
 

Bhostgusters:​ ​Realtime​ ​Interactive​ ​Play​ ​Sketching 
with​ ​Synthesized​ ​NBA​ ​Defenses 

 
Basketball​ ​Track 

Paper​ ​5718 
 

1.​ ​Introduction 
Over the last decade, quantitative methods for analyzing player and team performance have             
pervaded professional sports, and the NBA has been at the forefront of this movement. With the                
widespread availability of tracking data, teams can now scout upcoming opponents in a detailed              
manner​ ​and​ ​analyze​ ​their​ ​own​ ​performance​ ​after​ ​the​ ​game.  
 
Having readily available analysis for “heat-of-the-moment” decisions, however, is critical to in-game            
success. Bill Walsh, the hall-of-fame NFL coach of the San Francisco 49’ers, knew this back in the                 
70’s and crafted a “look-up table” that specified which play to run, depending on the yardage, time,                 
and​ ​game-context​ ​[1].  
 
Due to the continuous and dynamic nature of basketball, having a fixed look-up table of plays is not                  
practical. Instead, coaches often use instinct and experience to create new variations of set              
plays—Brad Stevens being a great example [2,3]. However, intuiting an effective play is notoriously              
difficult​ ​[4]: 
 

“The​ ​perfect​ ​[play]​ ​is​ ​part​ ​preparation,​ ​part​ ​matchup(s),​ ​part​ ​advance​ ​scouting​ ​work 
and​ ​a​ ​large​ ​part​ ​of​ ​spontaneous​ ​creativity.​ ​How​ ​tough​ ​is​ ​it​ ​to​ ​draw​ ​up​ ​a​ ​set/action​ ​in​ ​a 
small​ ​amount​ ​of​ ​time?​ ​Consider​ ​that​ ​a​ ​coach​ ​must​ ​anticipate​ ​how​ ​the​ ​defense​ ​will 
match​ ​up,​ ​how​ ​it​ ​will​ ​play​ ​screens​ ​and​ ​what​ ​(or​ ​who)​ ​it​ ​will​ ​try​ ​and​ ​take​ ​away.​ ​So,​ ​it's 
a​ ​rhetorical​ ​question,​ ​kids.​ ​It​ ​is​ ​very​ ​tough.” 

 
In this paper, we consider play sketching from a data-driven perspective. What if a coach didn’t                
have to rely solely on intuition, but instead could see instantly how the defending team is likely to                  
respond (see Fig. 1)? Such a tool would still enable spontaneous creativity, but provide realtime               
objective analysis tailored specifically to the sketched play. Fortunately, we have made this tool a               
reality ​ ​by​ ​developing​ ​a​ ​powerful​ ​analytics​ ​framework​ ​accompanied​ ​by​ ​an​ ​intelligent​ ​user​ ​interface. 1

 
As Le ​et al. [5] demonstrated at SSAC 2017, neural networks trained via deep imitation learning can                 
model the defensive tendencies of soccer teams. Given tracking data for offensive players and the               
ball, the neural network hallucinates tracking data of “ghost” players to illustrate how a team is                
likely to defend. A key drawback of their approach was that the model lacked sufficient fidelity to                 
make​ ​realistic​ ​predictions.​ ​​ ​Although​ ​it​ ​could​ ​model​ ​the​ ​tendencies​ ​of​ ​specific​ ​teams,​ ​it​ ​didn’t  

1 ​ ​​http://www.bhostgusters.com 
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Figure 1: (See video and online demo) (left) interactive sketching, and (right) frame from corresponding               
synthesized​ ​tracking​ ​data​ ​with​ ​“ghost”​ ​players​ ​shown​ ​as​ ​white​ ​circles 
 
take into account the relevant context, such as the score, the fatigue of the players, etc. In this work,                   
we adapt the ideas of data-driven ghosting to basketball, and address the shortcomings of the               
previous work. We explicitly model numerous contextual features and illustrate our ability to make              
accurate predictions of how teams will behave in specific situations. We quantify the predictive              
abilities​ ​of​ ​our​ ​model​ ​by​ ​comparing​ ​the​ ​distance​ ​discrepancy​ ​between​ ​defensive​ ​players​ ​and​ ​ghosts. 
 
Whiteboards are still the de facto method for sketching plays at every level of basketball, from                2

middle school to the NBA. Although apps exist for sketching plays electronically (such as [6]), they                
all employ complex interfaces that could never be used for in-game decisions. With this in mind, we                 
have developed a web-based application that mimics the familiar marker/whiteboard interface for            
creating sketches in seconds. Although sketches imply temporal information, no timing data is             
explicitly defined. As a result, it is impossible to generate ghost responses to a sketched play                
directly (since data-driven ghosting requires tracking data as input). Instead, we estimate the             
tracking data that would be recorded if players carried out the sketched play. This hypothetical               
tracking data is then used as the basis for data-driven ghosting to determine how a specific team                 
will​ ​react​ ​in​ ​turn. 
 
Our system is composed of three distinct modules. The user interface manages sketching input and               
animation output. Hypothetical ball and offensive player tracking data is generated from the sketch              
and input to a data-driven ghosting model which predicts how a specific team will defend. Finally,                
the complete set of hallucinated tracking data is run through an expected points model to quantify                
the​ ​effectiveness​ ​of​ ​the​ ​sketched​ ​play. 
 
Because our system is highly intuitive and operates in realtime on a tablet, it brings analytics out of                  
the back office and places it courtside​. Coaches can sketch plays and instantly see how the                
opposition is likely to respond. Additionally, our interface can edit existing tracking data, which              
allows fans to Monday morning quarterback: simulating alternate offensive decisions using real            
game​ ​data​ ​and​ ​discovering​ ​whether​ ​these​ ​“what​ ​if”​ ​scenarios​ ​can​ ​bust​ ​the​ ​ghosted​ ​defenses. 

 

2 ​ ​​Or​ ​yellow​ ​legal​ ​pads​ ​in​ ​the​ ​case​ ​of​ ​Larry​ ​Costello. 
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2.​ ​Data-Driven​ ​Ghosting​ ​in​ ​Basketball 
The concept of “ghosting” was first introduced by the Toronto Raptors in 2013 [7]. Based on                
thousands of training examples, the analytics staff developed rule-based algorithms to indicate the             
(x,y) location where defenders ​should have been, instead of where the players actually were. At               
SSAC 2017, Le ​et al. [5] presented ghosting models learned directly from a season of professional                
soccer data using deep imitation learning. The neural networks were able to model the tendencies               
of individual teams and predict their behavior in response to different attacking scenarios. The              
data-driven approach has many useful qualities, but it lacks sufficient fidelity to make realistic              
predictions. The context of the game is not taken into account, and dynamic factors like player                
fatigue are not considered. In this work, we apply deep imitation learning to basketball,              
incorporate additional features to capture game and player context, and validate our models on a               
held-out​ ​test​ ​set. 
 
2.1​ ​Data 
In this work, we use STATS SportVU player tracking from the 2016-2017 NBA season . Utilizing the                3

associated event data and other simple handcrafted filters, we divide games into possessions.             
Possessions consist of ten 2D trajectories (one for each player) and one 3D trajectory (the ball). In                 
addition to these trajectories, each possession has additional metadata: game clock, shot clock,             
player fouls, and the number of in-game seconds logged by each player thus far. For simplicity, we                 
filter out possessions involving jump balls, free throws and other game delays. In total, the training                
data​ ​consists​ ​of​ ​30,764​ ​possessions,​ ​with​ ​an​ ​average​ ​duration​ ​of​ ​12.64​​ ​​seconds. 
 
2.2​ ​Deep​ ​Multi-Agent​ ​Imitation​ ​Learning  
Recurrent neural networks are naturally suited to modeling variable length sequences. Specific            
RNN architectures such as long short-term memory networks (LSTMs) and gated recurrent units             
(GRUs) are particularly well matched to sequences with long-term dependencies. Furthermore, by            
stacking these units, one can construct extremely expressive models capable of capturing diverse             
dependencies across many time scales simultaneously. Here, individual trajectories are modeled           
using a two-layer LSTM. The complete architecture consists of five distinct two-layer LSTMs (one              
for each role). Each two-layer LSTM acts as a role-specific ​policy​: determining where the player               
fulfilling​ ​the​ ​specified​ ​role​ ​should​ ​go​ ​next. 
 
Training the network of LSTMs can be broken down into three distinct phases: pre-training,              
single-policy training, and joint-policy training [8]. Pre-training consists of predicting where a            
player will move in the next timestep (80ms) given the true current positions of all players. This                 
alone will not produce realistic behavior that resembles anticipatory reactions, but it preconditions             
the model parameters for learning more difficult tasks. Next, policies are trained in isolation by               
iteratively predicting multiple timesteps into the future, given the true positions of all other players               
at each timestep. The discrepancy between the predicted and actual location of the specified role               
are computed over the entire trajectory and used to update the weights of the neural network. This                 
procedure (rollout) allows each policy to learn how to plan into the future and how to recover if out                   
of position. Finally, all five policies are trained together. The procedure is identical to that of                

3 ​ ​The​ ​model​ ​has​ ​been​ ​trained​ ​and​ ​validated​ ​on​ ​data​ ​dating​ ​back​ ​to​ ​the​ ​​ ​2012-13​ ​season.​ ​See 
appendix​ ​for​ ​additional​ ​results. 
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single-policy training except that each model uses the predictions of the other four models, rather               
than the true defender positions. This joint training allows the policies to learn cooperative              
behaviors​ ​such​ ​as​ ​switching​ ​on​ ​a​ ​screen​ ​or​ ​providing​ ​weak-side​ ​help.  
 
2.3​ ​Results 
The primary objective of our ghosting model is to synthesize realistic defensive behaviors. This              
realism should extend from individual-level fundamental behaviors such as closing out shooters or             
boxing out for rebounds, all the way up to team-level coherence to a man, zone, or hybrid scheme.                  
Figure 2 highlights the scope and variety of real basketball behaviors we observe from ghost               
defenders. Additionally, ghosts transition between these behaviors smoothly, often         
indistinguishable​ ​from​ ​the​ ​real​ ​players.  4

 
In​ ​order​ ​to​ ​add​ ​a​ ​sense​ ​of​ ​realism​ ​to​ ​the​ ​ghosting​ ​model,​ ​context​ ​features​ ​such​ ​as​ ​elapsed​ ​time​ ​on 
court​ ​(a​ ​proxy​ ​for​ ​fatigue)​ ​and​ ​fouls​ ​conceded​ ​were​ ​added​ ​as​ ​additional​ ​input​ ​features​ ​to​ ​the​ ​LSTM 
model.​ ​​ ​We​ ​manipulate​ ​these​ ​features​ ​(see​ ​Fig.​ ​3)​ ​to​ ​observe​ ​their​ ​effect​ ​on​ ​prediction​ ​(e.g. 
artificially​ ​making​ ​a​ ​player​ ​tired​ ​or​ ​being​ ​close​ ​to​ ​fouling​ ​out).  
 
Beyond passing the “eye test”, ghosting models should faithfully represent the behavior of specific              
teams in specific contexts in order to have true value. We evaluate our models both in terms of                  
accuracy (the ability to predict the (x,y) coordinates of where real players will go) and precision                
(the confidence interval associated with the predicted locations). Because we determine the            
parameters of the LSTMs using stochastic gradient descent (picking a random sample from the              
training data to compute gradient updates), different runs of the training procedure will generate              
slightly different models. Therefore, we run the training procedure 10 times and produce an              
ensemble​ ​of​ ​10​ ​different​ ​models​ ​(see​ ​Fig.​ ​4a).  
 
We compute prediction error for three different ghosting models: generic league average team, San              
Antonio, and San Antonio with player-context. In each case, we evaluate predicted defender             
locations for all test set possessions in which San Antonio is on defense (N=93). As expected, the                 
predicted precision decays with time (see Fig. 4b); we are trying to predict the behavior of                
inherently stochastic agents. For simplicity, we compute the prediction error over the first 2s (twice               
the training rollout time) for all models. Introducing a team specific feature significantly increases              
the accuracy of the ghosts (error decreases from 8.22ft/player to 6.59ft/player). The addition of              
contextual features increases the error. We conjecture that the model becomes too complex to              
optimize​ ​with​ ​only​ ​half​ ​a​ ​season​ ​of​ ​training​ ​data.  
 
To quantify overall prediction error, we trained 10 team-specific models for each of four teams               
representing elite (SAS, GSW), average (DAL), and below average (LAL) defenses . All 40 models              5

were subsequently evaluated on 25 possessions chosen from the test set to represent a wide range                
of offensive behaviors: transition, isolation, weave, pick-and-roll, etc. Notably, ensemble averages           
have​ ​lower​ ​absolute​ ​error​ ​than​ ​single​ ​models​ ​(see​ ​Fig.​ ​4c). 
 

 

4 ​ ​​http://www.bhostgusters.com/video 
5 ​ ​https://stats.nba.com/teams/defense 
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(a)​ ​ball​ ​pressure 

 

(b)​ ​shot​ ​close​ ​out 

 

(c)​ ​baseline​ ​help​ ​for​ ​drive 

 

(d)​ ​trap 

 

(e)​ ​over​ ​screen 

 

(f)​ ​under​ ​screen 

Figure​ ​2:​ ​High-level​ ​ghost​ ​behaviors.​ ​​ ​See​ ​supplementary​ ​video​ ​for​ ​corresponding​ ​animations. 
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Figure 3: The effect of manipulating player-specific context features. A still frame from a sequence where the                 
PG of the offensive team kicks it out to a shooter in the corner. (left) Small forward ghost (player fatigue clock                     
= ~ 6 minutes) closes out the shooter and ghost center (with 0 fouls) holds the PG tight to collect the                     
defensive rebound. (middle) Small forward ghost (player fatigue clock changed to ~48 minutes, i.e full length                
of the game) falls back and the ghost center (with 0 fouls) covers for him and tries to close out the open                      
shooter. (right) Ghost center (with 5 fouls) stays low and tired small forward ghost is slow is closing out the                    
shooter.  

 

2.4​ ​Expected​ ​Points 
In practice, other evaluation metrics may be more useful than discrepancy in predicted player              
location. For example, precisely predicting the location of off-ball players far from the action may               
not be important. We develop a simple on-ball model of expected points (EPM), similar to [9]. We                 
have opted for a parsimonious regression model based on few features (shot location, ball state ,               6

and the distances to the two nearest defenders). This allows our model to be sensitive to high level                  
behaviors such as, closeouts, weak-side help, and double-teams while robustly generalizing to the             
novel situations we anticipate from user generated sketches. More complex models, such as [10],              
could be substituted, but these may generate bizarre expectations if the sketched play is not               
realistic. Our model generates expectations (see Fig. 5a) for league average performance based on              
shot location which are consistent with other expected points models. Fig. 5b illustrates how the               
expected points changes over time for a particular possession. Although the positions of the              
players and the ghosts are not identical, the expected points is very similar; suggesting that the                
ghost​ ​behavior​ ​close​ ​to​ ​the​ ​ball​ ​is​ ​very​ ​similar​ ​to​ ​what​ ​the​ ​actual​ ​players​ ​did. 
 
 
 
 
 
 

6 ​ ​​Ball​ ​state​ ​is​ ​explicitly​ ​defined​ ​in​ ​sketches.​ ​​ ​It​ ​can​ ​also​ ​be​ ​easily​ ​and​ ​accurately​ ​inferred​ ​from​ ​the 
3-d​ ​ball​ ​trajectory​ ​data.​ ​​ ​We​ ​employ​ ​a​ ​vanilla​ ​gradient​ ​boosting​ ​classifier,​ ​trained​ ​on​ ​small​ ​set 
(~2000​ ​frames)​ ​of​ ​manually​ ​labeled​ ​data. 
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Figure 4: The precision and accuracy of our ghosting models. Panel A shows two different still frames with all                   
ten SAS models (small gray circles) shown along with the ensemble average (black). The average dispersion                
between models, grows with the sequence length (approximately 0.16ft/s) as individual realizations adopt             
slightly different positions (Panel B). Dispersion remains low for sequences much longer than the training               
rollout. The absolute error (Panel C), or the typical distance between ghosts and the true defenders, also                 
increases with time on average. At the level of an individual sequence, however, errors quickly shrink in                 
situations with clear positional cues and grow in others (such as when players prepare for a rebound).                 
Ghosts constructed from an ensemble average (red) have lower absolute errors than individual models              
(blue). 
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Figure 5: Panel A illustrates our on-ball expected points model evaluated on a test set of shots. Empty                  
hexbins indicate locations with fewer than 20 shots. Red corresponds to high values of expected points (deep                 
red = 1.3pts/attempt and dark blue = 0.5pts/attempt). Panel B shows the time series of expected points for a                   
sample offensive possession. The solid yellow line (dotted line) indicates the expected points given the true                
positions of the CLE defenders (CLE ghosts). While the ghosts do not necessarily occupy the same positions                 
as​ ​the​ ​true​ ​defenders,​ ​they​ ​play​ ​comparable​ ​defense.​ ​See​ ​supplemental​ ​video​ ​for​ ​the​ ​actual​ ​sequence. 
 

3.​ ​Sketching  
Through decades of use, a codified notation has emerged for sketching basketball plays [11]: wavy               
lines represent dribbling, dashed lines represent passes, etc. On whiteboards, it’s necessary for the              
user to explicitly draw these conventions. In the digital domain, the intention can often be inferred                
and​ ​the​ ​appropriate​ ​convention​ ​drawn​ ​automatically​ ​(see​ ​Fig.​ ​6). 
 
We model a sketched play as a collection of ​routes (one for each player, and one for the ball). Each                    
route is defined as an ordered set of segments, and each segment is an ordered set of (x,y) locations                   
augmented with metadata. For player routes, the metadata indicates whether the player is             
dribbling the ball, setting a screen, etc. Similarly, ball metadata encodes if the ball is being dribbled,                 
passed​ ​or​ ​shot. 
 
Just like their analog counterpart, digital sketches are constructed through a series of stylus strokes               
(or mouse drags). Each stroke either defines a new segment for a particular route, or acts as an                  
interpretable gesture [12] to modify metadata. To minimize the number of gestures, we interpret              
each stylus stroke within the context of basic basketball rules. For example, if a straight line is                 
drawn between two players where one has the ball and the other does not, the intention is clearly a                   
pass.  
 
3.1​ ​Inferring​ ​Timing 
Sketches lack explicit temporal information. A route defines the path a player will move along, but                
no timing information is provided (e.g. it's not clear whether the player sprinted or jogged).               
Instead,​ ​players​ ​must​ ​learn​ ​how​ ​to​ ​interpret​ ​sketches​ ​and​ ​infer​ ​when​ ​to​ ​move,​ ​and​ ​how​ ​quickly.  
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Figure​ ​6:​ ​(left)​ ​The​ ​established​ ​notation​ ​for​ ​sketching​ ​basketball​ ​plays.​ ​(right)​ ​The​ ​underlying​ ​data 
representation​ ​of​ ​the​ ​sketch.​ ​​ ​Each​ ​​route​​ ​is​ ​represented​ ​as​ ​one​ ​or​ ​more​ ​segments.​ ​For​ ​simplicity,​ ​“dribble” 
represents​ ​a​ ​player​ ​with​ ​possession​ ​of​ ​the​ ​ball,​ ​but​ ​it​ ​could​ ​be​ ​a​ ​catch​ ​and​ ​shoot​ ​situation​ ​(e.g.​ ​player​ ​3). 
The​ ​same​ ​dribble​ ​segment​ ​appears​ ​in​ ​both​ ​the​ ​ball​ ​route​ ​and​ ​the​ ​corresponding​ ​player​ ​route.​ ​​ ​All​ ​other 
segments​ ​are​ ​unique. 

 
Tracking data, on the other hand, has explicit timing information. Unlike routes, ​trajectories are              
ordered sets of (x,y,t) data, often occurring at a fixed temporal interval (frame rate). In order to                 
generate tracking data from a sketch, we infer the missing timing information using linear              
interpolation. Unfortunately, applying linear timing to each route often results in infeasible plays. A              
pass, for example, may end in empty space because the intended receiver was animated either too                
quickly or too slowly. If per-route linear timing were applied to the example sketched play in                
Figure 6, player 3 would only get to the correct catch-and-shoot location by the end of the play.                  
Meanwhile, the ball would be animated such that the pass would already have been received and                
the​ ​shot​ ​taken. 
 
Fortunately, because routes are defined as an ordered set of segments, it is easy to identify all                 
spatiotemporal constraints that exist between the players and the ball. Applying linear timing per              
segment (instead of per route) guarantees a feasible solution—e.g. a pass will always go from one                
player to another. We estimate the duration of the sketched play by analyzing the route of the ball                  
using empirically derived values for typical dribbling, passing, and shooting velocities. Once the             
beginning and ending times of each ball segment are determined, the temporal constraints of              
dribbles are propagated to the player segments (since the same dribble appears in both the ball and                 
corresponding player routes). The timing of the individual player segments can then be determined              
using​ ​linear​ ​interpolation. 
 
The inferred tracking data makes it possible to visualize a sketched play as an animation. In this                 
format, the user gets immediate and unequivocal feedback about the design and timing of a play.                
Additionally, the animation makes it easy to communicate the intention of the set play to those                
without the requisite experience to interpret a sketch directly (such as novice players or data               
scientists).​ ​​ ​See​ ​the​ ​appendix​ ​for​ ​an​ ​example​ ​sketched​ ​play​ ​with​ ​ghosting​ ​responses. 
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3.2​ ​Editing 
Generating trajectories from routes is difficult because the missing timing information must be             
inferred. However, the reverse process (extracting routes from trajectories) is straightforward:           
drop the timing information and re-sample each trajectory using a fixed spatial resolution (e.g.              
sampling every half foot). The necessary metadata about the state of the ball can be extracted                
directly​ ​from​ ​the​ ​tracking​ ​data.  
 
Because sketches can be generated directly from tracking data, a user can edit any offensive play                
that was run in any game. For example, players can erase the actual pass that took place, and                  
visualize how the defense would have reacted if the ball had been passed to a different teammate.                 
Similarly,​ ​the​ ​routes​ ​of​ ​the​ ​teammates​ ​can​ ​be​ ​modified​ ​to​ ​better​ ​spread​ ​the​ ​defense.  
 

4.​ ​Summary 
Answering detailed “what if” questions to help guide decision making is the core purpose of data                
analytics. Until now, insights extracted from player tracking data were only available post             
game—primarily because of the complexity of the algorithms and the domain-specific knowledge            
required to interface with the systems (i.e. scripting/coding). In this work, we bring analytics              
courtside for use in in-game decisions by combining data-driven ghosting with a digital sketching              
interface. Our framework is highly intuitive—anyone can draw a play and easily understand how a               
team is likely to defend against it. More importantly, because the algorithms run in realtime and                
the interface requires only a few stylus strokes, the system can instantly deliver objective analysis               
for very specific queries. To create this capability, we adapted data-driven ghosting from soccer to               
basketball, and devised algorithms to translate sketches into hallucinated tracking data. Our            
experiments illustrate the ability to which we can accurately predict how specific teams will              
respond in specific game situations. As a result, coaches, fans and commentators can use our tool to                 
explore an endless number of scenarios: sketching plays to find weaknesses in a particular              
defensive system, editing existing tracking data to see if a better decision could have been made, or                 
evaluating​ ​similarities/differences​ ​between​ ​how​ ​teams​ ​react​ ​to​ ​the​ ​same​ ​attack. 
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Appendix 
 
A.1​ ​Roles 
Similar to [5], we organize the tracking data of each possession by strategic ​role​, and not player                 
identity​. Basketball has a consistent set of established positions: center, point guard, shooting             
guard, small forward and power forward. We learn the template of roles directly from data [13].                7

For each possession, we infer the role being fulfilled by each player by solving a linear assignment                 
problem using the Hungarian algorithm. Unlike soccer, the template in basketball does not simply              
translate up and down the court (see Fig. 7). Instead, the role templates are inversions of each                 
other, depending on whether the team is setup for offense or defense. In practice, we use a                 
weighted combination of defense/offense templates where the proportional influence of each           
model​ ​is​ ​governed​ ​by​ ​a​ ​sigmoid​ ​distribution​ ​based​ ​on​ ​the​ ​centroid​ ​of​ ​the​ ​player​ ​positions. 
 
 

Figure 7: In soccer, the relative spatial arrangement of roles is the same regardless of whether the team is                   
attacking or defending. In Basketball, the formations are inverted. When assigning roles to the basketball               
tracking data, we employ a weighted combination of both templates so that sensible role assignments are                
generated​ ​for​ ​every​ ​frame​ ​of​ ​data 
 
A.2​ ​Features 
Like soccer, a defender’s decision making for where to go next on the court is strongly related to                  
relative distances to the ball, the basket and other players. To simplify neural network training, we                
handcraft features that contain both the global cartesian coordinates (x, y) and relative polar              
coordinates (r, cosθ, sinθ). In addition to a “one hot” encoding of team identity, we compute                
additional context features that describe the state of the game (score, game clock, shot clock) and                
player-specific attributes (fouls committed, cumulative “on court” time). The resulting feature           8

vector​ ​is​ ​247​ ​dimensions,​ ​and​ ​encodes​ ​the​ ​state​ ​of​ ​the​ ​game​ ​from​ ​the​ ​perspective​ ​of​ ​a​ ​specific​ ​role. 
 
 
 
 

7 ​ ​While​ ​beyond​ ​the​ ​scope​ ​of​ ​this​ ​paper,​ ​it​ ​is​ ​clear​ ​that​ ​this​ ​template​ ​is​ ​evolving​ ​as​ ​NBA​ ​teams 
increasingly​ ​utilize​ ​stretch-4s​ ​and​ ​small​ ​ball​ ​lineups.  
8 ​ ​​Since​ ​the​ ​starting​ ​five​ ​log​ ​the​ ​majority​ ​of​ ​minutes,​ ​team​ ​identity​ ​implicitly​ ​encodes​ ​many 
player-specific​ ​attributes​ ​like​ ​skill.​ ​Therefore,​ ​we​ ​only​ ​model​ ​dynamic​ ​player-specific​ ​properties 
like​ ​fatigue​ ​and​ ​fouls. 
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A.3​ ​Game​ ​Evolution 
Since the introduction of the the 3 point shot in 1980, the game of basketball has changed. The                  
“modern” NBA has seen an increase in the number of three point shots attempted. On average, the                 
2012-13 NBA season had 20 three point field goals attempted, while the 2016-17 NBA season had                
27 three pointers attempted [14], with the Houston Rockets attempting almost 40 three pointers              
per game [14] in the 2016-17 NBA season. This increase has therefore changed the way defenders                
guard 3 point of shots. Using data from 2012-13 season, we generated a model to predict defensive                 
behavior and ran it on a test set from the 2016-17 season. Fig. 8 clearly shows the ghosts from the                    
16-17​ ​season​ ​model​ ​guard​ ​the​ ​corner​ ​three​ ​much​ ​more​ ​aggressively.  
 

 
Figure 8: 2016-17 ghosts (grey solid) aggressively guard the corner three point shot as compared to the                 
2012-13​ ​ghosts​ ​(grey​ ​transparent)​ ​[red​ ​circles​ ​-​ ​team​ ​on​ ​offense,​ ​orange​ ​circle​ ​-​ ​ball]. 
 
A.4​ ​Ghosting​ ​Response​ ​to​ ​Sketch 
 

 
Figure​ ​9:​ ​(left)​ ​A​ ​sketched​ ​play.​ ​(right)​ ​The​ ​defensive​ ​positions​ ​of​ ​Houston​ ​(red)​ ​and​ ​Milwaukee​ ​(green)​ ​at​ ​the 
time​ ​of​ ​the​ ​shot​ ​(offense​ ​in​ ​blue).​ ​​ ​The​ ​Rockets​ ​do​ ​not​ ​contest​ ​the​ ​mid-range​ ​jump​ ​shot,​ ​whereas​ ​the​ ​Bucks 
are​ ​anticipated​ ​to​ ​make​ ​an​ ​aggressive​ ​challenge​ ​(resulting​ ​in​ ​a​ ​lower​ ​expected​ ​points). 

13 
 


