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1. Introduction 
Sports broadcasters are increasingly sharing statistical insights throughout the game to tell a richer 
story for the audience. Thanks to abundant data and advanced statistics, broadcasters can quickly 
tell stories and make comparisons between teams and players to keep viewers engaged. To keep up 
with the fast-paced nature of many games, broadcasters rely on template-generated narratives to 
speak about in-game stats in real time. When milestone event happens, these rule-based templates 
“stitch” relevant tabular information and create narratives with fixed sentence structures. 

 
Because of the fixed structure, however, these narratives often sound rigid and are hard to 
understand, especially when lots of information is concatenated into long sentences. Commentators 
may choose to ignore these narratives if their meanings are hard to grasp. As a result, exciting stats 
may not come through to the audience. Additionally, as data volume rises, the amounts of efforts 
required on building and maintaining templates also increase. They have to be manually updated 
constantly to reflect the changes. 

 
To address this issue, we design and build an end-to-end machine learning pipeline using natural 
language generation, a technique to generate natural language descriptions from structured data. 
The pipeline is trained to understand the semantic meaning of inputs, and can be expanded to 
include new statistics and applied to other sports through fine-tuning with a few hundred samples. 
This enables broadcasters to produce more natural-sounding narratives and easily scale narrative- 
generation engines. The generated narratives can also be used in social media and push 
notifications. By coupling narratives with the highlighted game clips, broadcasters can ensure fans 
do not miss exciting moments from their favorite teams and players. 

 
The rest of the paper is organized as follows: in Section 2 we describe the two-step modeling 
approach, the dataset and the evaluation metrics; Section 3 highlights the sample results achieved 
with the solution; in Section 4 we summarize the contributions followed by discussions on future 
improvements. 

 
2. Methodology 
Our method consists of two stages. Figure 1 describes the overview of the two-stage solution. In 
first stage, we convert tabular data into structured sentences by leveraging large language models. 
In second stage, we rewrite the sentences and enhance their readabilities through various natural 
language generation techniques. 
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2.1. Template to ML 

Figure 1: Two-stage solution overview 

Natural language generation (NLG) is the use of machine learning to produce written or spoken 
narratives from a dataset, which is usually in a numerical or a structured tabular form that is 
difficult for humans to directly interpret. The technology has been used in area such as voice 
assistants (Alexa, Siri), chatbots and email/text auto-completion [1]. We base our solution on NLG 
because of its capability to generate human-readable narratives. 

 
The first phase of the NLG-based narrative generation solution leverages tabular features, including 
player and team names, metrics, and game situations. These features are paired with their target 
sequences, which are generated using rule-based templates. The goal here is to take the tabular 
features and generate candidate narratives containing all the relevant information. 

 
2.1.1 Dataset 
We synthetically generate a dataset using rule-based methodology. The dataset is generated by 
permuting different statistics, feature values, and team and player names, and includes more than 
57,000 samples composed of eight features. For each tabular sample, we generate the 
corresponding narrative from a rule-based template as target. We randomly shuffle and divide the 
dataset into training, validation, and testing sets based on an 80/10/10 split for training and fine- 
tuning our model. 

 
Table 1 shows examples of the raw data used – each row represents a sample, and each column 
represents the relevant information associated with the sample, including the statistic name, value 
for the statistic, situation that the statistic is calculated upon, etc. For this manuscript, we replace 
actual team and player names with generic names: team Bobcats and player John Peccy. 

 
Statistic Situation Value Time 

frame 
Rank Rank 

Order 
Population Team 

name / 
Player 
name 

rec_td stadium_retra 
ctable_dome 

5 season 7 True 32 Bobcats 

qbkd score_differen 
tial_trailing 

3 season 2 False 190 John 
Peccy 

Table 1: example of tabular features 
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For each row, the raw tabular features are concatenated to form a text sequence. Table 2 shows 
examples of the text sequences used as inputs and the associated narratives from the rule-based 
template as outputs. 

 
Template input Template output 

rec_td stadium_retractable_dome 5 season 
7 TRUE 32 Bobcats 

Bobcats’ 5 caught passes for touchdowns 
when playing in a retractable roof is the 7th 
highest out of 32 in the NFL this season. 

qbkd score_differential_trailing 3 season 2 
FALSE 190 John Peccy 

John Peccy’s 3 credited QB knockdowns 
when trailing is the 2nd lowest out of 190 
in the NFL this season. 

Table 2: example of tabular inputs to template narratives 
 
 
2.1.2 Methods 
One effective strategy in training machine learning models is called transfer learning [2]. It focuses 
on reusing and improving an existing model developed for a different but related task. For example, 
a model trained to recognize sedans can be used as a starting point for training a sports car- 
detection model. The technique is popular in deep learning domains such as computer vision (CV) 
and natural language processing (NLP). By leveraging the generalizable features learned by prior 
models, it is significantly faster for the new models to achieve satisfying results with limited 
amounts of resources. 

 
Because transfer learning has been proved effective, we utilize a language model called Text-To- 
Text Transfer Transformer (T5) [3], which was pretrained on the open-source dataset Colossal 
Clean Crawled Corpus (C4). T5 achieves state-of-the-art results on many NLP benchmarks and is 
flexible to be fine-tuned to different custom NLP use cases. To fine-tune the T5 model for our task, 
we concatenate tabular features into text sequences as inputs, and use the template-generated 
statements as labels. For example, table 3 is translated into the text sequence “Team Bobcats, prss, 
4, score_differential_leading, 7”. 

 
Team 
name 

Metric Value Situation Rank 

Bobcats prss 4 score_differential_leading 7 
Table 3: example of tabular features 

 
The corresponding template statement - “The Bobcats’ 4 total times of pressuring the 
quarterback when leading is the 7th highest in the NFL this season” - is passed in as the 
target output. With thousands of such examples, the T5 model can be fine-tuned to 
generate statements similar to the template. Since it learns the positional meaning of the 
input, the model is able to generalize to previously unseen data, making it extensible to 
fresh players and newly created metrics. 

 
2.1.3 Evaluation metric 
We use bilingual evaluation understudy (BLEU) [4], a popular metric for machine-generated text 
quality evaluation, to quantitatively measure the similarity between model outputs (candidates) 
and template outputs (references). 
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BLEU score ranges from 0 to 100. The more words from candidate text match the words from 
reference text, the higher is the BLEU score. We use standard implementation of sentence BLEU 
score, which is an average of 1-gram, 2-gram, 3-gram and 4-gram BLEU scores. An individual N- 
gram score evaluates gram-matching of a specific order, such as single words (1-gram) or word 
pairs (2-gram). This way we ensure two sentences match not just on single words but also phrases. 

 
After fine-tuning on a few thousand sentences, the T5 model is able to achieve a BLEU score above 
99 on the test set, an indication that most of the generated sentences are identical to template- 
generated sentences. This again echoes the usefulness of leveraging pre-trained models trained on 
abundantly available unlabeled-text for different downstream tasks. 

 
2.2. Improve comprehensibility 
While the fine-tuned T5 model is able to mimic and generalize the templates rules, it still suffers 
from the same drawback – the resulting narratives are sometimes verbose and awkward to read 
since they follow the same pre-defined sentence structure. This can lead to confusion for the 
broadcasters and fans. To address this, our second phase of modeling employs language models to 
enhance the readability of narratives from first phase modeling. The goal is to make the narratives 
sound more natural, hence making it easier for live commentating and for fans to digest. 

 
2.2.1 Methods – back translation 
One way to replace unnatural words in sentences is through back translation [5]. Back translation is 
a two-step translation method. It first translates a sentence into another language and then 
translates the sentence back to its original language. It is a technique used mostly for text data 
augmentation, i.e., increasing the variety of original text. For our use case, we find the pre-trained 
translation models can help fix certain rule-induced mistakes in the original sentence, e.g., a 
singular noun may be corrected to a plural. The models may also choose more natural-sounding 
phrases in place of jargons and puns. This approach gives us an automated way to improve 
readability for our generated sentences. Figure 2 shows what a narrative can look like after back 
translation. The original long sentence is split to two parts, making it easier to read and understand. 

 
For back translation, we used pre-trained neural machine translation models from fairseq [6], an 
open-source toolkit for sequence and language modeling. It is important to note that the choice of 
intermediate language matters for this approach. Languages that share similar syntax and word 
roots are usually good candidates as they tend to preserve the meaning of the original language. For 
example, we found German and Spanish generate more meaningful and accurate back translation 
results compared to Chinese and Russian. This is likely due to the reason that American Football 
contains some unique terms that are hard to find in languages from other cultures. We also notice 
undesirable occasions where some information is lost during the back translation process. For 
example, the “when leading” context is left out in the resulting narrative. We discuss the solution in 
section 2.3. 
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Figure 2: sample result of a narrative going through back translation. 

 
2.2.1 Methods - paraphrasing 
An alternative NLP approach is called paraphrasing - a technique that aims to express semantically 
similar narratives in different forms [7]. We employ a pretrained T5 model [8], which is fine-tuned 
for paraphrasing purposes using open-sourced paraphraser dataset - PAWS [9]. PAWS contains 
over 100,000 human labels on whether a phrase pair is paragraph with each other. Since the model 
is auto-regressive and we want to have a set of diversified texts, we employ Top-K and Top-P 
sampling techniques [10, 11], which allows the top most probable candidate words to be sampled 
during text generation. This ensures that our paraphrasing model generates several candidates for 
a given narrative with slightly different contents. We then choose the candidate that best fits 
business requirements. Figure 3 shows an example of the paraphrasing outputs against a sample 
narrative. 

 

 
Figure 3: Sample of candidate narratives generated from the paraphraser model. Dark texts highlight the 

differences in generated narratives against the original narrative. 
 
2.2.2. Model evaluation 
Quantitatively evaluating how “natural” a sentence sounds is an ongoing challenge in NLP 
community. While there are classic methods such as Flesch-Kincaid test and Dale-Chall score [12], 
which measure the text lengths and difficulty of words, they don’t take into account of sentence 
structures, hence less suitable to measure which rewrite is more effective. For our work, we 
leverage metric called Perplexity [13], which is commonly used for evaluating language models. 
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Given a tokenized sentence 𝑋𝑋 = (𝑥𝑥!, 𝑥𝑥", … , 𝑥𝑥#), the perplexity of 𝑋𝑋 is, 
1 

# 

𝑃𝑃𝑃𝑃𝐿𝐿(𝑋𝑋) = exp  .− 𝑡𝑡  2 log 𝑝𝑝$(𝑥𝑥% |𝑥𝑥&%)8 
% 

Where log 𝑝𝑝$(𝑥𝑥%|𝑥𝑥&%) is the log-likelihood of the i-th token conditioned on the preceding tokens. 
Intuitively it measures the model’s ability to predict the sentence, or as a proxy measure of how 
“surprised” a language model is at a sentence. In other words, it measures how common an 
evaluation sentence is among text corpus used to train a language model, which can be used to 
compare the quality of different sentences. For language models such as GPT2 [14], it typically 
assigns low perplexity score to real and syntactically correct sentences and high perplexity to fake, 
incorrect, or awkwardly-structured sentences. For example, GPT2 will assign a lower perplexity 
score to a sentence like “Can you do it?” and assign a higher perplexity score to a sentence like “Can 
you does it?”. Using perplexity score, we are able to compare the quality of generated sentences 
sharing similar semantic meanings and output the one with the lowest perplexity score. 

 
2.3. Solution Architecture 
In order to productionize the machine learning solution, we need to ensure the models meet certain 
criteria. First, the final narratives must contain the key information specified in the original 
sentences. Secondly, the final narratives shouldn’t be harder to read than the original ones. Because 
of the probabilistic nature of text generation with NLG models and possibilities that information 
gets left out during back translation or paraphrasing, we propose an end-to-end workflow that 
consists of two major components: 1) replacing the current ruled-based approach with the fine- 
tuned T5 model and 2) enhancing the generated narratives through a multistep ML-based 
approach. 

As illustrated in the Figure 3, the fine-tuned T5 ML model generates the narratives (green blocks). 
Next, the narratives are passed through the backtranslation model as an attempt to produce 
enhanced narratives. A fixed tabular feature to keywords dictionary is passed to check if the 
resulting narratives contain the keywords. If the back-translated results include the necessary 
keywords and their perplexity scores are lower compared to the T5 model outputs, they are used as 
the final outputs. Otherwise, we pass the T5 model outputs through the paraphrasing model and 
apply the same condition check. If none of our enhancement models reduces the perplexity score, 
we simply output the T5 model outputs. Through this workflow, we ensure all the required features 
are captured and improve the readability of the sentence when appropriate, maximizing the benefit 
ML can bring to the existing solution. 
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3. Results 

Figure 4: Workflow of final solution 

To test model performances, we randomly select 300 sample narratives and apply back translation, 
paraphrasing and solution pipeline separately. Figure 4.a shows distribution of perplexity scores 
for resulted narratives after each method. Original narratives have perplexity score of 63.9(±26.3), 
back translation reduces perplexity to 42.5(±17.4), paraphrasing reduces perplexity to 
47.3(±17.4) and final narratives out of workflow have perplexity score of 55.7(±26.5). 

 
 

(a) (b) 

Figure 5: (a) Perplexity distribution of output narratives after each method. Original represents narratives 
generated from Part1 of the workflow; back translation represents narratives after passing original to 

back translation; paraphrase represents narratives after passing original to paraphraser model and 
choosing the candidate with lowest perplexity; workflow represents the output after passing through the 

final solution. (b) Final output proportion from each method after going through the solution workflow for 
the 300 sample narratives. Back translation and paraphrase combined rewrite over half of the narratives 

while containing original key information. 
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While back translation and paraphrasing reduce perplexity score the most, as mentioned in Section 
2, they potentially suffer from leaving out or misplacing information during the rewrite. For 
example, “pressuring the quarterbacks” can sometimes be rephrased to “hitting the quarterbacks” or 
“pushing the quarterbacks”, which distort the meanings of original narratives. By leveraging the 
workflow, we make sure the keywords are contained in the final output narratives. Figure 4.b 
shows the breakdown of techniques used for final narratives from the workflow. We notice that a 
significant portion of selections comprise original narratives. Closer examination reveals that 
although some of the rewrites are semantically correct, they don’t contain the specified keywords, 
which turn out to be too strict of constraints. For example, “pass incomplete” feature maps to 
keywords including “fail, complete, pass”. Although “incomplete passes” means the same, it doesn’t 
contain all keywords, hence doesn’t get selected as the final output. One way to improve is to 
include synonyms of keywords and features, and the final narrative will meet the requirement as 
long as one of the synonyms exist. We leave this as part of the future work. 

 
Table 4 compares some of the narratives generated from rule-based template and from our ML 
pipeline. With a 13% average reduction in perplexity, broadcasters can use these narratives live 
during the games and automatically send notifications to fans! 

 
Template Narrative Solution Narrative 

The Bobcats 8 secured receptions in September 
is the 7th lowest out of 32 in the NFL this season. 

In September, the Bobcats secured 8 receptions 
-- the 7th lowest of 139 in the NFL this season. 

The Bobcats 10 catches for first downs when 
trailing inside two minutes is the 7th highest out 

of 32 in the NFL this season. 

The 10 catches of the Bobcats for first downs 
when trailing inside two minutes is the 7th most 

in the NFL out of 105 this season. 
The Bobcats has blitzed the passer 12 times 

against the Bears is the 7th highest out of 32 in 
the NFL this season. 

The Bobcats have blitzed the passer 12 times 
against the Bears, which is the 7th highest out of 

139 in the NFL this season. 
Table 4: Comparisons of template-generated narratives and solution-generated narratives 
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Figure 6: Sample narratives to be sent through newsfeed or Twitter 

 

4. Conclusion 

In this work, we describe how to build an end-to-end Machine Learning solution that is able to 
convert in-game tabular statistics into natural sounding narratives. Compared to the template- 
based approach, our solution significantly improves the readability of sentences while ensuring the 
key information is preserved. Because the solution is built on top of language models that are pre- 
trained on huge text corpus, additional metrics and game situations can get passed in directly to 
generate the desired outputs. The extensibility also enables solution to be transferred to other 
sports by simply fine-tuning the model with sample narratives. These capabilities allow the model 
to scale and adapt to broadcasters’ future business needs. 
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