	by	Jensen	et	al.	(2009)	and	two	other	widely	
utilized	forecasting	systems.		

1. Introduction	
For	the	last	three	decades,	Major	League	Baseball	(MLB)	has	been	significantly	impacted	by	
anabolic	steroids	and	human	growth	hormone	(HGH).	It	is	widely	believed	that	these	substances,	
collectively	referred	to	as	performance	enhancing	drugs	(PEDs),	allow	players	to	build	more	muscle	
mass	and	recover	more	quickly	from	injuries	than	is	naturally	possible.	One	result	of	PED	use	in	
baseball	is	that	players	perform	at	higher	levels	later	in	their	careers	than	they	would	otherwise.	As	
physical	ability	diminishes	with	age,	PEDs	compensate	for	natural	loss	in	ability	and	artificially	
inflate	player	performance.	As	a	result,	historical	milestones	in	baseball	have	been	artificially	
surpassed	in	the	1990s	and	early	2000s.	Not	only	have	PEDs	led	to	unprecedented	levels	of	
performance,	they	have	also	interfered	with	fair	competition	and	generated	profits	for	players,	
team	owners,	and	television	networks.		For	these	reasons,	PED	use	in	baseball	has	been the	subject	
of	investigations	by	journalists	(Fainaru-Wada	and	Williams,	2007),	law	enforcement	(Gaines,	
2014),	MLB	itself	(Mitchell,	2007),	and	the	United	States	Congress	(Jung,	2005).		

PEDs	are	part	of	a	broader	set	of	performance	enhancers	that	illegally	provide	a	player	with	unfair	
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competitive	advantages.	We	define	illegal	performance	enhancers	to	be	any	substance,	pieces	of	
equipment,	in-game	strategies,	or	other	methods	which	increase	a	player’s	performance	and	are	
forbidden	by	Major	League	Baseball.	Corked	bats,	stolen	pitch	signals,	and	illegal	surveillance	also	
fall	into	the	class	of	performance	enhancers,	all	of	which	lead	to	offensive	outcomes	that	are	
artificially	inflated.		

In	this	paper,	we	develop	a	novel	statistical	method	to	identify	players	whose	offensive	
performance	exhibits	structural	breaks	that	are	inconsistent	with	a	player’s	natural	growth	and	
aging	process.	We	propose	a	hierarchical	Bayesian	model	for	a	player’s	home	run	count	trajectory	
over	the	course	of	his	career.	Our	model	allows	for	natural	variation	in	a	player’s	home	run	total	
across	age.	It	also	allows	us	to	identify	players	whose	home	run	total	is	inconsistent	with	the	
variability	in	performance	by	players	of	the	same	age	and	natural	ability.	Home	run	totals	which	are	
extreme	outliers	relative	to	totals	from	players	of	the	same	age	and	natural	ability	may	be	indicative	
of	an	artificial	increase	in	performance.	Our	model	formalizes	this	unexplained	increase	in	
performance	with	what	we	call	an	abnormal	performance	(AP)	indicator.		

Several	papers	in	the	literature	have	examined	player	performance	as	a	function	of	age.	Berry	et	al.	
(1999)	model	the	effects	of	age	on	performance	in	baseball	nonparametrically.	Each	player’s	age	
curve	is	modeled	as	a	deviation	from	the	mean	aging	curve.	Albert	(2002)	models	a	player’s	ability	
to	create	offense	with	a	quadratic	function.	Fair	(2008)	extends	the	model	of	Albert	(2002)	by	
allowing	for	two	distinct	quadratic	functions.	The	model	imposes	smoothness	in	careers	by	
requiring	the	quadratic	functions	to	be	equal	at	the	peak	performance.	Fair	(2008)	finds	that	
players	reach	their	peak	performance	at	approximately	28	years	of	age.	Jensen	et	al.	(2009)	model	
age	curves	with	cubic	B-splines	and	allow	for	an	elite	ability	indicator.		

B-spline	and	quadratic	models	of	ability	assume	smooth	age	curves.	While	we	agree	that	natural	
age	curves	should	change	incrementally	with	time,	it	has	been	observed	in	recent	years	that	abrupt	
changes	sometimes	occur	in	player	performance.	As	an	example,	Nieswiadomy	et	al.	(2012)	
determine	that	two	separate	structural	breaks	occur	in	the	performance	of	Barry	Bonds.		

To	allow	for	both	slowly	varying	age	curves	and	structural	breaks,	we	combine	a	dynamic	process	
for	natural	ability	with	jumps	that	are	due	to	the	abnormal	performance	(AP)	status	variable.	We	
model	performance	trajectories	as	a	function	of	age	with	sticky	Markov	switching	between	a	finite	
and	fixed	number	of	different	ability	classes.	Our	abnormal	performance	indicator	and	the	
associated	increase	in	player	performance	allow	for	large	jumps	in	player	performance.		

The	sequence	of	a	player’s	membership	in	ability	classes	is	modeled	as	a	Markov	process.	The	
probability	of	membership	in	an	ability	class	at	time	t+1	depends	only	on	the	current	ability	class	at	
time	t.	The	Markovian	switches	in	ability	class	are	guided	by	a	sequence	of	transition	matrices	
which	are	indexed	by	age.	The	transition	matrices	are	constructed	to	formalize	our	prior	belief	that	
a	player	begins	his	career	at	a	moderate	ability	level,	increases	in	ability	until	the	age	of	28,	and	
gradually	decays	in	ability	thereafter.	This	prior	belief	is	informed	by	data	on	MLB	player	
performance	prior	to	1990	and	work	by	Fair	(2008).		

Our	natural	trajectory	model	allows	incremental	changes	in	ability	every	time	there	is	a	shift	in	the	
player’s	natural	ability	class.	We	use	a	switching	model,	instead	of	a	fixed	DGLM,	because	it’s	
unreasonable	to	assume	that	a	player	never	improves	or	gets	worse	in	his	ability	to	hit	home	runs.	
If	that	were	the	case,	we	would	know	everything	about	a	player’s	future	performance simply	by	
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knowing	where	he	ranks	in	the	first	couple	of	years	of	his	professional	career.	Instead	of	comparing	
smooth	and	jumpy	career	trajectories,	we	are	trying	to	distinguish	between	small	shifts	and	large	
jumps	in	performance.		

The	remainder	of	this	paper	is	structured	as	follows:	Section	2	describes	the	nature	and	pre-
processing	of	the	data;	Section	3	presents	the	model	that	we	bring	to	the	data;	Section	4	discusses	
the	prior	distributions	we	elicit	for	model	parameters	and	latent	variables;	Section	5	outlines	our	
MCMC	algorithm	for	model	fitting;	Section	6	presents	inference	results	for	abnormal	performances,	
discusses	reproducibility,	one	year	ahead	forecasting,	and	identifiability	of	ability	class	and	AP	
status;	Section	7	concludes.  

2. Data	
The	data	used	in	our	analysis	comes	from	Lahman’s	Baseball	Database	(Lahman,	2014).	The	
database	contains	complete	offensive	and	pitching	statistics	for	every	Major	League	Baseball	player	
since	1871.	Data	from	1871	to	1949	is	ignored,	as	its	relevance	to	modern	baseball	is	limited.	When	
exploring	the	1950-2014	home	run	data	by	calendar	year,	it	appears	that	there	are	two	distinct	
eras.	Baseball	is	known	for	having	different	eras	throughout	its	history.	Figure	1a	demonstrates	
that	after	1990,	percentiles	for	the	distribution	of	home	run	totals	increase.	

	

Figure	1a	also	demonstrates	that	the	distribution	of	home	run	totals	is	fairly	stable	between	1950-
1989.	We	call	this	the	post	World	War	II	era.	The	data	from	1990-2014	is	what	we	call	the	PED	era.		

In	this	paper,	we	restrict	our	focus	to	players	with	at	least	40	at	bats	in	a	season	during	the	PED	era.	
Players	falling	below	40	at	bats	in	a	season	are	considered	reserve	players	and	not	the	focus	of	our	
investigation.	If	the	player	had	60	at	bats	in	1991,	only	30	at	bats	in	1992,	and	150	at	bats	in	1993,	
the	player	would	be	in	our	sample	in	1991	and	1993	only.		

In	order	to	share	information	across	player	careers	that	occur	in	different	calendar	years,	we	align	
players	by	age.	The	primary	assumption	behind	this	alignment	is	that	from	1990	to	2014,	the	
factors	that	influence	the	length	and	productivity	of	a	career	are	constant.	In	other	words,	it	is	not	
important	whether	a	player	was	25	years	old	in	1992	or	2002.	The	only	factor	that	matters	in	a	
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player’s	home	run	production	is	that	the	player	is	25	years	old.	In	this	way,	we	re-index	the	
temporal	dimension	of	the	data.	Figure	1b	presents	the	total	number	of	players	in	the	1990-2014	
sample	by	age.	We	exclude	from	the	analysis	ages	which	have	fewer	than	50	players	in	the	sample.	
This	prevents	us	from	having	many	empty	or	sparsely	populated	ability	classes.	With	this	threshold,	
the	youngest	player	in	our	sample	is	21	years	old.	The	oldest	player	in	our	sample	is	40	years	old.	
Our	data	set	includes	players	at	all	ages	in	between.		

Table	1	demonstrates	the	age	alignment	process	for	Ken	Griffey	Jr.	and	Albert	Pujols.	The	left	panel	
of	the	table	presents	their	home	run	totals	by	year.	Note	that	their	careers	overlap	but	do	not	occur	
in	the	exact	same	years.	The	right	panel	presents	the	same	home	run	totals	aligned	by	player	age.		

 

The	home	run	data	from	the	PED	era	is	summarized	in	Figure	2a.	The	maximum	home	run	total	for	
a	single	season	in	MLB	history	is	73.	It	was	recorded	by	Barry	Bonds	in	2001	when	he	was	36	years	
old.	Bonds	also	holds	the	career	home	run	total	record	at	762	career	home	runs.	Note	that	while	the	
mean	of	the	distribution	increases	very	slightly	in	the	late	20s,	the	distribution	for	the	number	of	
home	runs	is	fairly	flat	across	age.	Although	the	number	of	outliers	in	the	distribution	does	increase	
with	time,	this	increase	corresponds	to	the	growing	number	of	players	in	the	sample	as	shown	in	
Figure	1b.	We	believe	the	flatness	in	Figure	2a	is	due	to	the	selection	bias	in	the	sample.	Only	very	
talented	baseball	players	reach	MLB	at	young	ages.	Similarly,	only	very	talented	players	continue	to	
play	in	their	late	30s	and	early	40s.	For	this	reason,	there	is	no	distinguishable	rise	or	fall	in	the	first	
and	third	quartiles	of	the	distribution	for	home	run	totals.		

One	challenge	with	examining	the	distribution	of	home	run	totals	as	a	function	of	age	is	that	players	
in	the	peak	of	their	career	are	given	more	at	bats.	We	examine	the	empirical	distribution	of	home	
run	rates	by	age	in	Figure	2b.	The	home	run	rate	is	defined	as	the	number	of	home	runs	hit	in	a	
season	divided	by	the	number	of	at	bats	recorded.	Note	that,	while	the	number	of	outliers	in	the	
distribution	increases	slightly,	this	distribution	is	also	roughly	flat	during	the	peak	years	of	the	
career.	Elite	players	are	present	in	this	sample	at	both	early	and	late	ages.		
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3. Model	
Our	hierarchical	model	consists	of	a	binomial	sampling	model	for	player	home	run	totals	and	three	
sub-models	for	the	dynamics	of	(1)	the	ability	class	levels;	(2)	the	ability	class	transitions;	and	(3)	
the	abnormal/natural	performance	transitions.	This	hierarchical	framework	is	summarized	
graphically	in	Figure	3.	The	top	nodes	in	the	graph	denoted	by	yi,t	correspond	to	home	run	totals	
for	a	specific	player.	The	nodes	in	the	second	level	of	the	hierarchy,	ηi,t,	are	the	player-specific	log	
odds	ratios	of	hitting	a	home	run.	The	log	odds	depends	on	the	three	sub-models	for	ability	level	
(θt),	ability	class	(γi,t),	and	the	player	level	abnormal	performance	indicator	(ζi,t).		

	

The	hierarchical	approach	allows	us	to	jointly	model	complex	dynamic	patterns	in	home	run	totals	
for	a	diverse	population	of	players.	For	the	ability	class	levels,	we	leverage	state-space	models	to	
approximate	smooth	ability	curves.	The	probability	models	which	govern	ability	class	and	
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abnormal/natural	performance	transitions	are	informed	by	existing	literature.		

In	our	framework,	the	sequence	of	a	player’s	home	run	total	is	indexed	by	time	points	t	=	1,...,20	
which	correspond	to	ages	21,...,40.	At	each	time	t,	there	are	nt	players	in	the	sample.	The	set	of	
players	which	are	active	at	time	t	is	indexed	by	i	∈	{1,...,nt}.	The	sequence	of	nt	values	is	graphically	
depicted	in	Figure	1b.	Ni,t	denotes	the	number	of	at	bats	for	player	i	at	time	t.	In	those	Ni,t	at	bats,	
player	i	hits	yi,t	home	runs.	

3.1. Sampling	model	and	ability	level	dynamics	
Associated	with	each	player	i	at	time	t	is	an	unobserved	probability	of	hitting	a	home	run	in	a	single	
offensive	trial.	The	probability	of	hitting	a	home	run	depends	on	the	player’s	latent	natural	ability	
class,	which	is	denoted	by	γi,t,	and	abnormal	performance	(AP)	status,	which	is	denoted	by	ζi,t.	
Because	the	probability	of	hitting	a	home	run	is	a	function	of	both	ability	class	and	AP	status,	we	
denote	it	by	μi,k,z,t,	where	k	is	a	realization	of	random	variable	γi,t,	the	latent	ability	class,	and	z	is	a	
realization	of	the	random	variable	ζi,t,	the	AP	indicator.	The	γi,t	class	membership	variable	takes	
value	k	∈	{1,...,K}.	The	natural	ability	classes	are	ordered,	with	players	in	class	k	hitting	home	runs	
at	a	lower	rate	than	players	in	class	k	+	1.	The	ζi,t	AP	indicator	is	a	binary	random	variable.	If	a	
player’s	performance	is	abnormally	inflated	in	some	way,	ζi,t	=	1.	If	a	player’s	performance	is	
natural,	ζi,t	=	0.		

The	total	number	of	home	runs	hit	by	player	i	in	year	t	is	modeled	with	a	binomial	probability	
distribution.	Observations	for	players	of	the	same	age,	ability	class,	and	AP	status	are	independent	
and	identically	distributed.	We	follow	Jensen	et	al.	(2009)	and	condition	on	each	player’s	yearly	at	
bat	total,	Ni,t,	throughout	the	paper.		

	

The	unobserved	probability,	μi,k,z,t,	is	the	logistic	transformation	of	a	parameter,	ηi,k,z,t.		

	

The	ηi,k,z,t	parameter	is	the	log	odds	of	hitting	a	home	run	in	a	single	at	bat	for	a	player	belonging	
to	ability	class	k	with	AP	status	z.	We	induce	autocorrelation	in	the	marginal	distribution	for	ηi,k,z,t	
across	age	with	an	underlying	state-space	representation.	For	each	ability	class,	k,	there	is	a	
random	ability	level,	θk,t.	θk,t	is	the	state	variable	for	class	k	at	time	t.	Similarly,	for	players	with	
abnormally	increased	performance,	there	is	a	random	increase	in	log	odds,	denoted	by	θAP,t.	The	
log	odds	ηi,k,z,t	is	the	sum	of	the	level	for	ability	class	k	and	the	increase	in	log	odds	associated	with	
an	abnormal	performance.		
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The	parameter	θk,t	should	be	interpreted	as	the	log	odds	of	hitting	a	home	run	in	a	single	at	bat	for	
a	player	that	belongs	to	natural	ability	class	k	without	performance	inflation	(i.e.	ζi,t	=	0).	θAP,t	
should	be	interpreted	as	the	increase	in	log	odds	associated	with	an	abnormal	performance	(i.e.	ζi,t	
=	1).	Realization	z	of	the	indicator	variable	ζi,t	takes	values	on	{0,	1}	so	that	only	players	whose	
performance	is	abnormally	enhanced	receive	the	additive	increase	to	the	log	odds	of	hitting	a	home	
run.		

For	computational	purposes,	it	is	convenient	to	represent	ηi,k,z,t	as	the	vector	product	of	a	
regression	vector,	Fi,k,z,t	and	a	state	variable,	Θt.	The	state	variable,	Θt	is	a	(K	+	1)	×	1	vector	
containing	the	log	odds	parameters	for	each	respective	ability	class	and	θAP,t.		

	

The	dynamic	regression	vector,	Fi,k,z,t	will	select	from	Θt	the	particular	components	that	impact	
the	overall	log	odds	of	player	i	hitting	a	home	run	at	age	t.	As	an	example,	if	K	=	3,	γi,t	=	2,	and	ζi,t	=	

1,	then	Fi,2,1,t	=	(0,	1,	0,	1)
′.	That	is,	the	second	entry	of	Fi,2,1,t	will	be	unity	to	encode	the	

membership	of	player	i	at	time	t	in	class	2.	Similarly,	the	last	entry	of	Fi,2,1,t	will	be	unity	since	ζi,t	=	

1.	If	γi,t	=	3	and	ζi,t	=	0,	then	Fi,3,0,t	=	(0,0,1,0)
′.	While	it	is	possible	to	include	covariates	such	as	a	

player’s	position	and	ballpark	in	the	state-space	representation,	we	assume	that	these	effects	are	
absorbed	into	a	player’s	latent	ability	class	membership.		

The	dynamics	of	the	concatenated	Θt	follow	a	random	walk.	As	noted	in	Ferreira	et	al.	(2011),	the	
random	walk	model	for	Θt	should	be	interpreted	as	a	discretized	first-order	Taylor	series	
approximation	of	smooth	time-varying	functions	for	ability	class	levels.	One	consequence	of	this	
model	is	that	players	having	the	same	latent	ability	class	and	identical	AP	status	are	stochastically	
equivalent.		

	

In	our	analysis,	we	let	Wt	
(K+1)×(K+1)	

=	W	=	.5×C0,	where	C0	is	the	prior	covariance	matrix	for	
Θ0. 	

3.2. Ability	class	and	abnormal	performance	transitions	
We	model	player-level	AP	status,	ζi,t,	and	latent	class	membership,	γi,t,	with	two	independent	

Markov	chains	with	transition	matrices	Qγt	and	Q
ζ
t	.	Q

γ
t,k,j	represents	the	element	in	the	k

th	row	

and	jth	column	of	Qγt	.	An	identical	notation	is	used	for	matrix	Q
ζ
t	.		
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The	matrices	Qγt	and	Q
ζ
t	are	assumed	known	at	all	times.	While	specific	construction	of	these	

transition	matrices	will	be	discussed	in	detail	in	Section	4,	it	is	worth	noting	a	few	important	

properties	of	these	Markov	chains.	The	most	important	property	is	that	Qγt	and	Q
ζ
t	are	constructed	

so	that	player-level	latent	class	membership	and	AP	transitions	are	sticky.	If	a	player	belongs	to	an	
elite	ability	class	at	time	t,	it	is	likely	he	will	also	belong	to	an	elite	class	at	time	t	+	1.	The	same	
thinking	applies	to	modeling	abnormal	performance	increases.	If	a	player’s	performance	is	
abnormally	inflated	at	time	t,	it	is	more	likely	his	performance	will	also	be	abnormally	inflated	at	

time	t	+	1.	A	second	important	property	is	that	Qγt	is	constructed	so	that	transitions	between	
neighboring	latent	classes	representing	small	changes	in	ability	are	more	likely	than	transitions	
between	latent	classes	representing	drastic	changes	in	ability.	In	Section	6,	we	consider	how	

sensitive	our	inference	is	to	different	choices	of	Qγt	.		

3.3. Likelihood	
Figure	3	presents	the	graphical	model	corresponding	to	a	single	player	across	all	times	t	=	1,	.	.	.	,	T	.	
The	joint	likelihood	can	be	computed	by	utilizing	the	conditional	independencies	encoded	in	the	
graphical	model.	For	notational	simplicity,	we	let	the	full	collection	of	player-level	class	
membership	variables	at	time	t	be	denoted	by	an	nt	×	1	vector	Γt	=	γ·,t.	Similarly,	we	let	the	full	
collection	of	player-level	AP	indicator	variables	be	denoted	by	the	nt	×	1	vector	Zt	=	ζ·,t.	Let	y·,t	=	
{y1,t,...,ynt,t}.	Also	let	N·,t	=	{N1,t,...,Nnt,t}.		

	

The	structure	of	the	binomial	likelihood	will	be	important	in	developing	our	Polya-Gamma	Gibbs	
sampler.		We	will	discuss	the	data	augmentation	strategy	in	more	detail	in	Section	5. 

4. Prior	distributions	
As	noted	in	Section	2,	the	observed	sample	of	players	exhibits	selection	bias.	Only	elite	players	
reach	the	professional	league	at	early	ages.	Similarly,	only	elite	players	are	able	to	continue	to	play	
in	their	late	30s	and	early	40s.	Despite	the	presence	of	selection	bias,	the	prior	distributions	that	we	
elicit	are	for	the	ability	of	an	arbitrarily	chosen	player.	We	elicit	priors	for	an	arbitrary	player	
because	we	aim	to	model	performance	curves	which	are	consistent	with	physiological	aging	
patterns.		

In	this	section,	we	first	elicit	priors	for	the	ability	class	levels	θk,t.	In	Section	4.2,	we	construct	the	
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age-specific	probability	distributions	which	govern	transitions	between	ability	classes	γi,t	and	
γi,t+1.	The	probability	distributions	which	govern	transitions	between	abnormal	performance	
variables	ζi,t	and	ζi,t+1	are	developed	in	Section	4.3.	In	Section	4.4,	we	put	these	different	
components	together	to	examine	the	implied	marginal	prior	distribution	for	the	probability	of	
hitting	a	home	run	as	a	function	of	age.	This	marginal	prior	has	a	realistic	age	curve	because	the	
component	prior	distributions	are	chosen	to	be	consistent	with	information	from	MLB’s	Mitchell	
Report	(Mitchell,	2007),	physiological	aging	patterns,	and	data	from	the	pre-1990	sample.		

4.1. Prior	distributions	for	ability	class	levels	
We	begin	by	eliciting	prior	distributions	on	the	levels	associated	with	each	of	the	K	ability	classes	at	
t	=	0,	θ1,0,	.	.	.	,	θK,0.	Each	θ1,0,	.	.	.	,	θK,0	is	assumed	to	be	Gaussian	distributed	with	parameters	

mk,0	and	σk
2.	The	prior	means	associated	with	each	ability	class,	mk,0,	are	chosen	to	be	equally	

spaced	on	the	log	odds	interval	[−4.5,	−2.25].	On	the	probability	scale,	this	interval	corresponds	to	
[0.01,	0.095].	In	this	analysis,	we	let	K	=	15.	In	Table	2,	the	expectations	of	the	ability	class	levels,	
their	respective	expected	probabilities	of	hitting	a	home	run,	and	the	expected	home	run	totals	for	a	
player	with	500	at	bats	are	presented.	Sensitivity	of	inference	to	difference	choices	of	K	is	discussed	
in	Section	6.		

The	variance	of	the	Gaussian	distributions	for	θ1,0,...,θK,0	is	chosen	so	that	neighboring	densities	
intersect	at	a	fraction,	β,	of	the	density’s	maximum	value,	which	implies	that	𝜎"# =
	− '

(
	(*+,-,/0	*+,/)2

345	(6)
.			In	the	analysis	presented	here,	𝛽 = 	 #

'8
.	Setting	the	prior	variance	𝜎"#	and	

innovation	variance	Wt	to	be	low	makes	it	unlikely	that	label	switching	between	neighboring	
classes	becomes	a	problem	in	our	MCMC	simulation.	In	the	event	that	it	does	and	the	order	of	Θt	is	
shuffled,	we	re-label	the	Θt	in	a	post-processing	step	to	ensure	proper	ordering	and	consistency	

with	the	transition	matrices	Qγt	.		

Recall	that	Wt	=	.5C0,	so	that	the	k
th	element	of	the	diagonal	matrix	Wt	is	

'
#
𝜎"#.	We	choose	to	fix	this	

hyperparameter	rather	than	eliciting	a	hyper	prior	or	using	a	discount	factor	method	(West	and	
Harrison,	1997)	because	of	the	structure	in	the	data.	When	there	are	few	players	in	the	sample	in	
the	younger	and	older	ages,	there	are	many	(near)	empty	ability	classes.	Hyper	prior	and	discount	
factor	approaches	to	modeling	the	dynamic	variance	term	are	computationally	unstable	when	the	
ability	classes	are	empty.	With	this	instability,	all	hope	of	reliably	imposing	an	ordering	on	the	
classes	is	lost.	For	this	reason,	we	fix	Wt.	

As	k	increases,	the	distance	between	the	means	on	the	probability	scale,	denoted	by	πk,0	in	Table	2,	
increases.	While	the	equally	spaced	Gaussian	components	lead	to	distributions	on	the	probability	
scale	that	are	not	equally	spaced,	this	is	somewhat	compensated	for	by	the	associated	increase	in	
variance	in	the	binomial	distributions.	Figures	4c	and	4f	demonstrate	that,	despite	the	apparent	
gaps	in	the	distribution	on	the	probability	scale	evident	in	Figures	4b	and	4e,	home	run	counts	
ranging	from	zero	to	those	exceeding	75	are	well	supported	by	the	prior.	Designing	priors	that	
place	(small)	mass	on	high	home	run	counts	even	without	an	abnormal	performance	increase	is	
important.	It	is	not	desirable	for	the	model	to	flag	all	high	home	run	counts	as	being	abnormal	
performances.		
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The	top	row	of	Figure	4	presents	the	Gaussian	log	ability	level	component	distributions,	the	
implied	distributions	on	the	probability	scale,	and	the	marginal	distributions	for	home	run	totals	in	
each	class.	The	bottom	row	of	Figure	4	shows	the	same	figures	but	shifted	to	the	right	by	the	
stochastic	abnormal	inflation.	The	prior	distribution	for	θAP,0	is	N(0.4,.001).	We	want	the	Gaussian	
prior	to	be	concentrated	tightly	on	significant	increases	in	home	run	hitting	ability.		

4.2. Ability	class	transitions	
Transitions	between	two	classes	at	consecutive	time	points,	γi,t	and	γi,t+1,	are	modeled	with	
Markov	switching.	The	Markov	transition	matrices	depend	on	the	age	of	the	player.	In	all	transition	
kernels,	it	is	likely	that	a	player	remains	in	the	same	ability	class	from	one	year	to	the	next.	
Parameter	α	captures	this	stickiness.	The	higher	α,	the	more	likely	it	is	for	a	player	to	remain	in	his	
current	ability	class.	In	our	analysis,	we	let	α	=	5.		

We	believe	that	a	player’s	ability	class	is	more	likely	to	increase	than	decrease	until	he	reaches	28	
years	of	age.	The	age	28	is	chosen	to	be	consistent	with	the	findings	of	Fair	(2008).	We	encode	this	
belief	in	our	prior	by	designing	the	transition	kernel	to	be	asymmetric	about	the	current	ability	
class.	If	a	player	is	28	years	old	or	younger,	transitions	to	higher	ability	classes	are	more	likely	than	
transitions	to	lower	ability	classes.	For	ages	less	than	28:	 
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Because	the	exponent	decays	twice	as	fast	when	k	<	k′,	transitions	to	classes	with	the	same	or	
higher	levels	of	ability	are	more	likely.		

We	believe	that	a	player	reaches	his	physical	peak	around	28	years	of	age	and	remains	near	that	
peak	until	32	years	of	age.	Between	these	ages,	transitions	are	symmetric	about	the	current	ability	
class.	It	is	equally	likely	that	a	player’s	ability	class	will	increase	as	it	is	that	his	class	will	decrease.	If	
age	is	between	29	and	32,		

	

Once	a	player	reaches	33	years	old,	we	believe	that	his	ability	begins	to	decay.	We	encode	this	belief	
in	our	model	by	favoring	transitions	to	a	lower	ability	class.	After	32	years	of	age,		
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Because	the	exponent	decays	four	times	faster	when	k	>	k′,	transitions	to	lower	ability	classes	are	
heavily	favored.	

We	suppose	that	at	age	18,	players	begin	their	career	in	a	randomly	chosen	class.	The	prior	
distribution	for	the	initial	class	at	age	18	is	proportional	to	a	squared	exponential:	𝑃 𝛾;,8 = 𝑘 ∝

	𝑒0
-
2?("0"/)

2
.	Figure	5a	presents	the	prior	distribution	for	a	player’s	ability	class	at	age	18	with		

c	=	3	and	k0	=	7.	For	players	whose	first	year	in	the	professional	league	occurs	after	age	18,	the	
prior	distribution	for	a	player’s	initial	ability	class	at	the	age	when	he	first	enters	the	sample	is	the	
marginal	probability	distribution	of	classes	implied	by	the	Markov	switching	at	that	age	of	first	
entry.	Figure	5b	presents	the	prior	probability	of	class	membership	across	ages.		

4.3. Abnormal	and	natural	performance	transitions	
In	addition	to	the	Markov	switching	for	ability	class,	we	also	model	the	switching	of	AP	status	with	a	
Markov	process.	Figure	5c	shows	the	marginal	probability	that	ζi,t	=	1	across	age.	The	stationary	
distribution	of	the	Markov	chain	is	chosen	to	be	between	5-7%.	In	2003,	an	anonymous	round	of	
PED	testing	was	performed	by	MLB.	They	found	that	5-7%	of	the	random	sample	of	players	chosen	
tested	positive	for	PEDs	(Mitchell,	2007).	We	use	this	5-7%	as	a	conservative	estimate	of	the	
number	of	players	whose	performances	are	abnormally	inflated.		

The	AP	transition	kernel	is	constant	in	time.	We	specify	the	transition	kernel	to	implement	a	prior	
belief	that	if	a	player’s	current	performance	is	abnormal,	it	will	likely	be	abnormal	in	subsequent	
time	points	as	well.	If	a	player	is	currently	following	a	natural	growth	trajectory,	he	will	likely	
follow	a	natural	aging	pattern	in	the	future.	We	also	choose	the	transition	kernel	to	reflect	the	
desired	stationary	probability	of	5-7%.		
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Note	that	we	do	not	have	information	about	the	use	of	performance	enhancers	by	age.	As	a	result,	
we	want	the	Markov	chain	to	reach	its	stationary	distribution	quickly.	This	is	demonstrated	in	
Figure	5c.		

4.4. Implied	marginal	prior	distributions	
One	way	of	assessing	the	sensibility	of	the	prior	distributions	we	have	elicited	is	to	examine	the	
implied	marginal	prior	distributions	for	home	run	counts	and	probabilities	as	a	function	of	age.	
Figure	6a	presents	the	densities	for	the	marginal	probability	of	hitting	a	home	run	at	ages	20,	25,	
30,	35,	40,	and	45.	We	denote	the	marginal	probability	of	player	i	hitting	a	home	run	at	time	t	as	μi,t.	
The	prior	for	μi,t	favors	moderate	probabilities	at	ages	20	and	35.	For	ages	25	and	30,	the	priors	are	
very	diffuse.	The	densities	are	quite	peaked	at	low	probabilities	for	ages	40	and	45.		

Figure	6b	presents	the	marginal	distribution	for	μi,t	plotted	against	the	age	of	the	player.	The	solid	
black	line	is	the	prior	mean	for	μi,t.	The	dashed	black	lines	represent	the	95%	prior	credible	
interval.	The	solid	red	line	is	the	prior	mean	for	μi,t,ζi,t=1.	That	is,	it	is	the	prior	probability	of	
hitting	a	home	run	for	a	player	who	always	delivers	abnormal	performances.	Again,	the	red	dashed	
lines	represent	the	95%	prior	interval	of	uncertainty.	Figure	6b	demonstrates	two	important	
features	of	the	marginal	prior	distribution	for	μi,t.	The	first	feature	is	that	the	prior	distribution	
encodes	our	belief	that	performance	rises	in	the	early	twenties,	peaks	at	28,	and	diminishes	in	the	
thirties.	The	second	important	feature	is	the	wide	uncertainty	intervals.	We	have	placed	prior	mass	
over	very	reasonable	ranges	of	the	rate	at	which	players	hit	home	runs.		
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In	addition	to	examining	the	marginal	distribution	for	the	probability	of	hitting	a	home	run	as	a	
function	of	age,	we	can	examine	the	implied	marginal	distribution	for	home	run	counts	as	a	function	
of	age.	Figure	7a	presents	the	empirical	distribution	of	home	run	counts	by	age	in	the	post	World	
War	II	sample,	which	spans	1950-1989.	In	this	sample,	outliers	for	home	run	counts	reach	the	
middle	50s	and	low	60s.	Figure	7b	presents	the	marginal	prior	distribution	for	home	run	counts	
excluding	the	abnormal	inflation	effect:	p(yi,t|ζi,t	=	0).	Outliers	in	this	distribution	are	in	excess	of	
75	home	runs.	

Note	that	the	marginal	prior	distribution	is	for	an	arbitrarily	chosen	player	and	is	not	intended	to	
account	for	selection	bias.	Also	note	that	we	have	favored	higher	home	run	counts	than	those	
exhibited	in	Figure	7a	for	two	reasons.	First,	we	believe	modern	medicine,	nutrition,	and	physical	
training	have	increased	the	home	run	production	of	players	when	compared	to	those	in	the	post	
World	War	II	sample.	Second,	we	want	our	method	to	be	conservative	in	detecting	home	run	
anomalies.	We	have	placed	enough	prior	mass	in	elite	natural	ability	classes	that	it	is	possible	with	
our	prior	specification	for	a	player	to	be	a	historically	elite	home	run	hitter	without	the	benefit	of	
abnormal	inflation.	We	don’t	want	all	elite	home	run	hitters	to	be	automatically	flagged	as	abnormal	
by	our	method.	By	placing	prior	mass	on	natural	home	run	totals	which	are	historically	high,	we	
preclude	such	a	scenario.		

	

5. Markov	chain	Monte	Carlo	
The	sDGLM	is	a	switching	state-space	model.	Switching	state-space	models	have	a	long	history	in	
the	time	series	literature	(Shumway	and	Stoffer,	1991;	Kim,	1994;	Fox,	2009).	Traditionally,	
switching	state-space	models	have	been	utilized	to	model	dynamic	processes	in	which	the	observed	
data	is	continuous.	Model	fitting	has	relied	on	Markov	chain	Monte	Carlo	(Fruhwirth-Schnatter,	
2001),	variational	inference	(Ghahramani	and	Hinton,	2000),	and	particle	based	methods	(White-	
ley	et	al.,	2010).	For	discrete	data,	Gamerman	(1998)	developed	a	Metropolis-Hastings	algorithm	
for	the	DGLM.	We	develop	a	Gibbs	sampling	algorithm	that	utilizes	Polya-Gamma	data	
augmentation	(Polson	et	al.,	2013)	for	posterior	inference.	Our	data	augmentation	strategy	allows	
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us	to	use	a	forward	filtering	backward	sampling	algorithm	commonly	used	for	dynamic	linear	
models	(Carter	and	Kohn,	1994;	Frhwirth-Schnatter,	1994).		

Before	outlining	the	MCMC	strategy,	it	is	worth	summarizing	the	parameters	and	state	variables	
that	we	seek	to	estimate.	Our	target	posterior	distribution	is	p(Θ1:T	,	Γ1:T	,	Z1:T	|y·,1:T	).	
Informally,	we	are	trying	to	estimate	one	set	of	parameters	and	two	sets	of	latent	variables.	At	each	
time	point,	we	estimate	the	parameters	θk,t	for	k	∈	{1,	.	.	.	,	K}	and	θAP,t.	In	terms	of	latent	variables,	
for	each	player	and	age,	we	estimate	his	latent	natural	ability	class	membership,	γi,t,	and	his	AP	
status,	ζi,t.		

Because	our	observed	data	has	a	binomial	sampling	distribution,	we	are	able	to	take	advantage	of	
recent	advances	in	data	augmentation	methods	for	Bayesian	logistic	regression.	Polson	et	al.	(2013)	
developed	a	data	augmentation	method	for	logistic	regression	with	a	Polya-Gamma	random	
variable.	We	augment	the	likelihood	for	yi,t	with	a	Polya-Gamma	random	variable	ωi,t.	A	player’s	

home	run	count	yi,t	and	at	bat	total	Ni,t	enter	the	likelihood	through	𝜅;,A = 	 𝑦;,A − 	
CD,E
#
.		

	
The	Polya-Gamma	augmentation	strategy	allows	for	conditionally	Gaussian	updates	of	state	
variables,	Θt.	Because	of	the	conditionally	Gaussian	structure,	it	is	easy	to	implement	a	forward	
filtering	backward	sampling	(FFBS)	algorithm.	MCMC	samples	are	drawn	by	iteratively	sampling	
from	the	following	full	conditionals	in	a	Gibbs	sampler.	

	
We	run	the	Gibbs	sampler	for	20,	000	iterations	and	discard	the	first	10,000	as	a	burn-in.	In	
addition,	we	thin	the	samples	by	only	recording	every	tenth	sample.	This	leaves	us	with	1,	000	post	
burn-in	samples.	The	computation	required	approximately	five	hours	on	a	single	core.	The	R	code	
which	implements	our	MCMC	algorithm	can	be	downloaded	from	the	GitHub	page	
https://github.com/G-Lynn/sDGLM.	

6. Results	
Our	Markov	chain	Monte	Carlo	inference	procedure	provides	us	with	a	full	set	of	posterior	
distributions	for	model	parameters	and	latent	variables.	In	Section	6.1,	we	examine	the	posterior	
distributions	for	ability	class	levels.	We	proceed	to	present	player-specific	inferences	for	Derek	
Jeter,	Mark	McGwire,	Alex	Rodriguez,	and	Barry	Bonds	in	Section	6.2.	In	addition	to	validating	the	
model’s	ability	to	flag	suspicious	performances	for	known	cases	of	PED	use,	we	assess	its	predictive	
performance	in	Section	6.3.	Further,	we	demonstrate	that	our	MCMC	algorithm	generates	
reproducible	inferences	in	Section	6.4	and	discuss	the	sensitivity	of	inference	to	parameter	choices	
in	Section	6.5.		
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6.1. Posterior	distribution	for	ability	class	levels	
We	begin	our	discussion	by	presenting	posterior	distributions	for	each	of	the	K	ability	class	levels	
and	the	increase	in	performance	associated	with	the	AP	indicator.	Figure	8a	shows	the	posterior	
distribution	for	each	of	θk,t.	The	dashed	lines	of	the	same	color	as	the	solid	line	represent	the	95%	
posterior	credible	interval.	At	the	earliest	and	oldest	ages,	the	ability	class	levels	are	generally	
highest.	This	finding	is	consistent	with	selection	bias	in	the	sample.	Elite	players	form	our	sample	at	
the	earliest	and	latest	ages.	As	players	with	a	wider	range	of	natural	abilities	enter	the	sample	in	
their	early	twenties,	ability	levels	drop.	When	players	of	modest	ability	gradually	exit	the	sample	
beginning	in	their	late	twenties,	ability	levels	gradually	rise	again.	

	

While	the	dynamics	of	θk,t	are	not	dramatic,	the	evolution	of	ability	levels	on	the	probability	scale	
suggests	more	dynamic	behavior	in	each	ability	class.	This	is	particularly	true	of	classes	13	through	
15.	Class	15	drops	by	almost	2%	before	increasing	by	1%.	It	makes	sense	that	the	highest	classes	
are	the	most	dynamic	on	the	probability	scale	because	the	logistic	transformation	is	nonlinear.		

The	natural	ability	classes	presented	thus	far	ignore	the	impact	of	the	AP	indicator.	Figure	9a	
presents	the	dynamic	variation	in	the	posterior	distribution	for	θAP,t.	The	dashed	lines	represent	
the	95%	posterior	credible	interval.	For	players	in	their	twenties,	the	mean	of	the	posterior	
distribution	for	θAP,t	is	lower	than	the	t	=	0	prior	mean	of	0.4.	For	players	in	their	thirties,	the	
increase	in	log	odds	associated	with	the	AP	indicator	exceeds	the	expected	value	of	the	prior.		

One	of	the	open	questions	in	the	literature	is	how	much	does	PED	use	inflate	home	run	totals.	
Schmotzer	et	al.	(2008)	estimate	that	steroid	use	increased	the	metric	adjusted	runs	created	in	27	
outs	by	approximately	12%.	In	Figure	9b,	we	present	the	increase	in	probability	of	hitting	a	home	
run	due	to	our	abnormal	performance	indicator.	We	assume	an	ordinary	baseline	player	who	hits	
home	runs	in	5%	of	his	at	bats.	For	players	in	their	late	30s,	having	the	AP	indicator	turned	on	
increases	the	probability	of	hitting	a	home	run	by	approximately	3.7%	for	an	overall	home	run	
probability	of	8.7%.	Another	way	of	stating	this	is	that,	for	the	natural	5%	home	run	hitter,	having	
the	AP	indicator	on	increases	his	home	run	rate	by	approximately	1.75	times.	For	the	same	5%	
home	run	hitter,	having	the	AP	indicator	on	increases	his	home	run	total	by	approximately	18	home	
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runs	in	every	500	at	bats.	

	

6.2. Player	level	inference	
An	important	feature	of	our	model	and	computational	method	is	the	ability	to	make	player	specific	
inferences	for	ability	class	and	AP	status.	Below	we	present	the	inferences	for	Derek	Jeter,	Mark	
McGwire,	Alex	Rodriguez,	and	Barry	Bonds.	It	is	widely	believed	that	Jeter	abstained	from	PEDs	and	
other	illegal	performance	enhancers.	Mark	McGwire	(Kepner,	2010)	and	Alex	Rodriguez	(Weaver,	
2014)	have	admitted	steroid	use,	and	Bonds	has	admitted	that	he	unknowingly	used	steroids	
(Washington	Post,	2011).			While	not	presented	here,	we	have	estimated	ability	class	membership,	
AP	status,	and	ability	curves	for	every	player	in	our	sample.			

In	Figure	10,	we	present	the	ability	class	membership,	probability	that	the	AP	indicator	is	unity,	and	
latent	ability	curve	for	Derek	Jeter.	We	present	the	results	for	Derek	Jeter	to	establish	the	capability	
of	our	method	to	infer	a	traditional	age	curve.	Figure	10a	demonstrates	that	Jeter’s	ability	class	
membership	rises	and	falls	as	human	aging	suggests	it	should.	In	Figure	10b,	the	posterior	mean	of	
ζi,t	is	presented.	Since	ζi,t	is	binary,	one	way	of	interpreting	E[ζi,t|y·,1:T	]	is	the	posterior	point	
estimate	of	the	probability	that	the	performance	of	player	i	in	year	t	is	abnormally	inflated.	Also	
note	that	in	Figure	10b,	there	are	three	sets	of	probabilities	corresponding	to	different	choices	for	
K.	Observe	that	all	three	choices	for	K	demonstrate	the	same	qualitative	behavior.	In	each	of	these	
choices,	Derek	Jeter	has	a	very	low	probability	of	abnormal	performance	across	his	career.	In	
addition,	because	we	do	not	impose	any	thresholding	or	sparsity	in	the	probability,	our	model	does	
not	support	probabilities	that	are	exactly	zero.	The	probabilities	may	be	low,	but	not	zero.	This	
indicates	that	all	low	probabilities	should	be	treated	as	providing	no	evidence	of	abnormal	
performance.	In	Figure	10c,	we	present	the	posterior	inference	for	the	ability	curve	of	Jeter.	This	
ability	curve	includes	the	increase	in	ability	a	player	might	receive	from	performance	enhancers.	
For	each	player	in	the	sample,	it	is	possible	for	us	to	estimate	when	he	reached	his	peak	
performance.	Our	analysis	demonstrates	that	Derek	Jeter	maintained	his	peak	home	run	hitting	
ability	from	approximately	25	to	30	years	of	age	before	his	ability	gradually	diminished.	

We	present	the	results	for	Mark	McGwire	because	he	set	the	single	season	home	run	record	by	
hitting	70	home	runs	in	1998.	Figure	11a	demonstrates	that,	with	a	high	degree	of	certainty,	Mark	
McGwire	is	a	member	of	the	highest	ability	class.	In	addition	to	this	membership	in	the	highest	
ability	class,	Figure	11b	demonstrates	that	his	offensive	output	is	extremely	abnormal.	McGwire	
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was	34	years	old	in	his	record	setting	season	of	1998.	The	ability	curve	for	McGwire,	which	is	
presented	in	Figure	11c,	demonstrates	an	unusual	aging	pattern	where	his	ability	to	hit	home	runs	
continues	to	increase	late	into	his	career.		

	

	

	

One	of	the	challenges	of	detecting	abnormal	performances	is	the	entanglement	of	ability	class	and	
AP	status.	Is	a	player	an	elite	home	run	hitter	because	he	is	a	member	of	an	elite	ability	class?	Or	is	
he	an	elite	home	run	hitter	because	he	uses	performance	enhancers?	Resolving	this	identifiability	
problem	is	critical	to	reliably	inferring	both	ability	class	and	AP	status.	In	this	paper,	we	have	
attempted	to	resolve	the	identifiability	issue	through	the	prior	distribution.	Figures	12	and	13	
present	the	ability	class	membership,	probability	that	the	AP	indicator	is	unity,	and	ability	curve	for	
Alex	Rodriguez	and	Barry	Bonds.	Both	players	were	elite	home	run	hitters	over	the	course	of	their	
careers,	and	both	players	have	been	tied	to	PED	use.	At	the	age	of	32,	Bonds	hit	42	home	runs;	
however,	the	method	only	identifies	Bonds’	performances	as	likely	abnormal	after	the	age	of	35.	
The	method	only	identifies	Rodriguez	as	a	likely	beneficiary	from	an	abnormal	increase	until	the	
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age	of	28,	yet	in	2007,	at	the	age	of	31,	Rodriguez	hit	54	home	runs.	Both	of	these	performances	
demonstrate	that	it	is	possible	for	players	to	record	high	home	run	totals	without	being	definitively	
flagged	by	our	method	as	abnormal.	

	

Figures	12a	and	13a	confirm	the	elite	natural	ability	of	both	Rodriguez	and	Bonds.	Both	players	are	
members	of	the	highest	natural	ability	classes.	Figures	12c	and	13c	provide	an	important	contrast	
in	their	career	trajectories.	While	Rodriguez’s	ability	level	decreases	in	his	late	twenties	and	early	
thirties,	Bonds	ability	to	hit	home	runs	continues	to	increase.		

When	aggregating	AP	status	across	players,	we	get	a	sense	of	the	proportion	of	the	population	
whose	performance	is	abnormally	inflated.	Figure	14a	presents	the	posterior	distribution	of	the	
expected	proportion	of	the	population	with	abnormally	inflated	performances.	Formally,	it	is	the	
distribution	of	the	posterior	mean	across	the	sample:	E[Zt|y·,1:T].	The	prior	distribution	for	AP	
status	elicited	in	Figure	5c	demonstrated	that	the	prior	probability	of	abnormal	performance	
quickly	reached	a	stationary	distribution	around	5%.	The	posterior	expectation	presented	in	14a	
hovers	around	5%	in	the	early	and	mid	twenties	and	then	significantly	increases	in	the	late	thirties.		

 



	

	 20	

2016	Research	Papers	Competition		
Presented	by:	

At	age	40,	the	expected	proportion	of	players	whose	performance	is	abnormally	inflated	is	15%.	
The	posterior	distribution	of	E[Zt|y·,1:T	]	indicates	that	as	players	age,	they	are	significantly	more	
likely	to	be	flagged	for	abnormal	performances.		

	

Figure	14b	presents	the	posterior	distribution	of	E[ζi,t|y·,1:T	]	for	the	full	population	at	each	age.	
Each	point	in	the	distribution	is	the	expected	value	of	ζi,t	for	a	single	player.	Figure	14b	shows	that	
most	players	are	not	associated	with	performance	inflation.	It	is	interesting	to	observe	the	
continuum	of	the	distribution.	Mass	in	the	posterior	is	concentrated	near	zero	with	outliers	being	
distributed	along	the	continuum	of	probabilities	from	zero	to	one.	It	is	important	that	the	method	
be	able	to	express	its	uncertainty	over	player	level	AP	indicators	with	expected	values	in	the	middle	
of	the	unit	interval.		

6.3. Prediction	
In	addition	to	validating	the	model	by	examining	specific	cases	of	known	PED	use,	we	validate	the	
model	by	examining	its	ability	to	predict	a	player’s	future	home	run	total.	To	assess	the	predictive	
capability,	we	conducted	a	second	analysis	where	the	data	was	constructed	from	a	sample	
beginning	in	1990	and	ending	in	2005.	The	prediction	exercise	is	to	forecast	home	run	performance	
out	of	sample	in	2006.	We	choose	these	years	to	coincide	with	a	predictive	analysis	conducted	in	
Jensen	et	al.	(2009).	Just	as	in	Jensen	et	al.	(2009),	we	consider	the	predictive	performance	for	the	
full	sample	and	a	sample	of	118	elite	players.		

Table	3	presents	the	predictive	performance	of	the	sDGLM	compared	against	the	method	of	Jensen	
et	al.	(2009),	Pecota,	a	commercially	available	and	hand	curated	forecasting	system,	Marcel,	a	
widely	used	open	source	forecasting	method,	and	a	naive	forecast,	which	is	the	home	run	total	from	
the	previous	season.	The	sDGLM	is	competitive	in	its	predictive	performance	for	the	full	sample	
with	Jensen	et	al.	(2009).	For	the	sample	of	118	top	home	run	hitters,	the	sDGLM	outperforms	
Marcel	but	falls	slightly	behind	both	Pecota	and	Jensen	et	al.	(2009).		
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Figure	15	presents	the	RMSE	of	our	method	plotted	against	age.		Despite	the	relatively	
large number	of	players	in	the	sample	between	ages	25	and	30,	the	RMSE	is	not	significantly	
different	for	those	ages	than	for	ages	with	relatively	few	players.	In	fact,	the	RMSE	has	a	negative	
trend	with	age.	Since	our	model	learns	sequentially	with	age,	this	makes	sense.	Prediction	accuracy	
that	improves	with	age	has	the	added	benefit	of	delivering	increasingly	reliable	predictions	for	
players	in	the	years	of	their	careers	when	they	earn	the	most	money.		

	

6.4. Reproducibility	
One	of	the	major	concerns	with	any	analysis	utilizing	MCMC	is	Markov	chain	convergence.	If	the	
chain	has	not	converged	to	its	stationary	distribution,	samples	from	different	chains	will	lead	to	
different	inferences.	To	address	the	issue	of	reproducibility,	8	parallel	MCMC	simulations	were	run.	
The	chains	were	initialized	by	sampling	from	the	prior	distributions	for	all	parameters	and	latent	
variables	with	increased	variance.	For	initializing	θk,t,	the	variance	utilized	was	twice	the	prior	
variance.	We	believe	this	leads	to	sufficiently	disperse	initializations.		

Figure	16a	presents	the	maximum	difference	in	the	inference	for	each	of	the	θk,t.	More	formally,	the	
points	in	the	boxplot	represent	the	set	of	points  
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,	where	𝜃",A
G 	is	the	posterior	mean	for	θk,t	in	the	j

th	parallel	simulation.		The	j	index	takes	values	on	
{2,	.	.	.	,	8}.	All	differences	are	computed	with	respect	to	the	first	initialization.	Figure	16a	provides	
convincing	evidence	that	our	MCMC	based	estimates	of	θk,t	are	reproducible.		

	

Figures	16b	and	16c	consider	differences	across	the	MCMC	chains	at	the	individual	player	level.	In	
these	figures,	each	point	in	the	distribution	is	the	maximum	difference	for	a	single	player.		

In	Figure	16b,	the	quantity	of	interest	is	𝑚𝑎𝑥G|𝛾;,A
G − 	𝛾;,A' 		|,	the	maximum	absolute	difference	in	the	

posterior	mean	of	a	player’s	ability	class.		Each	point	in	the	boxplot	corresponds	to	the	maximum	
difference	for	a	single	player.		In	16c,	the	quantity	of	interest	is	𝑚𝑎𝑥G|𝜁;,A

G − 	𝜁;,A' |.		Again,	both	figures	
provide	convincing	evidence	that	the	eight	chains	generate	the	same	set	of	inferences	for	Γt,	and	Zt.		

6.5. Sensitivity	analysis	
One	of	the	limitations	of	our	model	is	the	necessity	for	the	analyst	to	choose	the	number	of	ability	
classes	K.	For	this	reason,	we	conduct	a	sensitivity	analysis	on	two	different	choices	of	K.	Because	

the	prior	distribution	P(γi,0	=	k)	and	the	transition	kernels	Q
γ
t	are	functions	of	K,	the	analysis	also	

allows	for	fluctuations	in	the	prior	distributions.	We	compare	the	difference	between	the	
probability	of	a	player’s	AP	indicator	being	unity	with	K	=	15	(baseline)	against	K	=	13	and	K	=	17	
classes,	respectively.	Figure	17a	presents	the	boxplot	of	E[ζi,t|y·,1:T,K	=	15]	−	E[ζi,t|y·,1:T	,	K	=	13]	
for	player	level	AP	status	when	comparing	a	model	with	K	=	15	and	K	=	13	ability	classes.	While	
inference	for	a	large	majority	of	players	is	unchanged,	there	are	a	few	outliers	in	which	AP	inference	
is	moderately	changed.	Positive	values	correspond	to	cases	where	the	probability	of	being	flagged	
by	the	AP	indicator	in	the	K	=	15	model	is	higher	than	in	the	model	with	K	=	13.	When	outliers	do	
occur,	it	is	most	typical	that	E[ζi,t|y·,1:T	,	K	=	13]	>	E[ζi,t|y·,1:T	,	K	=	15].		
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The	opposite	phenomenon	is	observed	in	the	comparison	with	K	=	17	ability	classes.	In	Figure	17b,	
most	estimates	of	the	distribution	for	AP	status	are	unchanged;	however,	it	is	shown	that	when	
outliers	do	occur,	it	is	more	common	that	E[ζi,t|y·,1:T	,	K	=	17]	<	E[ζi,t|y·,1:T	,	K	=	15].	As	the	
number	of	ability	classes	increases,	fewer	and	fewer	players	reach	those	higher	clusters.	As	a	result,	
the	high	home	run	hitting	rates	of	the	elite	ability	classes	are	preserved.	By	contrast,	when	there	are	
fewer	ability	classes,	more	players	are	assigned	to	the	highest	ability	classes,	which	diminishes	the	
elite	status	assigned	to	those	classes	in	the	prior	distribution.	When	the	home	run	hitting	rates	of	
the	highest	ability	classes	are	low,	it	is	more	likely	that	players	require	the	increase	in	performance	
associated	with	the	AP	indicator	to	model	the	observed	data.		

The	modeler’s	choice	of	the	parameter	α	could	also	impact	inference.	The	α	parameter	is	the	
effective	stickiness	of	ability	class	transitions.	The	higher	α,	the	stickier	class	transitions	are.	To	
assess	the	sensitivity	of	our	AP	inference	to	α,	we	again	compute	the	difference	between	probability	
of	the	AP	flag	being	unity	for	the	baseline	case	(α	=	5)	and	two	alternative	cases	with	α	=	4	and	α	=	
6.	The	case	with	α	=	4	corresponds	to	more	volatility	in	class	switching.	The	case	with	α	=	6	
corresponds	to	more	autocorrelated	class	membership	across	age.		

In	Figures	18a	and	18b,	each	point	in	the	distributions	across	age	is	the	difference	in	probability	of	
the	AP	flag	being	unity	for	α	=	5	and	the	alternative	case.	Note	the	similarity	in	Figures	18a	and	17a.	
Decreasing	α	has	a	similar	effect	to	reducing	the	number	of	ability	classes.	More	common	players	
reach	the	highest	ability	classes.	As	a	result,	the	elite	status	of	the	highest	ability	classes	is	reduced	
and	players	are	more	frequently	flagged	for	abnormal	performance.	A	similar	parallel	exists	
between	Figure	18b	and	17b.	Increasing	α,	which	implies	stickier	class	transitions,	has	the	same	
effect	as	adding	more	latent	classes.	Fewer	players	reach	the	highest	ability	classes,	and	the	elite	
status	of	those	classes	is	preserved.	As	a	consequence,	fewer	players	are	flagged	for	abnormal	
performance.	
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7. Discussion	
In	this	paper,	we	have	developed	a	model	for	the	ability	of	Major	League	Baseball	players	to	hit	
home	runs	at	different	ages.	Our	method	borrows	information	both	locally	in	age	and	across	career	
trajectories	of	players	with	similar	natural	ability.	In	modeling	age	trajectories,	we	have	allowed	for	
contributions	to	ability	which	change	incrementally	with	age	and	also	exhibit	large	jumps	which	
correspond	to	an	abnormal	increase	in	performance.	This	AP	status	variable	allows	us	to	identify	
players	who	have	deviated	sharply	from	the	age	trajectory	followed	by	their	peers	of	similar	
natural	ability.	While	the	AP	status	that	we	include	in	our	model	is	simply	an	unexplained	increase	
in	performance,	our	results	show	that	the	unexplained	increase	aptly	models	the	data	of	known	
PED	users.		

To	partially	disentangle	a	player’s	natural	ability	level	and	AP	status,	we	elicited	prior	distributions	
that	induce	a	marginal	prior	distribution	for	home	run	hitting	ability	which	is	consistent	with	
physiological	aging	patterns.	We	find	that	our	method	flags	performances	by	Mark	McGwire,	Alex	
Rodriguez,	and	Barry	Bonds	as	being	abnormally	inflated.	We	demonstrate	that	our	prior	
distributions	have	partially	resolved	the	identifiability	issue	by	comparing	the	inferences	for	Alex	
Rodriguez	and	Barry	Bonds.		

We	validate	this	model	by	examining	its	predictive	capability	and	find	that	it	is	competitive	with	
methods	of	Jensen	et	al.	(2009),	Pecota,	and	Marcel.	We	also	find	that	the	accuracy	of	our	
predictions	increases	with	age.	Accurate	predictions	for	players	entering	the	prime	years	of	their	
careers	are	important	as	team	executives	try	to	fairly	compensate	players	for	future	and	not	past	
performance.	Further,	we	conduct	a	sensitivity	analysis	and	demonstrate	that,	for	the	vast	majority	
of	players,	our	inferences	are	robust	to	difference	choices	for	the	number	of	latent	classes	and	the	
stickiness	parameter	governing	class	transitions.	We	find	that	increasing	the	number	of	ability	
classes	has	a	similar	effect	as	increasing	the	stickiness	of	the	class	transitions.		

No	statistical	method	is	capable	of	completely	resolving	the	identifiability	challenge.	The	
contribution	of	this	work	is	a	modeling	framework	that	is	capable	of	incorporating	expert	opinion	
and	external	sources	of	data	to	construct	player	specific	prior	distributions.	Outside	information	
could	include	a	player’s	physical	condition	and	injury	information	across	age.	It	could	also	include	
results	from	previous	drug	tests	or	disciplinary	findings.	The	dynamic	model	we	develop	is	
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amenable	to	intervention	and	change	as	new	information	arises.	With	the	addition	of	outside	
information,	estimation	of	the	AP	binary	variable	will	be	more	robust.	Integrating	outside	
information	into	our	existing	framework	is	an	important	area	of	future	work.		

This	method	is	not	intended	to	replace	drug	testing	programs	or	form	the	basis	of	disciplinary	
actions.	It	is	a	statistical	analysis	of	performance	data	where	some	career	trajectories	are	best	
modeled	by	an	unexplained	increase	in	performance.	We	believe	this	method	is	best	suited	for	
directing	drug	testing	and	investigative	resources	toward	players	whose	performances	are	flagged	
as	abnormal.		

With	our	model,	it	is	possible	to	estimate	a	player’s	career	natural	home	run	total.	With	the	sDGLM,	
we	can	adjust	home	run	totals	for	performance	enhancement	and	compare	those	adjusted	totals	to	
existing	historical	records.	Given	the	historical	importance	of	career	milestones	in	baseball,	we	
believe	this	to	be	an	important	method	for	putting	records	set	during	the	PED	era	in	proper	
historical	context.	We	leave	this	is	future	work.	
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