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1. Introduction

Over the last decade, quantitative methods for analyzing player and team performance have
pervaded professional sports, and the NBA has been at the forefront of this movement. With the
widespread availability of tracking data, teams can now scout upcoming opponents in a detailed
manner and analyze their own performance after the game.

Having readily available analysis for “heat-of-the-moment” decisions, however, is critical to in-game
success. Bill Walsh, the hall-of-fame NFL coach of the San Francisco 49’ers, knew this back in the
70’s and crafted a “look-up table” that specified which play to run, depending on the yardage, time,
and game-context [1].

Due to the continuous and dynamic nature of basketball, having a fixed look-up table of plays is not
practical. Instead, coaches often use instinct and experience to create new variations of set
plays—Brad Stevens being a great example [2,3]. However, intuiting an effective play is notoriously
difficult [4]:

“The perfect [play] is part preparation, part matchup(s), part advance scouting work
and a large part of spontaneous creativity. How tough is it to draw up a set/action in a
small amount of time? Consider that a coach must anticipate how the defense will
match up, how it will play screens and what (or who) it will try and take away. So, it's
a rhetorical question, kids. It is very tough.”

In this paper, we consider play sketching from a data-driven perspective. What if a coach didn’t
have to rely solely on intuition, but instead could see instantly how the defending team is likely to
respond (see Fig. 1)? Such a tool would still enable spontaneous creativity, but provide realtime
objective analysis tailored specifically to the sketched play. Fortunately, we have made this tool a
reality’ by developing a powerful analytics framework accompanied by an intelligent user interface.

As Le et al. [5] demonstrated at SSAC 2017, neural networks trained via deep imitation learning can
model the defensive tendencies of soccer teams. Given tracking data for offensive players and the
ball, the neural network hallucinates tracking data of “ghost” players to illustrate how a team is
likely to defend. A key drawback of their approach was that the model lacked sufficient fidelity to
make realistic predictions. Although it could model the tendencies of specific teams, it didn’t

' http://www.bhostgusters.com
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Figure 1: (See video and online demo) (left) interactive sketching, and (right) frame from corresponding
synthesized tracking data with “ghost” players shown as white circles

take into account the relevant context, such as the score, the fatigue of the players, etc. In this work,
we adapt the ideas of data-driven ghosting to basketball, and address the shortcomings of the
previous work. We explicitly model numerous contextual features and illustrate our ability to make
accurate predictions of how teams will behave in specific situations. We quantify the predictive
abilities of our model by comparing the distance discrepancy between defensive players and ghosts.

Whiteboards? are still the de facto method for sketching plays at every level of basketball, from
middle school to the NBA. Although apps exist for sketching plays electronically (such as [6]), they
all employ complex interfaces that could never be used for in-game decisions. With this in mind, we
have developed a web-based application that mimics the familiar marker/whiteboard interface for
creating sketches in seconds. Although sketches imply temporal information, no timing data is
explicitly defined. As a result, it is impossible to generate ghost responses to a sketched play
directly (since data-driven ghosting requires tracking data as input). Instead, we estimate the
tracking data that would be recorded if players carried out the sketched play. This hypothetical
tracking data is then used as the basis for data-driven ghosting to determine how a specific team
will react in turn.

Our system is composed of three distinct modules. The user interface manages sketching input and
animation output. Hypothetical ball and offensive player tracking data is generated from the sketch
and input to a data-driven ghosting model which predicts how a specific team will defend. Finally,
the complete set of hallucinated tracking data is run through an expected points model to quantify
the effectiveness of the sketched play.

Because our system is highly intuitive and operates in realtime on a tablet, it brings analytics out of
the back office and places it courtside. Coaches can sketch plays and instantly see how the
opposition is likely to respond. Additionally, our interface can edit existing tracking data, which
allows fans to Monday morning quarterback: simulating alternate offensive decisions using real
game data and discovering whether these “what if” scenarios can bust the ghosted defenses.

2 Or yellow legal pads in the case of Larry Costello.
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2. Data-Driven Ghosting in Basketball

The concept of “ghosting” was first introduced by the Toronto Raptors in 2013 [7]. Based on
thousands of training examples, the analytics staff developed rule-based algorithms to indicate the
(x,y) location where defenders should have been, instead of where the players actually were. At
SSAC 2017, Le et al [5] presented ghosting models learned directly from a season of professional
soccer data using deep imitation learning. The neural networks were able to model the tendencies
of individual teams and predict their behavior in response to different attacking scenarios. The
data-driven approach has many useful qualities, but it lacks sufficient fidelity to make realistic
predictions. The context of the game is not taken into account, and dynamic factors like player
fatigue are not considered. In this work, we apply deep imitation learning to basketball,
incorporate additional features to capture game and player context, and validate our models on a
held-out test set.

2.1 Data

In this work, we use STATS SportVU player tracking from the 2016-2017 NBA season®. Utilizing the
associated event data and other simple handcrafted filters, we divide games into possessions.
Possessions consist of ten 2D trajectories (one for each player) and one 3D trajectory (the ball). In
addition to these trajectories, each possession has additional metadata: game clock, shot clock,
player fouls, and the number of in-game seconds logged by each player thus far. For simplicity, we
filter out possessions involving jump balls, free throws and other game delays. In total, the training
data consists of 30,764 possessions, with an average duration of 12.64 seconds.

2.2 Deep Multi-Agent Imitation Learning

Recurrent neural networks are naturally suited to modeling variable length sequences. Specific
RNN architectures such as long short-term memory networks (LSTMs) and gated recurrent units
(GRUs) are particularly well matched to sequences with long-term dependencies. Furthermore, by
stacking these units, one can construct extremely expressive models capable of capturing diverse
dependencies across many time scales simultaneously. Here, individual trajectories are modeled
using a two-layer LSTM. The complete architecture consists of five distinct two-layer LSTMs (one
for each role). Each two-layer LSTM acts as a role-specific policy: determining where the player
fulfilling the specified role should go next.

Training the network of LSTMs can be broken down into three distinct phases: pre-training,
single-policy training, and joint-policy training [8]. Pre-training consists of predicting where a
player will move in the next timestep (80ms) given the true current positions of all players. This
alone will not produce realistic behavior that resembles anticipatory reactions, but it preconditions
the model parameters for learning more difficult tasks. Next, policies are trained in isolation by
iteratively predicting multiple timesteps into the future, given the true positions of all other players
at each timestep. The discrepancy between the predicted and actual location of the specified role
are computed over the entire trajectory and used to update the weights of the neural network. This
procedure (rollout) allows each policy to learn how to plan into the future and how to recover if out
of position. Finally, all five policies are trained together. The procedure is identical to that of

3 The model has been trained and validated on data dating back to the 2012-13 season. See
appendix for additional results.

42 AnAaLyir.

2018 Research Papers Competition
Presented by:



G MIT SLOAN
g7l SPORTS ANALYTICS CONFERENCE

MARCH 3 - 4, 2017 HYNES CONVENTION CENTER

single-policy training except that each model uses the predictions of the other four models, rather
than the true defender positions. This joint training allows the policies to learn cooperative
behaviors such as switching on a screen or providing weak-side help.

2.3 Results

The primary objective of our ghosting model is to synthesize realistic defensive behaviors. This
realism should extend from individual-level fundamental behaviors such as closing out shooters or
boxing out for rebounds, all the way up to team-level coherence to a man, zone, or hybrid scheme.
Figure 2 highlights the scope and variety of real basketball behaviors we observe from ghost
defenders. Additionally, ghosts transition between these behaviors smoothly, often
indistinguishable from the real players.*

In order to add a sense of realism to the ghosting model, context features such as elapsed time on
court (a proxy for fatigue) and fouls conceded were added as additional input features to the LSTM
model. We manipulate these features (see Fig. 3) to observe their effect on prediction (e.g.
artificially making a player tired or being close to fouling out).

Beyond passing the “eye test”, ghosting models should faithfully represent the behavior of specific
teams in specific contexts in order to have true value. We evaluate our models both in terms of
accuracy (the ability to predict the (x,y) coordinates of where real players will go) and precision
(the confidence interval associated with the predicted locations). Because we determine the
parameters of the LSTMs using stochastic gradient descent (picking a random sample from the
training data to compute gradient updates), different runs of the training procedure will generate
slightly different models. Therefore, we run the training procedure 10 times and produce an
ensemble of 10 different models (see Fig. 4a).

We compute prediction error for three different ghosting models: generic league average team, San
Antonio, and San Antonio with player-context. In each case, we evaluate predicted defender
locations for all test set possessions in which San Antonio is on defense (N=93). As expected, the
predicted precision decays with time (see Fig. 4b); we are trying to predict the behavior of
inherently stochastic agents. For simplicity, we compute the prediction error over the first 2s (twice
the training rollout time) for all models. Introducing a team specific feature significantly increases
the accuracy of the ghosts (error decreases from 8.22ft/player to 6.59ft/player). The addition of
contextual features increases the error. We conjecture that the model becomes too complex to
optimize with only half a season of training data.

To quantify overall prediction error, we trained 10 team-specific models for each of four teams
representing elite (SAS, GSW), average (DAL), and below average (LAL) defenses®. All 40 models
were subsequently evaluated on 25 possessions chosen from the test set to represent a wide range
of offensive behaviors: transition, isolation, weave, pick-and-roll, etc. Notably, ensemble averages
have lower absolute error than single models (see Fig. 4c).

* http://www.bhostgusters.com/video
> https://stats.nba.com/teams/defense
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Figure 2: High-level ghost behaviors. See supplementary video for corresponding animations.

2018 Research Papers Competition
Presented by:

424naLyiics



R 1T SLOAN
gl SPORTS ANALYTICS CONFERENCE

MARCH 3 - 4, 2017 HYNES CONVENTION CENTER

/OsF metoulsy | Oc (tired) [(") SF
40 (tired)"ijF (fouls) \
. c I . | u <
e » .
Qo = | & &

e o &
Figure 3: The effect of manipulating player-specific context features. A still frame from a sequence where the
PG of the offensive team kicks it out to a shooter in the corner. (left) Small forward ghost (player fatigue clock
= ~ 6 minutes) closes out the shooter and ghost center (with O fouls) holds the PG tight to collect the
defensive rebound. (middle) Small forward ghost (player fatigue clock changed to ~48 minutes, i.e full length
of the game) falls back and the ghost center (with 0 fouls) covers for him and tries to close out the open
shooter. (right) Ghost center (with 5 fouls) stays low and tired small forward ghost is slow is closing out the

shooter.

2.4 Expected Points

In practice, other evaluation metrics may be more useful than discrepancy in predicted player
location. For example, precisely predicting the location of off-ball players far from the action may
not be important. We develop a simple on-ball model of expected points (EPM), similar to [9]. We
have opted for a parsimonious regression model based on few features (shot location, ball state®,
and the distances to the two nearest defenders). This allows our model to be sensitive to high level
behaviors such as, closeouts, weak-side help, and double-teams while robustly generalizing to the
novel situations we anticipate from user generated sketches. More complex models, such as [10],
could be substituted, but these may generate bizarre expectations if the sketched play is not
realistic. Our model generates expectations (see Fig. 5a) for league average performance based on
shot location which are consistent with other expected points models. Fig. 5b illustrates how the
expected points changes over time for a particular possession. Although the positions of the
players and the ghosts are not identical, the expected points is very similar; suggesting that the
ghost behavior close to the ball is very similar to what the actual players did.

6 Ball state is explicitly defined in sketches. It can also be easily and accurately inferred from the
3-d ball trajectory data. We employ a vanilla gradient boosting classifier, trained on small set
(~2000 frames) of manually labeled data.
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ten SAS models (small gray circles) shown along with the ensemble average (black). The average dispersion
between models, grows with the sequence length (approximately 0.16ft/s) as individual realizations adopt
slightly different positions (Panel B). Dispersion remains low for sequences much longer than the training
rollout. The absolute error (Panel C), or the typical distance between ghosts and the true defenders, also
increases with time on average. At the level of an individual sequence, however, errors quickly shrink in
situations with clear positional cues and grow in others (such as when players prepare for a rebound).

Ghosts constructed from an ensemble average (red) have lower absolute errors than individual models

(blue).
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Figure 5: Panel A illustrates our on-ball expected points model evaluated on a test set of shots. Empty
hexbins indicate locations with fewer than 20 shots. Red corresponds to high values of expected points (deep
red = 1.3pts/attempt and dark blue = 0.5pts/attempt). Panel B shows the time series of expected points for a
sample offensive possession. The solid yellow line (dotted line) indicates the expected points given the true
positions of the CLE defenders (CLE ghosts). While the ghosts do not necessarily occupy the same positions
as the true defenders, they play comparable defense. See supplemental video for the actual sequence.

3. Sketching

Through decades of use, a codified notation has emerged for sketching basketball plays [11]: wavy
lines represent dribbling, dashed lines represent passes, etc. On whiteboards, it’s necessary for the
user to explicitly draw these conventions. In the digital domain, the intention can often be inferred
and the appropriate convention drawn automatically (see Fig. 6).

We model a sketched play as a collection of routes (one for each player, and one for the ball). Each
route is defined as an ordered set of segments, and each segment is an ordered set of (x,y) locations
augmented with metadata. For player routes, the metadata indicates whether the player is
dribbling the ball, setting a screen, etc. Similarly, ball metadata encodes if the ball is being dribbled,
passed or shot.

Just like their analog counterpart, digital sketches are constructed through a series of stylus strokes
(or mouse drags). Each stroke either defines a new segment for a particular route, or acts as an
interpretable gesture [12] to modify metadata. To minimize the number of gestures, we interpret
each stylus stroke within the context of basic basketball rules. For example, if a straight line is
drawn between two players where one has the ball and the other does not, the intention is clearly a
pass.

3.1 Inferring Timing

Sketches lack explicit temporal information. A route defines the path a player will move along, but
no timing information is provided (e.g. it's not clear whether the player sprinted or jogged).
Instead, players must learn how to interpret sketches and infer when to move, and how quickly.
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Figure 6: (left) The established notation for sketching basketball plays. (right) The underlying data
representation of the sketch. Each route is represented as one or more segments. For simplicity, “dribble”
represents a player with possession of the ball, but it could be a catch and shoot situation (e.g. player 3).
The same dribble segment appears in both the ball route and the corresponding player route. All other
segments are unique.

Tracking data, on the other hand, has explicit timing information. Unlike routes, trajectories are
ordered sets of (x,y,t) data, often occurring at a fixed temporal interval (frame rate). In order to
generate tracking data from a sketch, we infer the missing timing information using linear
interpolation. Unfortunately, applying linear timing to each route often results in infeasible plays. A
pass, for example, may end in empty space because the intended receiver was animated either too
quickly or too slowly. If per-route linear timing were applied to the example sketched play in
Figure 6, player 3 would only get to the correct catch-and-shoot location by the end of the play.
Meanwhile, the ball would be animated such that the pass would already have been received and
the shot taken.

Fortunately, because routes are defined as an ordered set of segments, it is easy to identify all
spatiotemporal constraints that exist between the players and the ball. Applying linear timing per
segment (instead of per route) guarantees a feasible solution—e.g. a pass will always go from one
player to another. We estimate the duration of the sketched play by analyzing the route of the ball
using empirically derived values for typical dribbling, passing, and shooting velocities. Once the
beginning and ending times of each ball segment are determined, the temporal constraints of
dribbles are propagated to the player segments (since the same dribble appears in both the ball and
corresponding player routes). The timing of the individual player segments can then be determined
using linear interpolation.

The inferred tracking data makes it possible to visualize a sketched play as an animation. In this
format, the user gets immediate and unequivocal feedback about the design and timing of a play.
Additionally, the animation makes it easy to communicate the intention of the set play to those
without the requisite experience to interpret a sketch directly (such as novice players or data
scientists). See the appendix for an example sketched play with ghosting responses.
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3.2 Editing

Generating trajectories from routes is difficult because the missing timing information must be
inferred. However, the reverse process (extracting routes from trajectories) is straightforward:
drop the timing information and re-sample each trajectory using a fixed spatial resolution (e.g.
sampling every half foot). The necessary metadata about the state of the ball can be extracted
directly from the tracking data.

Because sketches can be generated directly from tracking data, a user can edit any offensive play
that was run in any game. For example, players can erase the actual pass that took place, and
visualize how the defense would have reacted if the ball had been passed to a different teammate.
Similarly, the routes of the teammates can be modified to better spread the defense.

4. Summary

Answering detailed “what if” questions to help guide decision making is the core purpose of data
analytics. Until now, insights extracted from player tracking data were only available post
game—primarily because of the complexity of the algorithms and the domain-specific knowledge
required to interface with the systems (i.e. scripting/coding). In this work, we bring analytics
courtside for use in in-game decisions by combining data-driven ghosting with a digital sketching
interface. Our framework is highly intuitive—anyone can draw a play and easily understand how a
team is likely to defend against it. More importantly, because the algorithms run in realtime and
the interface requires only a few stylus strokes, the system can instantly deliver objective analysis
for very specific queries. To create this capability, we adapted data-driven ghosting from soccer to
basketball, and devised algorithms to translate sketches into hallucinated tracking data. Our
experiments illustrate the ability to which we can accurately predict how specific teams will
respond in specific game situations. As a result, coaches, fans and commentators can use our tool to
explore an endless number of scenarios: sketching plays to find weaknesses in a particular
defensive system, editing existing tracking data to see if a better decision could have been made, or
evaluating similarities/differences between how teams react to the same attack.
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Appendix

A.1 Roles

Similar to [5], we organize the tracking data of each possession by strategic role, and not player
identity. Basketball has a consistent set of established positions: center, point guard, shooting
guard, small forward and power forward. We learn the template’ of roles directly from data [13].
For each possession, we infer the role being fulfilled by each player by solving a linear assignment
problem using the Hungarian algorithm. Unlike soccer, the template in basketball does not simply
translate up and down the court (see Fig. 7). Instead, the role templates are inversions of each
other, depending on whether the team is setup for offense or defense. In practice, we use a
weighted combination of defense/offense templates where the proportional influence of each
model is governed by a sigmoid distribution based on the centroid of the player positions.
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Figure 7: In soccer, the relative spatial arrangement of roles is the same regardless of whether the team is
attacking or defending. In Basketball, the formations are inverted. When assigning roles to the basketball
tracking data, we employ a weighted combination of both templates so that sensible role assignments are
generated for every frame of data

A.2 Features

Like soccer, a defender’s decision making for where to go next on the court is strongly related to
relative distances to the ball, the basket and other players. To simplify neural network training, we
handcraft features that contain both the global cartesian coordinates (x, y) and relative polar
coordinates (r, cos @, sin@). In addition to a “one hot” encoding of team identity, we compute
additional context features that describe the state of the game (score, game clock, shot clock) and
player-specific attributes® (fouls committed, cumulative “on court” time). The resulting feature
vector is 247 dimensions, and encodes the state of the game from the perspective of a specific role.

7 While beyond the scope of this paper, it is clear that this template is evolving as NBA teams
increasingly utilize stretch-4s and small ball lineups.

8 Since the starting five log the majority of minutes, team identity implicitly encodes many
player-specific attributes like skill. Therefore, we only model dynamic player-specific properties
like fatigue and fouls.
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A.3 Game Evolution

Since the introduction of the the 3 point shot in 1980, the game of basketball has changed. The
“modern” NBA has seen an increase in the number of three point shots attempted. On average, the
2012-13 NBA season had 20 three point field goals attempted, while the 2016-17 NBA season had
27 three pointers attempted [14], with the Houston Rockets attempting almost 40 three pointers
per game [14] in the 2016-17 NBA season. This increase has therefore changed the way defenders
guard 3 point of shots. Using data from 2012-13 season, we generated a model to predict defensive
behavior and ran it on a test set from the 2016-17 season. Fig. 8 clearly shows the ghosts from the
16-17 season model guard the corner three much more aggressively.
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Figure 8: 2016-17 ghosts (grey solid) aggressively guard the corner three point shot as compared to the
2012-13 ghosts (grey transparent) [red circles - team on offense, orange circle - ball].

A.4 Ghosting Response to Sketch
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Figure 9: (left) A sketched play. (right) The defensive positions of Houston (red) and Milwaukee (green) at the
time of the shot (offense in blue). The Rockets do not contest the mid-range jump shot, whereas the Bucks
are anticipated to make an aggressive challenge (resulting in a lower expected points).
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