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1. Introduction 
 
In baseball, the pitcher’s primary goal is to prevent their opponent from scoring runs. They have a 
variety of tools at their disposal to achieve this goal. They have seven fielders behind them ready to 
deal with any batted balls in play. They have a catcher who works to prevent any base stealing and 
who uses framing to make pitches look more like strikes [2]. They also have a repertoire of different 
pitch types with a variety of velocities and trajectories, and with the help of their catcher they get to 
decide when and where to throw each of the pitches in their repertoire. This strategic decision-
making process is often referred to as pitch sequencing. 

Currently, most sequencing strategies are based on simple heuristics. A pitcher may use his fastball 
to get back into strikeout counts and his slider only late in counts to strike hitters out [11]. They 
may adopt the “hard in, soft away” strategy where they throw their fastball inside to set up a 
breaking ball away on the next pitch [14]. Of course, smart hitters are aware of these simple 
pitching strategies. A smart hitter may take advantage of a pitcher’s predictability by crowding the 
plate and moving up in the batter’s box after seeing an inside fastball because that puts him in a 
better position to hit the outside breaking ball that is likely coming next. Likewise, if a pitcher 
always throws a fastball down the middle when he is behind in a 3-0 count, a smart hitter can take 
advantage of that by swinging more frequently because he knows he is going to get a good pitch to 
hit. Of course, a smart pitcher may respond to the hitter swinging more frequently by throwing 
breaking balls in the dirt and inducing more swings and misses, which would then incentivize the 
hitter to swing less frequently. Theoretically, there is some swing rate for the hitter and breaking 
ball in the dirt rate for the pitcher such that the pitcher can no longer adjust their breaking ball rate 
to take advantage of the hitter, and the hitter can no longer adjust their swing rate to take 
advantage of the pitcher. There is no longer any incentive for either player to adjust their strategy. 
This combination of strategies is known as an equilibrium in game theory. 

In this paper, we present a novel approach to optimizing pitch sequencing by modeling the 
matchup between a batter and a pitcher as a zero-sum game and finding the equilibrium, game-
theoretically optimal strategies for each player in this game. We explore three different specific 
game models, which differ in the information available to the batter before making their decision to 
swing or not. The first game assumes the batter observes nothing about the pitch before making 
their decision. The second assumes the batter observes the full pitch before making their decision. 
The final game we investigate assumes that the batter can observe everything up to a decision 
point, and then must makes their decision. We solve for the equilibria in all three games, comparing 
the resulting pitch recommendations and the insight they give for optimal pitch sequencing. 

The remainder of the paper proceeds as follows: First, in section 2 we discuss previous work that is 
relevant to our presentation. Then, in section 3 we give an overview of our proposed game-
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theoretic approach and use a specific at-bat as an example to demonstrate the different game 
models, their assumptions, and their recommendations. The later sections provide the specific 
details and components that are necessary to specify the different game models. In section 4 we 
present our novel recurrent neural network architecture that estimates the distribution over pitch 
outcomes for a pitch given the batter, the previous pitches in the plate appearance, the previous 
pitches’ outcomes, and the current pitch’s characteristics. We use this outcome distribution in the 
calculation of expected run value, which forms the basis of the utility of the game models. In section 
5 we present a novel approach to modeling and estimating pitcher command, or accuracy, which 
allows the game models to to take into consideration a pitcher’s ability to hit their target when 
recommending the next pitch’s location. Given all of the required components, in sections 6, 7, and 
8 we introduce the details of the three game models, discuss how an equilibrium for each is 
computed, and provide additional examples of recommendations based on these equilibria. We 
conclude with a summary and discussion in section 9. 

2. Related Work 

Much research has already been done on the challenge of pitch sequencing. Roegele concluded that 
throwing back to back pitches of different pitch types on similar trajectories up to a decision point 
can help pitchers induce swings and misses [25]. Bonney found evidence that throwing a lower 
velocity pitch after a fastball can benefit the pitcher [12]. Carleton modeled the effect that a change 
in velocity in a two pitch sequence has on swing and miss rate for a set of 302 batters, and not 
surprisingly he found that different batters respond differently to changes in velocity [13], which 
suggests that it is important to make batter specific pitch sequencing recommendations. None of 
these analyses consider sequences longer than two pitches, whereas our method considers the full 
sequence regardless of length. Our method also considers all relevant characteristics of the pitch, 
not just velocity or trajectory. 

Arthur, Bock, and Healey and Zhao each separately developed a measure of the predictability of a 
pitch sequence, and each found that higher predictability was related to worse pitching 
performance [9][10][17]. None of these methods are able to make specific recommendations about 
which pitch to throw next in a sequence, other than suggesting not to be too predictable. 
Additionally, Arthur and Healey and Zhao only consider two pitch sequences, whereas our methods 
consider the full sequence, and Arthur and Bock only consider the pitch type, whereas our methods 
consider all other relevant information, particularly the pitch locations. 

There is existing research that analyzes the full sequence of pitches. Prasad models full pitch 
sequences using directed graph embeddings. They then perform exploratory analysis on these 
embeddings [24]. Yoshihara and Takahashi use a probabilistic topic model to identify pitch 
sequence trends in Nippon Professional Baseball [32]. Although both of these analyses provide 
interesting and valuable insights into existing sequencing strategies, neither are able to make 
sequencing recommendations for a specific batter and pitcher and game state. 

A large amount of work has already been done to assign a value to a pitch. Healey created a Bayes 
classifier to define what he called the intrinsic value of a pitch [16]. Moore uses a set of random 
forest regression models to estimate the expected run value of each pitch [20]. Max Bay created a 
model to predict pitch outcomes, which he then uses to assign pitches a value called stuff+ [26]. 
Unlike our recurrent neural network, none of these models consider the effect that the batter may 
have on the value of a pitch. Some pitches may be better to some batters than they are to other 
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batters. A fastball down the middle is a much worse pitch to Aaron Judge than it is to Billy Hamilton. 
Additionally, all of these models consider each pitch by themselves, without taking into 
consideration the effect that the prior pitches in the sequence may have on the value of the next 
pitch. Our model does consider that effect. 

Although our pitch outcome model is the first model we know of to use a recurrent neural network 
to predict the outcome of the next pitch, it is not the first model to apply a recurrent neural network 
to pitch sequences. [31][33][21] each created a RNN that predicts the next pitch type, rather than 
pitch outcome, in a pitch sequence. 

A key element of our pitch outcome model is the batter embedding. This is what makes our pitch 
values batter specific, and the idea for this came from Alcorn’s work on the (batter|pitcher)2vec 
model [6]. 

Douglas, Witt, Bendy, and Vorobeychik attempted to solve the pitch sequencing problem using a 
very similar method that we present here. They also model the batter and pitcher matchup as a 
zero sum game and apply game theoretical methods to solve for an equilibrium[15]. However, in 
their game they assume that the batter and pitcher make their decisions simultaneously, which 
means the batter decides whether he will swing or take the pitch before he has seen the pitch. That 
is not a reasonable assumption, and we will explore why in section 6. They also use a different 
structure for their pitch outcome model, a different method for evaluating pitcher command, and a 
different utility function. Their utility function is on-base percentage, which means a home run is as 
valuable in their game as a single. Our utility function is based on the expected run value of pitch 
outcomes, so it more appropriately weights home runs relative to singles. 

3. Description of the Batter/Pitcher Matchup Game 
 
The batter/pitcher interaction is highly complex when one considers the strategic, physical, and 
mental factors that contribute to each player’s decision. In this section, we present a model for this 
interaction to be used throughout the paper. To begin assume that each pitch is partitioned into 
some properties that are observable and some that are unobservable to the batter. Denote the set of 
possible observable properties as Po and the set of possible unobservable properties as Pu. Since the 
batter is not able to observe the parts of the pitch in Pu, it would be foolish for the pitcher to 
deterministically choose an element from Pu, i.e., if the batter knows everything about the incoming 
pitch, it is to the batter’s advantage. Therefore, in our model of the game, we allow the pitcher to 
choose a probability distribution across Pu. This allows the pitcher to leverage the fact that some 
pitch properties are not revealed to the batter before the batter must choose whether to swing. The 
pitcher’s decision is thus to select an element from the pitching strategy set P = Po × ∆Pu, where ∆Pu 

is the set of all probability distributions across Pu. 
 
In like manner, it is generally not advantageous for the batter to determine a priori whether to 
swing (for instance, if a batter committed to not swinging before seeing the pitch, the pitcher could 
react by throwing a strike right down the middle). Therefore, the batter’s decision is to choose a 
strategy from ∆S, where S = {swing,take}. 
 
Denote C to be the set of all game contexts, where a game context is characterized by a batter, 
pitcher, ball and strike count, and the previous pitches in the current plate appearance. Both the 
pitcher and batter have access to a utility function U : P × ∆S × C → ℝ, which measures expected run 
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value given the parameters. Negative values of U favor the pitcher, and positive values favor the 
batter. We note that much of this paper is dedicated to ensuring that the computed U is as realistic 
as possible to actual in-game utilities and incorporates pitcher and batter accuracy (see Section 4 
and Section 5). One complication that arises in real-world settings is that pitchers have execution 
error: while a pitcher may intend to use pitching strategy π ∈ P, the actual pitching strategy may 
turn out to be  𝜋̃ = (𝜋̃𝑜, 𝑝̃𝑢). Given the observation  𝜋̃𝑜, the batter may attempt to infer pu, therefore, 
it may be to the pitcher’s advantage to obscure his intention by randomly selecting the pitching 
strategy from some distribution. Therefore we allow the pitcher to ultimately choose p ∈ ∆P. 
 
Since each player knows each other’s possible set of decisions and has access to the same context c 
∈ C a natural question arises as to how each player ought to make their decision: if both players 
play optimally, what is the resulting interaction? Here we leverage the game-theoretic notion of an 
equilibrium, a set of decisions wherein neither player has a unilateral incentive to deviate. Formally, 
given a game context c and observed portion of the pitch πo ∈ Po we 
 
 
 

 
Figure 1: A comparison of the sets D and L. The set L is the set of location points in the strike zone. 
The set D, on the other hand, is a set of decision points, which represent where the ball is when the 
batter needs to make a decision whether to swing. Note that a single point in D could correspond to 
several points in L, depending on the pitch type. One way to model the interaction is to say Po is 
every property about the pitch that can be observed before d and Pu is everything that happens 
after d. 
 
 
define (p∗,s∗) to be an equilibrium if 
 
 𝑝∗ ∈ argmin

𝑝 ∈Δ𝑃
 max
𝑠 ∈Δ𝑆

 𝔼𝜋[𝑈(𝜋, 𝑠, 𝑐)] 

 

(1a) 

 𝑠∗ ∈ argmax
𝑠 ∈Δ𝑆

 min
𝑝𝑢 ∈Δ𝑃𝑢

 𝑈(𝜋𝑜
∗ , 𝑝𝑢, 𝑠, 𝑐), 

 

(1b) 

 
where we abuse notation of U, since (πo, pu) ∈ P. Note the asymmetry between (1a) and (1b): the 
pitcher makes a pitching decision based on the expected value of U, whereas the batter is able to 
choose s∗ based on the actual observed portion of the pitch. Given that the pitcher chooses p∗, the 
batter is incentivized to choose s∗, and vice versa. For the settings in this paper, such an equilibrium 
always exists, and while there may be multiple equilibria, each is equally valuable to both pitcher 
and batter. 
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As one varies what is represented by Po and Pu, the equilibrium in (1) has different interpretations. 
In this paper we explore three possibilities: 

• Game 1: Simultaneous Game. Here assume that Po = ∅ and Pu = T ×L, where T is the set of 
pitch types (fastball, curveball, etc.) that the pitcher can throw and L is the set of possible 
locations across the plate. In this simplification of the game, the batter observes nothing 
about the pitch, and must choose a batting strategy purely on the idea that the pitcher 
wants to minimize utility. Then the equilibrium as defined in (1) corresponds to the well-
known Nash equilibrium for zero-sum games. 
 

• Game 2: Sequential Game. Here assume that Po = T × L and Pu = ∅. In this simplification of 
the game, the batter observes the entirety of the pitch and queries the model of himself to 
determine whether to swing. Note that in this case, since there is no unobserved aspect of 
the pitch, there is no need for the batter to choose a probability distribution; the batter can 
choose deterministically whether to swing based on which choice gives the higher utility. 
Then the equilibrium in (1) corresponds to the well-studied Stackelberg equilibrium. 

 
• Game 3: Decision Point Game. Here assume that Po = D and Pu = T, where D is the set of 

possible decision points, i.e., ball locations where the batter can observe the properties of 
the pitch up to that point, but beyond which the batter does not have time to react to new 

information (see Figure 1) 1. For instance, a pitcher can disguise a curveball as a fastball by 
assuring that they look the same to the batter before the decision point d ∈ D. After that, 
when the batter does not have time to react, the true pitch type is revealed. We call this type 
of equilibrium a decision-point equilibrium and it is the focus of much of this work. 

 
Games 1 and 2 above represent extremes in information available to the batter as they make their 
decision. We assert that Game 3 gives us the most realistic of the three, since it models the idea that 
the batter has some but not all of the information. 
 
We note that this formulation assumes the batter can calculate the solution to (1b) and then sample 
from his chosen probability distribution almost instantaneously. Clearly this is not a realistic 
assumption, however we argue that this modeling choice is relevant and has the following benefits: 
 

1. For a pitcher, implementing p∗ implies that there is a best-case bound on how well the 
batter can respond even if the batter could perform this instantaneous calculation. 

2. For a pitcher/batter, one can look historically and see how close to optimal each is 
performing. 

3. Solving (1) can in many cases yield a deterministic solution for the pitcher, which is a 
simple strategy to implement and test. 

 

3.1. Calculating the Utility Function 
 
In this section we present an overview of the utility function U, which will give context to Sections 4 
and 5. Recall that negative values of U favor the pitcher whereas positive values favor the batter - 
thus in (1), the pitcher seeks to minimize U and the batter seeks to maximize. Recall also that the 
pitcher decision is π = (πo,pu), where pu is a probability distribution on Pu, the batter chooses s, 

                                                        
1 Pitcher icon found at https://flaticon.com 
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which is a probability distribution on S. Therefore, U is an expected value across these utility 
functions: 
 
 𝑈(𝜋𝑜, 𝑝𝑢, 𝑠, 𝑐) =   𝔼𝜋𝑢,𝜏[𝑅(𝜋𝑜, 𝜋𝑢, 𝜏, 𝑐)] =  ∑ ∑ 𝑝𝑢(𝜋𝑢)𝑠(𝜏)𝑅(𝜋𝑜, 𝜋𝑢, 𝜏, 𝑐),

𝜏∈𝑆𝜋𝑢∈𝑃𝑢

 (2) 

 
where pu(πu) is the probability the pitcher chooses πu ∈ Pu under strategy pu, s(τ) is the probability 
the batter chooses τ ∈ S under strategy s, and R : Po × Pu × S × C → ℝ is a function that gives value for 
a particular pitch choice (πo,πu), swing choice τ, and game context c.  
 
In order to learn the function R, we map the outcome of each pitch to a set of 9 categories X = {B, CS, 
SS, F, 1B, 2B, 3B, HR, O}, which represent respectively a called ball, a called strike, a swinging strike, 
a foul ball, a single, a double, a triple, a home run, and an out. The value 𝑣(𝑥, 𝑐) of each outcome x 
given a game context c is adapted from [28] shown in Figure 2, where the relevant game context c is 
simply the ball and strike count. The function R must also account for the pitcher’s and batter’s 
inaccuracies. Therefore, we formulate R as the following expected value: 
 
 𝑅(𝜋𝑜, 𝜋𝑢, 𝜏, 𝑐) =  ∑ 𝑃(𝜋̃𝑜, 𝜋̃𝑢|𝜋𝑜, 𝜋𝑢)

𝜋̃𝑜∈𝑃𝑜, 𝜋̃𝑢∈𝑃𝑢

∑ 𝑃(𝑥 |

𝑥∈𝑋

𝜋̃𝑜, 𝜋̃𝑢, 𝜏, 𝑐)𝑣(𝑥, 𝑐) (3) 

 
 

 
Count  𝑩 𝑪𝑺 𝑺𝑺 𝑭 𝟏𝑩 𝟐𝑩 𝟑𝑩 𝑯𝑹 𝑶 

3-0 0.131 -0.07 -0.07 -0.07 0.287 0.583 0.861 1.2 -0.496 

3-1 0.201 -0.076 -0.076 -0.076 0.356 0.652 0.93 1.269 -0.426 

2-0 0.11 -0.062 -0.062 -0.062 0.397 0.693 0.971 1.31 -0.385 

3-2 0.276 -0.351 -0.351 0 0.432 0.728 1.006 1.345 -0.35 

2-1 0.103 -0.071 -0.071 -0.071 0.459 0.755 1.033 1.372 -0.323 

1-0 0.063 -0.05 -0.05 -0.05 0.46 0.756 1.034 1.373 -0.323 

0-0 0.034 -0.043 -0.043 -0.043 0.494 0.79 1.068 1.407 -0.289 

1-1 0.05 -0.067 -0.067 -0.067 0.51 0.805 1.083 1.423 -0.273 

2-2 0.098 -0.252 -0.252 0 0.53 0.826 1.104 1.443 -0.252 

0-1 0.027 -0.062 -0.062 -0.062 0.537 0.832 1.11 1.45 -0.246 

1-2 0.046 -0.206 -0.206 0 0.577 0.872 1.15 1.49 -0.206 

0-2 0.022 -0.184 -0.184 0 0.598 0.894 1.172 1.511 -0.184 

Figure 2: The values for each outcome 

Finding the conditional probabilities in (3) is nontrivial. One of the contributions of this work is a 
novel batter and sequence-specific prediction model that estimates 𝑃(𝑥 | 𝜋̃𝑜, 𝜋̃𝑢, 𝜏, 𝑐) given in 
Section 4. Another contribution is an accuracy estimation 𝑃(𝜋̃𝑜, 𝜋̃𝑢|𝜋𝑜, 𝜋𝑢) specific to each pitcher, 
given in Section 5. 
 
Note, the last summation in equation (3) can be interpreted as the expected run value of a pitch 
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 𝑟𝑣(𝜋𝑜, 𝜋𝑢, 𝜏, 𝑐) =  ∑ 𝑃(𝑥 |

𝑥∈𝑋

𝜋𝑜, 𝜋𝑢, 𝜏, 𝑐)𝑣(𝑥, 𝑐) (4) 

 
where the run value of a pitch is the average change in run potential plus the average runs that 
score as a result of a pitch outcome [29]. 
 
 

3.2. Example 
 
On October 24, 2020, the Tampa Bay Rays faced off against the Los Angeles Dodgers in game four of 
the World Series. The Rays were already down 2-1 in the best of seven series, and they were down 
7-6 in the game when Brett Phillips stepped up to the plate to face Kenley Jansen with two outs and 
runners on first and second in the bottom of the ninth. Brett Phillips, who is valued much more for 
his defense than his ability as a hitter, became the unlikely hero of the night when he concluded a 
four pitch plate appearance with a single into right field that, with the help of some fielding 
mistakes, scored both baserunners and gave the Rays a walk-off win, their last win of 2020. In this 
section, we model the last pitch of that at bat using all three versions of our batter/pitcher matchup 
game to see what Kenley Jansen could have done differently to get Phillips out. 
 
Kenley Jansen throws three different pitch types: a cutter (FC), a sinker (SI), and a slider (SL), thus 
T = {FC, SI, SL}. In this matchup, and in all other matchups for the remainder of this paper, we define 
L as the grid of 1.5 inch sized squares ranging from -1.5 to 1.5 feet on the horizontal axis and from 1 
to 4 feet on the vertical axis where the origin is given by the back tip of home plate. We define our 
locations from the perspective of the pitcher, so a positive number on the horizontal axis would be 
inside to a right-handed hitter and a negative number on the horizontal axis would be outside to a 
right-handed hitter. 
 

3.2.1. Simultaneous Game Analysis  
 
We first analyze game type 1, where Po = ∅ and Pu = T × L. In other words, assume that Jansen and 
Phillips chose their actions simultaneously. The optimal set of strategies (p∗,s∗) is the solution to (1), 
which can be found using the simplifications described in Section 6. The optimal mixed strategy for 
Jansen was to throw his cutter with intended location (0.19,2.69) (measured in feet) with 
probability 0.63 and to throw his slider with intended location (−1.46,1.04) with probability 0.37. 
This strategy, as well as the cutter that Jansen actually ended up throwing, is depicted in Figure 3a. 
 
Phillips’ optimal strategy was to swing with probability 0.54. Assuming that Phillips and Jansen 
both follow their equilibrium strategies, the expected utility of the pitch is -0.07. The actual 
expected run value of the pitch that Jansen threw, calculated using equation (4), was 0.037. These 
results suggest that Jansen would have benefitted greatly by randomly sampling a pitch from his 
optimal mixed strategy distribution. Of course, it is possible that he did do that, and he intended to 
throw his cutter in the intended location depicted in figure 3a, he just missed his target badly. 
 
It looks like part of Jansen’s strategy is to take advantage of Phillips’ fixed swing rate by 
occasionally choosing to throw a slider as far outside of the strike zone as he possibly can. Phillips is 
assumed to be more likely than not to swing at that pitch, which would be bad for him as he would 
most likely miss. In reality, Phillips probably would not swing 54% of the time at a pitch that bad. 
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We can estimate the likelihood that Phillips swings at that pitch by taking the sum of P(x|p,c) for all 
outcomes x (details in next section) from our pitch outcome model. For that particular slider, 
Phillips’ actual swing likelihood is estimated to be less than 13%, which would incentivize Jansen to 
throw it much less often. If Jansen is incentivized to change his strategy, then we haven’t found a 
true equilibrium point. 
 

3.2.2. Sequential Game Analysis 
 
That leads to our next version of the batter/pitcher matchup game where we assume that the batter 
can observe the full pitch before making their decision. We have Po = T × L and Pu = ∅. We assume 
that Phillips deterministically chooses the τ ∈ S that maximizes equation (3) for every choice of πo ∈ 
Po. We can therefore identify Jansen’s optimal pitch by choosing the πo that minimizes (3) given that 
Phillips’ will choose the optimal τ. This optimal pitch takes into consideration Jansen’s ability to hit 
his intended target, but we also found the best possible pitch that Jansen could throw under the 
assumption that he would hit his intended target with certainty. Figure 3b shows the optimal pitch, 
the best possible pitch, and the actual pitch that Jansen threw to Phillips. 
 
All three pitches were cutters. For both the optimal pitch and the best possible pitch, the best 
response from Phillips is to swing. The expected utility of the optimal pitch is 0.007. If Jansen 
managed to throw the best possible pitch, the expected run value (4) would be -0.067. Both of these 
are better than the expected run value of the pitch he actually threw, which was 0.037. 
 
Note, the optimal pitch here assumes that Phillips always makes the maximizing swing decision. We 
will show in section 7 that this is not always the case. That means that the expected utility of the 
optimal pitch is really a worst case scenario for Jansen. In reality, the utility of that pitch would be 
even smaller because Phillips will not always make the optimal swing decision. That also means 
that there may be a better pitch for Jansen if we adjust for Phillips’ true ability to make optimal 
decisions. With that being said, the optimal pitch had a better expected utility than the pitch that 
Jansen actually threw, and that expected utility represents a worst case scenario for Jansen, so we 
believe Jansen would’ve benefitted from using the Stackelberg equilibrium strategy. 
 

3.2.3. Decision Point Game Analysis  

 
In our final game, we assume that Phillips will observe the pitch’s decision point but not the pitch 
type, meaning he will have some uncertainty about the full trajectory of the pitch after the decision 
point. Using the methods described in section 8, we solve for a mixed strategy over possible pitches 
for Jansen and a mixed swinging strategy for each possible decision point for Phillips. 
 
Figures 3c and 3d show Jansen’s mixed strategy solution. One notable thing about Jansen’s strategy 
is that the pitch he should choose to throw with highest probability is a slider well below the strike 
zone. One might argue that this is a wasted pitch because a professional hitter is not likely to swing 
at a pitch half a foot below the strike zone. Recall that the solution to this game gives Phillips an 
optimal strategy for any observed decision point. It turns out that the optimal swing strategy for 
Phillips in the decision point for this slider is a pure swinging strategy, meaning Phillips should 
swing every time he observes a pitch that passes through that decision point. This strange result 
appears to be caused by the threat of sinkers and cutters being thrown through the same decision 
point. If Phillips swings at the Jansen slider in this decision point, the expected run value is -0.10. If 
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he takes that slider, the expected run value is 0.05. If he swings at a sinker or a cutter in this 
decision point, the expected run value is 0.03 either way, and if he takes a sinker or a cutter in this 
decision point, the expected run value is -0.2 and -0.18 respectively. Thus, the cost of taking the 
sinker is much higher than the cost of swinging at the slider. Additionally, we can see that this slider 
and the two sinkers in the bottom half of the strike zone in Jansen’s mixed strategy all pass through 
similar decision points in figure 3c. When we consider Jansen’s accuracy skill, it is fair to say that all 
three of these pitches are going to pass through a similar set of decision points. Because Jansen is 
mixing the slider and the sinker, the threat of Phillips observing a sinker in this decision point is 
very real, and since it is much more costly for Phillips to take a sinker in this decision point than it is 
 

 

   

  
Figure 3: Jansen’s equilibria against Phillips 

 
 
to swing at a slider, we can see why Phillips might be incentivized to swing every time he observes 
a pitch in this decision point. 
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For any remaining skeptics, we tested to see if Phillips really should swing at every pitch in that 
decision point by varying Phillips’ swing rate strategy in that decision point and seeing how that 
affects the resulting expected utility in (1). Figure 4 shows the result of that test. Clearly, Phillips’ 
utility increases as his swing rate increases in the slider’s decision point location. 

 
Figure 4: Result of varying swing rate in the Jansen slider tunnel 

 
 
Imagine if Jansen had thrown his slider in that location, and instead of hitting a game winning 
single, Phillips swung and missed, ending the game with a strikeout. It is likely that many 
disappointed Rays fans would have angrily cursed at Phillips, wondering how a professional hitter 
could swing at a pitch so far below the strike zone. But if we assume that Phillips has to make his 
swing decision based only on the decision point that he observes, which seems like a fairly 
reasonable assumption, then the reality is that Rays fans have nothing to complain about. Phillips 
made the best decision he could have made with the information available to him. 
 
We’ll discuss some of the assumptions of the third game in more detail in section 8. It has some of 
the same issues that the second game has, particularly that batters are not actually able to behave 
optimally under these assumptions. However, we think it is reasonable to conclude that Jansen 
would have been much better off throwing that slider down below the zone to Phillips. If Phillips 
decided to swing at that pitch, as his equilibrium strategy would recommend, then the result would 
have been a pitch with a negative expected run value. If Phillips had not swung at the pitch, the 
result would have likely been a ball, which may not be a good outcome for Jansen, but at least it isn’t 
a walk-off single. 
 

4. Pitch Outcome Model 
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A truly optimal solution to the pitch sequencing question has to consider the effect of the batter on 
pitch outcomes. Different batters have different strengths and weaknesses. An optimal pitch 
sequence for right-handed hitting Aaron Judge may not be optimal against left-handed hitting Bryce 
Harper. Additionally, an optimal solution has to consider the effect that the prior pitches in the 
plate appearance may have on the outcome of the next pitch in the sequence. We cannot evaluate or 
improve upon the ”hard in, soft away” sequencing strategy, or any other existing sequencing 
strategy, if our utility function does not consider the effect of prior pitches. Thus, we developed a 
novel recurrent neural network (RNN) that incorporates information about the batter and all prior 
pitches in the plate appearance when predicting the outcome of the next pitch. We use this model to 
estimate 𝑃(𝑥 | 𝜋̃𝑜, 𝜋̃𝑢, 𝜏, 𝑐) in our utility function (2). We can think of this RNN as an artificial 
intelligence that aids in optimal pitch selection, so we henceforth will refer to it as OptimusPitch 
(OP). 
 
OP’s architecture is shown in Figure 5. It is made up of two main components: the outcome 
estimator and the hidden state calculator. Let t be the pitch number in the sequence. xt is a vector 
containing the relevant information about pitch t, specifically the release speed, spin rate, 
movement, plate location, the ball and strike count, and the batter and pitcher handedness. Note, 
throughout this paper when we say a pitcher chooses a pitch type in T, what we really mean is that 
they are choosing the release speed, spin rate, and movement. B is an index representing the batter 
in the plate appearance. yt ∈ X is the outcome of pitch t. Finally, ht is the hidden state for pitch t. Note 
that h1 is initialized to be a vector of all zeros. 
 
In the outcome estimator, we first pass the batter index through an embedding layer as in [6]. Then, 
xt, the batter embedding, and ht are concatenated together and passed through a feed forward 
network. This feed forward network is made up of five linear layers with ReLU activations between 
them. The final output is then passed through a softmax activation resulting in a probability 
distribution over X.  
 
In the hidden state calculator, we take the actual result of pitch t, given by yt, and pass that through 
an embedding layer. We then concatenate that embedding onto xt and pass the resulting vector 
through another feed forward network. This network is also made up of five linear layers with 
ReLU activations between them. We finally add the output of this feed forward network onto ht to 
get ht+1. This final addition ensures that our hidden state at time step t+1 is a function of all of the 
previous pitches in the sequence and the outcomes of those pitches. The resulting ht+1 would then 
be passed into the output estimator for the next pitch in the sequence. 
 
For each pitch in a plate appearance, OP estimates the output using information about the batter 
through a batter embedding and information about all previous pitches in the sequence through the 
hidden state, ht. Thus, this model satisfies our requirement that our pitch outcome predictions are 
batter specific and consider the effect of previous pitches on the outcome of the next pitch in the 
sequence. 
 

4.1. Training and Evaluating OptimusPitch 
 
MLB pitch level data from 2021 to 2022 were acquired from Statcast using the pybaseball package 
[5][1][19]. We randomly chose 75% of the plate appearances in this data to make up our training 
set, and the remaining 25% were used as a validation set. 
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Figure 5: OptimusPitch 

 
Since OP is used in our utility function to estimate the probability of each possible pitch outcome, 
we needed to verify that OP’s probability predictions were well-calibrated. We ran OP on the 
validation set and then created probability calibration plots for each of the nine possible pitch 
outcomes [4]. These plots are shown in figure 6. Clearly, OP’s outputs are well-calibrated and can 
reasonably be used in our utility function. 
 
The main innovation in OP is not that it can reliably estimate pitch outcome probabilities or even 
that it makes batter specific predictions; it is that it considers the effect of prior pitches on the 
outcome of the next pitch in the sequence. Thus, we needed to verify that including prior pitch 
information actually helped OP make better predictions on later pitches in the sequence. We 
compared OP to a memoryless version of OP. The memoryless version was trained on the same 
training set as OP, but for each pitch in the sequence, ht was reset to the initial vector of zeros, h1. 
This memoryless version has the same structure as OP, but it does not consider any information 
about the prior pitches in the sequence. We then ran OP and the memoryless version on the 
validation set and compared the cross entropy loss of the predictions [3]. 
 
Overall, the two models actually performed similarly well on the validation set. OP’s average cross 
entropy loss was 1.11, whereas the memoryless version’s average cross entropy loss was 1.12. 
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However, when we compared average cross entropy loss by pitch number, it became apparent that 
OP does a better job than the memoryless version at making predictions on later pitches in the 
sequence. Figure 7 shows the difference between OP’s cross entropy loss and the memoryless 
model’s cross entropy loss grouped by pitch number. As we get deeper into the pitch sequence, OP’s  
 

 
Figure 6: Probability calibration of OptimusPitch on the validation set 

 
 
loss decreases relative to the memoryless model’s loss. Thus, even though the models perform 
similarly well on the validation set, it is clear that OP is better at making predictions on pitches that 
are deeper into a pitch sequence. 
 
We conclude that not only do prior pitches in the sequence have an effect on the outcome of the 
next pitch in the sequence, but also that OP is the first model we know of that is able to learn 
something about this effect and apply it to its outcome predictions. 
 

4.2. OptimusPitch Example 
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On July 6, 2022, Edwin Diaz of the New York Mets faced off against Mike Moustakas of the 
Cincinnati Reds. Diaz struck Moustakas out in five pitches. Notably, Diaz effectively utilized the 
”hard in, soft away” strategy on the final two pitches of the at bat, throwing a 100 mph fastball 
inside for a ball and then following that with a 92 mph slider outside for a swinging strike three. We 
ran both OP and the memoryless model on this at bat and compared the predictions for the final 
pitch. Using OP’s estimated outcome distribution in (4) returned an expected run value on the final 
 

 
Figure 7: Difference in average cross entropy loss by pitch number 

 
pitch of −0.14. On the other hand, the estimated outcome distribution from the memoryless model 
gave an expected run value of −0.07. Something about the prior sequence of pitches led OP to 
believe that the final strikeout slider was a better pitch than the memoryless model thought it was. 
Perhaps OP has learned that an outside slider is better when it is preceded by an inside fastball, as 
the ”hard in, soft away” strategy would suggest. 
 

5. Pitcher Accuracy Estimation 
 
In each of the three games we are considering, the pitcher can choose a target location for a given 
pitch, but when the pitcher throws a pitch, there will be some amount of error, generally resulting 
in a different actual pitch location than was intended. This error, or noise, is random, and its 
characteristics will be different for each pitcher. In this section we describe how parameters of this 
error were estimated for each pitcher and pitch type for use in the game models. 
 
First, we note that if we had data that indicated the aiming or target location for each pitch, it would 
be fairly simple to estimate the characteristics of the noise for each pitcher. The most significant 
noise characteristic is the standard deviation of the noise, which indicates how close the actual 
pitch locations are to their targets. However, the data that we have access to only records the actual 
pitch locations, not the target locations. 
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Prior research has focused on solving precisely this problem, estimating what was termed the 
execution skill of a player in a game [7, 8]. These previous methods all take as input a set of 
observations of the player acting in a domain. Each observation contains the specific action that 
was executed by a player along with numerical utility values for all possible actions that could have 
been executed by the player. For the current baseball setting, each observation consists of all of the  
 
 

 
Figure 8: The final two pitches in Diaz’s strikeout to Moustakas 

 
 
details about a single pitch of a given type (cutter, sinker, slider, etc.), by a pitcher. The set of 
possible actions the pitcher could have executed consists of all the locations where the pitch could 
cross the plate, while the executed action is the actual realized location of the pitch as it crossed the 
plate. The numerical utility values were obtained for a grid of possible pitch locations by keeping all 
other data about each pitch constant while varying the location of the pitch. The rv function in 
equation (4) was then used to give the expected utility for each of these alternatively-located 
pitches against the batter in the observation. With the two required components defined, any of the 
methods described in previous work can be utilized. We use the most robust and successful method 
previously investigated, which is called The Bayesian Approach (TBA) [8]. 
 
TBA models a player’s error as noise added to the intended action, where this noise is drawn from a 
symmetric two-dimensional Gaussian distribution N(µ,Σ), where µ = [0,0] and Σ = σI2. TBA 
maintains a probability distribution over a set of hypothesis σ values that the pitcher could have. 
The available observations for each pitcher and pitch type are processed sequentially and TBA 
repeatedly updates the probability of each hypothesis σ value as follows: 
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𝑃(𝜎|𝑧) ∝ [𝛽 (
1

𝑚
∑ 𝑃(𝑧|𝑓, 𝜎)

𝑓∈𝐹

) +  
(1 − 𝛽)

𝑊
] 𝑃(𝜎) 

 
In this equation z indicates the executed action for the observation, m is the number of focal point 
targets, f ∈ F, W is the total number of possible targets considered, β is a parameter that can be 
tuned, and P(σ) is the previous probability of the hypothesis σ value. The estimate of the pitcher’s 
actual σ value is computed as the mean hypothesis σ value with respect to this probability 
distribution. This was called the TBA-EES estimate in [8]. 
 
For the baseball experiments reported in this work, we utilized a set of 66 hypothesis σ values 
distributed between 0.17 ft (2 inches) and 2.81 ft. 2.81 ft was chosen as an upper limit as with this σ 
value the strike zone can only be hit 20% of the time when aiming in the middle. This seemed to be 
far lower than the success rate that would be required for anyone to be a major league pitcher. 60 
of the hypothesis σ values were distributed between 0.17 ft and 1.0 ft, and the remaining 6 were 
distributed between 1.0 ft and 2.81 ft. This was due to the fact that for σ values lower than 1 ft, the 
best pitch location can vary, while for values greater than 1 ft, the best location doesn’t change, 
remaining near the middle of the strike zone. 
 
The total set of possible pitch locations we utilized for the TBA method stretches horizontally from -
2.13 ft to 2.13 ft and vertically from -2.5 ft to 6.6 ft, discretized in both directions with a resolution 
of 0.5 inches. These ranges were chosen to enclose at least 95% of all the observed pitch locations 
in the data from the 2021 MLB season. Pitches landing outside this region were assigned the 
minimum utility from among all the locations within the region. 
 
TBA utilizes a set of focal actions, which are presumed to be likely aiming points for the pitcher. For 
the baseball domain, we have chosen the set of points shown in Figure 9. In addition, for each pitch, 
we included the location yielding the maximum expected value for each σ hypothesis, as long as it 
was at least 2 inches from the center target and previous maximum aiming points added. 

 
We ran TBA with β ∈ {0.5,0.75,0.85,0.9,0.95,0.99}, and found that in this baseball setting the 
different β values all resulted in very similar estimates. The results with β = 0.95 were used in the 
other experiments. 
 
We ran TBA on up to the 1000 most recent pitches in the data for a given pitcher and pitch type. 
Fewer pitches were used when that was all that appeared in the data. The final estimate produced 
by TBA after processing these pitches was utilized as the actual σ value for that pitcher and pitch 
type for use in the game models investigated in the remainder of the paper. 
 

5.1. The Effect of Execution Skill 
 
To help visualize the effect of this execution noise on the situation facing the pitcher, Figures 10 and 
11 show examples of the utility for different pitch locations, as estimated by the rv function as 
described. Figure 10 shows the utility of different locations assuming perfect execution ability, 
along with the actual location of the pitch. 
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Figure 9: Focal Points for TBA method, where the black box indicates the border of the typical strike 

zone 
 
As the accuracy of the pitcher decreases, the expected utility of aiming in each location can be 
calculated by convolving the Gaussian pitcher noise distribution with the perfect execution utility 
function. Figure 11 shows these different expected utility plots for different σ levels for Aroldis 
Chapman on a slider (SL) from the data. In each figure the pitch location which yields the highest 
expected utility for that σ level is marked with an X. It can be seen that, as the execution noise 
increases, the expected reward decreases, and the optimal pitch converges to aiming somewhere in 
the middle. 

 
Figure 10: Utility Plot for Aroldis Chapman. X indicates the actual pitch location. 
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Figure 11: Expected utilities for different execution skills. Colors indicate the expected 
utility of a target location. The X indicates the optimal pitch location. 
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6. Game 1: Simultaneous Game 

 
Recall in our first game, we assume the batter can observe nothing about the pitch before making 
their decision to swing. We have 𝑃𝑜 = ∅ and 𝑃𝑢 = 𝑇 × 𝐿 where 𝑇 is the pitcher's pitch types and 𝐿 is 
the set of possible plate locations (see Figure 1). Then the equilibrium in (1) is equivalent to: 
 
 𝑝𝑢

∗ ∈ argmin
𝑝𝑢∈Δ𝑃𝑢

max
𝑠∈Δ𝑆

 𝑝𝑢
𝑇𝐴𝑠 (5a) 

 𝑠∗ ∈ argmax
𝑠∈Δ𝑆

min
𝑝𝑢∈Δ𝑃𝑢

𝑝𝑢
𝑇𝐴𝑠 (5b) 

 
where 𝐴 is the |𝑃𝑢| ×  |𝑆| matrix who's (𝑖, 𝑗)𝑡ℎ entry is given by 𝑅(𝑝𝑖 , 𝜏𝑗, 𝑐) for 𝑝𝑖 ∈ 𝑃𝑢 and 𝜏𝑗 ∈ 𝑆. 

This formulation is known as the normal form representation of the game. We can set up and solve 
a linear programming problem to determine the equilibrium, (𝑝𝑢

∗ , 𝑠∗) [30]. 
 
Although we now have the tools to solve for the Nash equilibrium in a batter/pitcher matchup, we 
do not consider it a worthwhile endeavor. As we saw in the Jansen and Phillips example of Section 
3.2 assuming the batter is randomly choosing to swing at a fixed rate can result in a pitching 
strategy that requires throwing pitches way outside of the strike zone. In the real world, hitters 
rarely swing at pitches like that, and they just get called balls. Although some Nash pitching 
strategies may work fairly well, and in fact the other pitch in the optimal strategy for Jansen likely 
would have worked out better for him than the pitch he actually threw, we think that the 
assumptions in the next two games are more realistic, and therefore the equilibria would make 
more effective pitch sequencing strategies. 
 

7. Game 2: Sequential Game 
 
Recall in this game, we assume that the batter can observe the full trajectory of the pitch before 
making their decision to swing. We have 𝑃𝑜 =  𝑇 × 𝐿 and 𝑃𝑢 = ∅. In this case, the equilibrium in (1) 
is equivalent to: 
 

𝜋𝑜
∗  ∈ argmin

𝜋𝑜∈𝑃𝑜

max
𝜏∈𝑆

𝑅(𝜋𝑜, 𝜏, 𝑐) 

    𝜏∗ ∈ argmax
𝜏∈𝑆

min
𝜋𝑜∈𝑃𝑜

 𝑅(𝜋𝑜
 , 𝜏, 𝑐). 

 
Here the batter is assumed to know which action in 𝑆 is the best response to the observed pitch,  𝜋𝑜, 
so they deterministically choose that action. The pitcher has nothing to gain by randomizing their 
choice of action if the batter is going to respond optimally to any observed pitch, so the pitcher also 
chooses their action deterministically to minimize the utility of the batter's best response. We solve 
for the equilibrium (𝜋𝑜

∗ , 𝜏∗), known as the Stackelberg equilibrium, with an exhaustive search over 
𝑃𝑜 and 𝑆. 
 
7.1. Sequential Game Analysis Example 
 
On October 8, 2022, Jacob deGrom of the New York Mets faced off against Juan Soto of the San Diego 
Padres in the top of the first inning of game two of the NL Wild Card Series. The five-pitch at bat 
concluded with a 102 mph fastball just outside of the strike zone that Soto swung at and missed for 
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strike three. The best response for Soto to that pitch would have been to take it, which would have 
given an expected run value of about 0. The expected run value for a swing was -0.08. Juan Soto is 
among the best hitters in all of MLB, and he is particularly well-known for not chasing pitches 
outside of the strike zone. If any major league hitter is capable of always making the optimal swing 
decision, it is likely Juan Soto. Despite that, deGrom got him to swing at a pitch outside of the strike 
zone. 
 
As it turns out, no hitter is able to make the optimal swing decision on every pitch under the 
assumptions of the sequential game. We determined the best response strategy for every pitch in 
the validation data from Section 4. The batter made the optimal swing decision on 70% of these 
pitches. Additionally, we identified the optimal pitch for every pitcher that we had execution scores 
for in the validation data. We found that these pitchers chose the optimal pitch type just 48% of the 
time. 
 
If batters are not behaving optimally, pitchers may be incentivized to deviate from the equilibrium 
strategy. The deGrom and Soto at bat provides a good example of this. Figure 12 shows the 
equilibrium strategy for the final strikeout pitch. The optimal pitch is a changeup right down the 
middle, which gives an expected run value of -0.02 if Soto chooses the best response action. Recall 
that the expected run value on the pitch that deGrom actually threw was a much better -0.08 
because Soto did not make the optimal decision. Thus we see that if deGrom had some reason to 
believe that Soto would choose the suboptimal action in response to his outside fastball, then it was 
actually rational for deGrom to deviate from the equilibrium strategy. 
 

 
Figure 12: Stackelberg equilibrium for deGrom vs Soto 

 
As mentioned in Section 3, the Stackelberg equilibrium strategy gives an upper bound on how well 
the batter can respond to a pitch. If deGrom had chosen to throw the optimal pitch of Figure 12, the 
largest possible expected utility that Soto could have achieved is -0.02, which is a win for deGrom. 



 21 

Thus, although we have shown that batters will not always behave optimally in the sequential 
game, we still consider the Stackelberg equilibrium to be a viable pitch sequencing strategy because 
it minimizes the upper bound of the batter's response. In other words, it minimizes the utility if the 
batter is a perfect version of themselves who always makes the right decision. Given that batters 
made the right decision a majority of the time in the validation data, it probably is not a bad idea for 
pitchers to choose the action that minimizes the best response. 
 

8. Game 3: Decision Point Game 
 
In the previous section, we found that batters do not always make the best swing decision under 
the assumption that they can observe the full pitch. One possible reason for this is that batters 
cannot actually observe the full pitch before deciding to swing. It takes some small amount of time 
for a batter to complete their swing. Naturally, there is a decision point along a pitch's trajectory 
where if the batter has not decided to swing by that point, they no longer have enough time to 
complete their swing before the ball reaches the catcher's glove. Rather than assuming that batters 
can observe the full pitch before deciding to swing, it is therefore more realistic to assume that they 
can only observe the full pitch up to the decision point. A pitcher can throw multiple pitch types 
through a decision point, so the batter does not know exactly where the pitch will end up after the 
decision point because they are not sure which pitch type was thrown through the decision point. 
For instance, a fastball that ends up at the top of the strike zone may share a decision point with a 
curveball that ends up at the bottom of the strike zone (Figure 1). 
 
In this third and final game, we assume that the batter can observe the decision point of the pitch, 
but not the pitch type. Thus, we have 𝑃𝑜 = 𝐷 and 𝑃𝑢 = 𝑇, where 𝐷 is the set of possible decision 
points, and 𝑇 is the set of pitch types. We defined the decision point as the point 24 feet from home 
plate based on [27]. Note that pitchers often use a sequencing strategy known as tunneling where 
they try to throw consecutive pitches of different types along a similar trajectory up to the decision 
point [25]. We will therefore use the terms "decision point" and "tunnel point" interchangeably 
throughout this section. 
 
We defined a mapping, 𝑓: 𝑇 × 𝐿 →  𝐷, using Alan Nathan's physics of baseball work, particularly the 
trajectory and movement calculators [18][22][23]. We used that mapping to create a training 
dataset containing pitches and their corresponding tunnels. We then used linear regression to 
define a mapping, 𝑔: 𝑇 × 𝐷 → 𝐿. We used 𝑔 to determine the plate location of a pitch given its pitch 
type and its decision point location, which allowed us to calculate the expected run values in (4) for 
an inputted pitch type and decision point. 
 
Recall in (1b), the batter's equilibrium strategy 𝑠∗ is a function of the actual observed portion of the 
pitch, 𝜋𝑜. In this game, we are assuming 𝑃𝑜 = 𝐷, so the equilibrium strategy in this game requires an 
optimal strategy for all 𝜋𝑜 ∈ 𝐷. 
 
Let 𝐴 be a matrix who's (𝑖, 𝑗)𝑡ℎ entry is given by 𝑅(𝜋𝑜

𝑖 , 𝜋𝑢
𝑖 , 𝜏𝑗 , 𝑐), where (𝜋𝑜

𝑖 , 𝜋𝑢
𝑖 ) is the 𝑖𝑡ℎ entry in 

𝑃𝑜 × 𝑃𝑢 and where 𝜏𝑗 ∈ 𝑆 is the action of taking a pitch in tunnel 𝑗/2  if 𝑗 is even and swinging at a 

pitch in tunnel (𝑗 + 1)/2 if 𝑗 is odd. For instance, 𝜏1 corresponds to swinging at a pitch in tunnel 1, 
and 𝜏2 corresponds to taking a pitch in tunnel 1. Thus, 𝐴 is |𝐷||𝑇| × 2|𝐷| because there is a row for 
every choice of (𝜋𝑜

𝑖 , 𝜋𝑢
𝑖 ) ∈ 𝑃𝑜 × 𝑃𝑢 and two columns for every tunnel in 𝐷, one corresponding to 

swinging at a pitch in that tunnel, and one corresponding to taking a pitch in that tunnel. 
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𝐴 allows us to rewrite the expected utility function in (1b) as  
 

𝔼𝜋[𝑈(𝜋, 𝑠, 𝑐)]  =  𝑝𝑇𝐴𝑠 
 
where the 𝑖𝑡ℎ entry of 𝑝 gives the probability that the pitcher chooses action (𝜋𝑜

𝑖 , 𝜋𝑢
𝑖 ) and where the 

𝑗𝑡ℎ entry of 𝑠 is equal to the probability that the batter uses action 𝜏𝑗 given his strategy 𝑠 and given 

that the observed pitch is in the corresponding tunnel (𝑗/2 if 𝑗 is even and (𝑗 + 1)/2 if 𝑗 is odd). 
Thus, in this case 𝑠 is of length 2|𝐷|, where the 𝑖 and 𝑖 + 1 entry are given by (1b) with 𝜋𝑜

𝑖  plugged 
in for 𝜋𝑜. 
 
Writing the utility function in this way allows us to set up and solve a linear programming problem 
for the decision point equilibrium, just as we did in Section 6. We have  
 

max
𝑠,𝑣

𝑣  

    s.t. 𝐴𝑠 ≽ 𝑣 
          𝑠𝑖 + 𝑠𝑖+1 = 1, ∀𝑖 ∈ 𝐷 
                  𝑠 ≽ 0 

 
The notable difference in this formulation compared to the linear programming problem we solve 
for the Nash equilibrium is the equality constraint, 𝑠𝑖 + 𝑠𝑖+1  =  1 for every 𝑖 ∈ 𝐷, which simply 
requires that the batter's strategy in each tunnel sums to 1. The solution to this problem gives us 
the decision point equilibrium strategy for the batter, 𝑠∗, as well as the decision point utility, 𝑣∗. We 
get the decision point equilibrium pitcher strategy, 𝑝∗, by solving the dual of this problem. 
 

8.1. Sequential Game Analysis Example 
 
On October 28, 2022, The Philadelphia Phillies and the Houston Astros played in game one of the 
World Series. In the bottom of the first inning, Jose Altuve faced off against Aaron Nola in a five-
pitch at bat that culminated with a swinging strike three at a cutter a full foot outside of the strike 
zone. The decision point equilibrium strategy in that pitch's tunnel was a pure take strategy, so 
Altuve failed to make the optimal swing decision. Figure 13 shows Nola's mixed strategy for this 
pitch, as well as the pitch he actually threw. Nola's mixed strategy does not include his cutter, so he 
also chose a suboptimal strategy. 
 
Just as we saw in Section 7, Altuve is not the only batter who does not always behave optimally. 
Finding the decision point equilibrium takes a bit longer than the Stackelberg equilibrium, so we 
focused our analysis on just the first pitch of ten batter/pitcher matchups between batters and 
pitchers who had a fair number of plate appearances against each other in both the training and 
validation sets from Section 4. We compared the batters' equilibrium strategies with the actions 
they actually took. We only looked at pitches that went through tunnels where the batter had a pure 
strategy for that tunnel. We also only looked at pitches that were inside of our pre-defined grid of 
tunnels, 𝐷. We ended up with 255 pitches to analyze. Of those pitches, the batter made the optimal 
equilibrium decision 71% of the time, and none of the ten batters made the optimal decision on 
every pitch. 
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Batters never really had a chance to behave optimally in this third game. It is one thing to be able to 
use a pure strategy in an observed pitch tunnel, which we have already seen batters cannot do, but 
imagine how a hitter would go about using a mixed strategy in a tunnel. Altuve, for instance, needs 
to randomly swing 12% of the time at the fastball (FF) in the bottom middle part of the strike zone 
in Figure 13. In order to achieve that, Altuve would first need to be able to identify the tunnel he is 
observing and its strategy. Then he would need to somehow sample from Bernoulli(0.12) and use 
that sample to decide if he should swing. And he would need to do all of this in the fraction of a 
second between when the pitch passes through the decision point and when it reaches the catcher's 
glove. In our efforts to provide batters the most realistic set of information to use in making their 
swing decisions, we have inadvertently created an impossible batter strategy.  
 
 

 
Figure 13: Decision point equilibrium for Nola vs Altuve 

 
 
Just like in the Stackelberg equilibrium of the deGrom and Soto at bat, if batters are not behaving 
optimally, pitchers may be incentivized to deviate from the equilibrium. Nola threw a cutter way 
outside of the strike zone, which certainly was not part of his equilibrium strategy, but it ended up 
with an expected run value of -0.16 because Altuve made the wrong swing decision. The expected 
utility using the decision point equilibrium strategy was just -0.01 in comparison. Obviously, if 
Altuve is going to swing at a pitch a foot outside of the strike zone, then a pitcher should take 
advantage of that and outperform the decision point equilibrium.  
 
Although batters do not behave optimally, we still consider the decision point equilibrium to be a 
viable sequencing strategy for pitchers. Batters obviously couldn't hope to deploy a mixed strategy 
in an observed tunnel, but depending on what sort of random number generating tools are allowed 
in a dugout during a game, a pitcher may have enough time to sample from their equilibrium mixed 
strategy before throwing the next pitch. We can interpret the equilibrium in this game as the 
pitcher strategy that minimizes the upper bound of the utility of the batter's best response. In other 
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words, the pitcher strategy is the most effective strategy that a pitcher could use against a perfect 
batter who always makes the right swing decision. If a pitcher uses their strategy against a batter 
that does not always take the best response action, their expected utility will not get any worse. 
 

9. Conclusion  
 
In this paper we proposed a novel method for utilizing the tools of game theory – specifically the 
computation of game-theoretically optimal equilibrium strategies in zero-sum games – to model the 
interaction between a pitcher and batter in baseball. We explore three different zero-sum game 
models, which differ in the amount of information available to the batter before they must make 
their swing decision. The recommendations that are proposed by these models are individualized 
to the specific batter and pitcher and realistically represent the ability of a pitcher to throw a pitch 
where intended. We feel that grounding pitcher decision-making in the principles of game-theory 
will lead to better outcomes for pitchers than methods currently used, and that this work 
constitutes important first steps towards getting the best performance possible from each pitcher 
in baseball. 
 
 
 

References 
 
[1] Baseball savant. https://baseballsavant.mlb.com/. 

[2] Catcher framing: Glossary. 
https://www.mlb.com/glossary/statcast/catcher-framing. 

[3] Crossentropyloss¶. https://pytorch.org/docs/stable/generated/ 
torch.nn.CrossEntropyLoss.html. 

[4] Probability calibration. https://scikit-learn.org/stable/modules/ 
calibration.html. 

[5] Statcast. https://www.mlb.com/glossary/statcast. 

[6] Michael Alcorn. (batter|pitcher)2vec: statistic-free talent modeling with 

neural player embeddings. In MIT Sloan Sports Analytics Conference. MIT 
Sloan, 2017. 

[7] Christopher Archibald and Delma Nieves-Rivera. Execution skill 

estimation. In Proceedings of the 17th International Conference on 
Autonomous Agents and MultiAgent Systems, pages 1859–1861, 2018. 

[8] Christopher Archibald and Delma Nieves-Rivera. Bayesian execution skill 

estimation. In Proceedings of the AAAI Conference on Artificial Intelligence, 
volume 33, pages 6014–6021, 2019. 

[9] Robert Arthur. The art and science of sequencing:
 sabermetrics’ undiscovered country. https: 



 25 

//www.baseballprospectus.com/news/article/23023/ the-art-and-science-of-
sequencing-sabermetrics-undiscovered-country/, March 2014. 

[10] Joel R Bock. Pitch sequence complexity and long-term pitcher 
performance. Sports, 3(1):40–55, 2015. 

[11] Kyle Boddy. Choosing the correct pitch sequences:
 Datadriven decisions.
 https://www.drivelinebaseball.com/2012/05/ choosing-the-correct-
pitch-sequences-data-driven-decisions/, May 2012. 

[12] Peter Bonney. Defining the pitch sequencing question. https: 

//tht.fangraphs.com/defining-the-pitch-sequencing-question/, March 2015. 

[13] Russell Carleton. Baseball therapy: the power of changing speeds. 

https://www.baseballprospectus.com/news/article/25494/ baseball-

therapy-the-power-of-changing-speeds/, February 2015. 

[14] Ben Clemens. Can ”hard in and soft away” make your troubles go away? 

https://blogs.fangraphs.com/ can-hard-in-and-soft-away-make-your-

troubles-go-away/, June 2022. 

[15] Connor Douglas, Everett Witt, Mia Bendy, and Yevgeniy Vorobeychik. 
Computing an optimal pitching strategy in a baseball at-bat. arXiv preprint 

arXiv:2110.04321, 2021. 

[16] Glenn Healey. A bayesian method for computing intrinsic pitch values 

using kernel density and nonparametric regression estimates. Journal of 

Quantitative Analysis in Sports, 15(1):59–74, 2019. 

[17] Glenn Healey and Shiyuan Zhao. Using pitchf/x to model the dependence 
of strikeout rate on the predictability of pitch sequences. Journal of Sports 
Analytics, 3(2):93–101, 2017. 

[18] David Kagan and Alan M. Nathan. Statcast and the baseball trajectory 
calculator, Mar 2017. 

[19] James LeDoux. Introducing pybaseball: An open source package for 
baseball data analysis. https://jamesrledoux.com/projects/open-source/ 
introducing-pybaseball/, Jul 2017. 

[20] Ethan Moore. Revamping my pitch quality metric.
 https://towardsdatascience.com/ revamping-my-pitch-quality-metric-
66cb2dbe8d8a, Sep 2020. 

[21] J Morehouse. No pitch is an island: pitch prediction with sequenceto-

sequence deep learning. https://community.fangraphs.com/ 

no-pitch-is-an-island-pitch-prediction-with-sequence-to-sequence-deep-learning/, January 
2022. 



 26 

[22] Alan Nathan. Pitch movement, spin efficiency, and all that, Aug 2018. 

[23] Alan M Nathan. The physics of baseball. 

[24] Arnav Prasad. Decoding mlb pitch sequencing strategies via directed 
graph embeddings. In MIT Sloan Sports Analytics Conference. MIT Sloan, 
2021. 

[25] Jon Roegele. The effects of pitch sequencing. https://tht.fangraphs. 
com/the-effects-of-pitch-sequencing/, Nov 2014. 

[26] Eno Sarris. The pitcher report: What exactly is stuff+? featuring rich hill, 
sam long, and more. https://theathletic.com/2641834/2021/06/11/ 

the-pitcher-report-what-exactly-is-stuff-featuring-rich-hill-sam-long-and-more/, Jun 2021. 

[27] Bret Sayre, Harry Pavlidis, Jonathan Judge, and

 Jeff Long. Prospectus feature: Introducing pitch

 tunnels. https://www.baseballprospectus.com/news/article/31030/ 
prospectus-feature-introducing-pitch-tunnels/, Jan 2022. 

[28] Joe P Sheehan. More run values. http://baseballanalysts.com/ 
archives/2008/02/writing_about_t.php, Feb 2008. 

[29] Tom Tango. Run values by pitch count. http://tangotiger.com/index. 
php/site/article/run-values-by-pitch-count. 

[30] Robert J. Vanderbei. Linear Programming: Foundations and extensions. 
Springer, 2020. 

[31] PI Yifan. Predict next baseball pitch type with rnn. 

[32] Keisuke Yoshihara and Kei Takahashi. Pitch sequences in baseball: 
Analysis using a probabilistic topic model. Available at SSRN 3728430, 
2020. 

[33] Chih-Chang Yu, Chih-Ching Chang, and Hsu-Yung Cheng. Decide the next 
pitch: A pitch prediction model using attention-based lstm. In 2022 IEEE 
International Conference on Multimedia and Expo Workshops (ICMEW), 
pages 1–4. IEEE, 2022. 

 
 


