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1. Introduction

Understanding individual athletic performance in soccer is not trivial. When we watch a player
scoring a goal, we cannot quantify the precise amount of the underlying technical, tactical, physical,
and psychological skills that are involved. Rather than directly influencing performance per se, those
skills are heavily intertwined, so it is impossible to isolate the influence of each individual set of
skills and quantify how much of performance is caused by one or another [1]. From the point of
view of Sport Psychology, using huge event and tracking datasets can be fruitful and epitomize a
substantial increase in observational power as long we keep in mind that the data contained in it
belongs to the realm of behavior. In other words, the data is about performed behaviors, not the
hidden skills that make it possible. Thus, those skills can be inferred but not measured as absolute
entities.

Therefore, we can question the value of event/tracking data to answer questions like: How can we
identify the best-performing players under competitive pressure? Can we track a player’s ability to
perform under competitive pressure across time? Or, to put it differently, how is my player evolving
regarding his ability to cope with normative contextual stress?

Following the steps of Bransen et al. [2], we argue that, under the bold assumption that both
competitive contextual pressure and the human ability to deal with it vary normatively, it is possible
to assign a relative value to football players’ ability to cope with normative contextual pressure.
Moreover, we suggest that such a metric has practical worth for talent identification and
development.

In that sense, this paper will present our approach to modeling normative contextual pressure from
event data. In the sections below, we will report the data preparation jobs to generate the features
required for our modeling, present the theoretical background inspiring it, and provide a use case in
which we used unsupervised machine learning methods to identify natural groups of football
players with different profiles regarding performing under normative contextual pressure.

1.1. - Theoretical Fundaments Regarding Competitive Stress

Whether it is reasonable to presume, like in Bransen et al. [2], that contextual pressure (or ‘mental
pressure’ as named by the authors in the original paper) is a dynamic construct influenced by
pre-game and in-game factors, it is advised to understand why it is dynamic and also why, by only
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using behavioral data (i.e., described in event streams), we can speak of contextual stress as a
relative describer rather than as an absolute measure. Therefore, following the old adagio that
“there is nothing more practical than a good theory” [3], it is substantial to establish a theoretical
foundation to ground the modeling effort.

Since our attention is devoted to the performance under pressure topic, we root our analysis of
football players’ performing profiles under varying levels of normative contextual pressure in the
Theory of Stress and Coping [4], which was already explored mainly within the domain of Sport
Psychology (e.g., [5, 6]).

The Theory of Stress and Coping primary postulation is that stress or anxiety is a relational process
mediated by subjective cognitive appraisals rather than a direct response to external stimuli (see
[4]). As depicted in Figure 1, primary and secondary appraisals mediate the coping response on a
transactional basis, in which the individual judges or appraises situations (primary cognitive
appraisals) and their ability to cope (secondary cognitive appraisals) with the demands imposed by
them in an ongoing fashion.
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Figure 1 - An overview of Lazarus and Folkman’s (1984) Model of Stress and Coping.

Therefore, as stated by Cruz [7], “anxiety as an emotional response only happens when athletes
perceive a threat or, in other words, when they appraise situations as meaningful and significant for
their “ego” or subjective wellbeing while, at the same time, they judge their resources to cope or
deal with such situations as insufficient” ([7], p.30).

It is essential to notice that, contrary to Lazarus and Folkman [4], rather than focusing on anxiety as
a personal experience and according to our aim, we are herein looking at contextual pressure as an
environmental variable. We understand that the experience of anxiety is highly idiosyncratic and
cannot be grasped from event data only since it depends on each player's cognitive and affective
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personal background, so what we are looking for is the effects of contextual pressure on individual
performance that can be moderated/facilitated by anxiety and other emotions. In this sense and
within this study, we recognize pressure as a dynamic situational property that may characterize
football players’ performance rather than an individual feature.

2. Data Preparation

Given our primary goal of creating a metric or a group of metrics that capture football players’
relative ability to perform under normative contextual pressure, several data mining goals must be
accomplished. Figure 2 summarizes all the preprocessing jobs we executed before modeling
normative contextual pressure using the FiveThirtyEight and the Public WyScout data.
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Figure 2 - Scheme of data preparation tasks

2.1. Calculate Individual Contributions

Since soccer is a game driven by two primary objectives (i.e., scoring and not conceding goals),
examining the probabilities of scoring and not conceding goals associated with each performed
action is a viable approach. Therefore, we used Valuing Actions by Estimating Probabilities (VAEP)
[3] method to compute the scoring and conceding scores associated with each action. In sum, this
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method extends the idea of expected goals to actions other than shots by calculating the variation in
scoring and conceding probabilities between consecutive actions given three different types of
features: simple event data describers (e.g., actions start and end locations, actions start and ending
times, kind of actions), complex features derived from several attributes within and across
subsequent actions (e.g., distance and angle to the goal, distance covered during the actions in both
x and y directions), and contextual features containing information regarding the actual game state
(e.g., the goal difference).

The assignment of a value (probability of scoring/not conceding) can be described formally by
Equation 1:

Given: an on-the-ball action g;

Do: learn a function that assigns a value V(a;) to the action. Since every on-the-ball action alters the
game state (s) consecutively, then:

V(a)=Vv(s) = V(s.,) (1)

If the action (the distance between s, ; to s;) positively affects the respective team'’s scoring odds, it
shall be valued positively. Otherwise, it should be negatively valued. Then, as stated in Equation 2:

V(Si)z Pscores(si) - Pscores(si—l) (2)

A further parameter (k) can be added to this equation, explicitly stating the number of succeeding
actions considered when calculating the goal-scoring/conceding probabilities for s; which adds
further context to the computation of the associated probabilities. Indeed, since soccer is a
territorial game in which space or pitch control makes a significant difference in team performance,
harmonizing the computation by the background play within each action occurs shall more
accurately assign a truthful value to each action. Therefore, we end with Equation 3:

v(s)=@p_ (s)) + (- AP

scores

s (3)

concedes

Several steps were followed to calculate individual contributions. First, we loaded the game events
from Public WyScout API and divided our data into training and testing conditions. We used data
from the 2017-2018 season regarding the German Bundesliga, the English Premier League, France
Ligue 1, and Spanish La Liga for the training condition. Data from the Italian Calcio A from the same
season was chosen for the testing condition. Due to computational restrictions, we limited the

42 4AnaLyi



number of features used to calculate VAEP scores to the previous three actions (i.e., k=3), unlike the
original implementation [2, 3].

We used the Random Forest Classifier (RFC) to estimate the associated probabilities of scoring and
conceding goals and calculated two scores: an execution VAEP score and a decision VAEP score.
These scores differ because the execution score considers the outcome of each action (i.e,,
successful or unsuccessful) as a training feature. In contrast, the decision score does not (i.e., is
outcome unaware). Such a distinction regards our supposition that while the first is a better proxy
for execution quality, the second would capture aspects more related to decision quality. This is a
relevant distinction because, although connected, execution and decision are separate constructs.
For instance, a player may make a decision that would contribute much to his team’s probability of
scoring but execute poorly. Conversely, he can perform a highly-skilled pass that contributes very
little to his team’s likelihood of scoring a goal shortly.

Regarding the parameterization of the RFC, we used 100 trees as the number of estimators’
parameter and set the minimum number of samples required to split an internal node to 50. We do
not carry any optimization procedure (e.g., grid search, Bayesian optimization) because we knew
beforehand that those were the best parameters to tune the model [4]. The results of the
classification model are presented in Table 1 in Appendix A.

2.2. - Calculate In-Game Win-Draw-Loss Probabilities

Given that contextual pressure is dynamic and influenced by both antecedent and current events,
besides the tension that stems from the expectation of confronting an opponent team with an
associated value of relative strength that we may describe as naturally intrinsic to each game, we
also need to consider how pressure mounts or lowers as each game evolves (e.g., goals are scored,
yellow and red cards are given, etc.).

We addressed this problem by estimating how win-draw-loss probabilities evolved as games
progressed. As illustrated in Figure 2, we first merged data from the Public WyScout and the
FiveThirtyEight datasets to join within the same framework the required features to calculate the
abovementioned probabilities. In the last dataset, we had information about the game's importance
and each team's strength indexes as calculated by FiveThirtyEight (these features are explained in
Appendix B). At the same time, the first contained the event data streams describing all the actions.
Since every action can change the game outcome, we assumed that every action could also alter the
level of contextual pressure during the game.

Since football events have contrasting meanings for each competing team, we had to transform the
data to obtain each team’s perspective on the ongoing result to calculate the win-draw-loss
probabilities for each team. For instance, a scored goal means getting closer to winning the game for
the scoring team and the opposite for the team conceding the goal.

The probability of each team winning, drawing, or losing was estimated using a multiclass
classification model with each team’s strength index (i.e., FiveThirtyEight's Soccer Power Index), the
current time, the current score, and visiting/visited conditions as features, and the result (win,
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draw, and loss) as the labels. Working under Python’s Sklearn standard parameterization and using
a 10-fold cross-validation approach, we have observed that the RFC evidenced a better classification
performance in terms of accuracy and a similar standard deviation compared to the other
algorithms we tested (see Appendix C for more detailed results).

2.3. - League Outcome Probabilities

Finally, we conducted Monte Carlo simulations to calculate the league outcome probabilities for the
target season (i.e., the likelihood of becoming Champions, qualifying for the Champions League,
qualifying for the Europa League, or becoming relegated). Taking advantage of the Law of Great
Numbers, we repeatedly generated simulated league tables for each round from the FiveThirtyEight
winning, drawing, and losing odds to estimate the outcome, as mentioned earlier.

3. Modeling Normative Contextual Pressure

As in Bransen et al. [2], we modeled normative contextual pressure by assuming that it is a
composed measure that can be operationalized as the intersection between the pre-game (or
antecedent) and in-game (or current) contextual pressure. The former relates to the presumed
factors likely to influence cognitive appraisal processes before a match begins. At the same time, the
latter corresponds to the variation of pressure as events in the game succeed each other and keep
updating a given team’s odds of winning, drawing, or losing the game. Formally, from Equation 4, we
have:

Normative Contextual Pressure = Pre — Game Pressure * In — Game Pressur (4)

3.1.- Modeling Pre-Game Contextual Pressure

Significantly, unlike Bransen et al. [2] and based on Sport Psychology literature [4, 7], we considered
that the level of confidence of a given player could influence the level of pressure a player can feel
before a match begins. In short, the level of confidence, or the degree to which the player appraises
himself as a more or less competent performance, largely influences stress appraising processes.

We modeled pre-game normative contextual pressure considering the game’s importance for the

statistical outcome of the two confronting teams, the closeness between each team'’s strength
indexes, and the player’s confidence levels according to Equation 4.
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Pre — Game Pressure = Importance + Closeness + Confidence (5)

For the closeness factor, following an Elo-based logic, we conjectured that games between teams
with closer strength indexes would tend to be perceived by the players as more stressful than games
for which that difference was higher given that the unpredictability about the outcome of the game
is also higher. According to Lazarus and Folkman [4] and Cruz [7], unpredictability or uncertainty is
a facilitative stress factor. In sum, we considered the following arguments when modeling pre-game
normative contextual pressure:

Importance: the importance of the game for each team participating in the match for the season’s
outcome (see Appendix C).

Closeness (between team strength indexes): how apart are each team'’s strength indexes using

the normalized difference between the teams’ Elo ratings, obtained by Equation 4.

Closeness = 1 — norm(|SPIhome - SPIaway

) (6)

Confidence: the normalized inverse of the (rolling) average VAEP scores for the past month
obtained by Equation 5:

Confidence = 1 — norm(mean (VAEP)) (7)

last 30 days

3.2- Modeling In-Game Contextual Pressure

Herein, we have assumed that in highly disputed or tighter matches, the pressure tends to mount
until the end of the game. The opposite occurs when the scoring difference is too wide for the losing
team to recover and get back into the game. Therefore, we devised a measure of a game’s tightness
to model the in-game normative contextual pressure. Our approach took advantage of the
win-draw-loss probability estimation and the normalized standard deviation between the three
probabilities; basically, the smaller the standard deviation, the tighter the matches. After
normalizing the values between 0 and 1, we can define in-game contextual pressure as defined in
Equation 7:

In — Game Pressure = 1 — norm(std([Pwin, P draw’ PloseJ)) (8)
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The correlation matrix in Figure 3 shows the correlation between all the pressure metrics. The fact
that the in-game pressure metric is more correlated to the normative contextual pressure metric
makes sense since the former depends on the win-draw-loss probabilities during the game, which
already considers each team'’s value and the current score. Intuitively, the pre-game pressure metric
is a more "hypothetical” kind of pressure because it does not acknowledge the unfolding events of a
game; likewise, its influence on normative contextual pressure is more limited.
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Figure 3 - Correlation Matrix for the several normative contextual pressure metrics
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3.4- Discretizing Normative Contextual Pressure

Unlike Bransen et al. (2019), which opted for relativist criteria to define the intervals corresponding
to different levels of pressure, we opted for a more business-oriented approach. Accordingly, we
used more stringent standards instead of simply dividing the distribution so that the 20 percent
lower pressure values correspond to the category low-pressure and the 20 percent higher to higher
pressure.

High-pressure situations in a soccer match are rarer than 20%, and many

actions captured in event streaming data do not involve high-risk situations. For instance, about
half of the events recorded in this data set are passes (see Appendix D), and many of the passes
performed in a game do not imply a high level of risk (e.g., those between two center backs when
the team is in an offensive organization). Hence, by inspecting the distributions in a histogram
(see Figure 5), we discretized pressure by setting the following categories:

Low Pressure: pressure values below percentile 65.

Medium Pressure: pressure values between percentile 65 and 91
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High Pressure: pressure values above the percentile 92.

Distributions Normative Contextual Pressure

Pre-Game Pressure
120000 - In-Game Pressure
MNorm. Cont. Pressure

nnnnnnn

Figure 5: On the left are pre-game, in-game and normative contextual pressure histograms. In
the right, normative contextual pressure histograms with vertical lines signalizing the percentile
values (65, 92) used for discretization in low, medium, and high-pressure situations

As reported in Tables 1 and 2, the average values for VAEP scoring execution and VAEP

decision execution follows the same pattern. They are slightly higher for moderate-pressure
situations than low-pressure situations and sharply decrease for high-pressure situations. This
pattern narrowly mimicked the Yerkes and Dodson law (Yerkes et al., 1908) for the relationship
between stress and performance and was expected. The Yerkes and Dodson law states that the
stress and performance relationship follows an inverted U-shaped curve, according to which
performance tends to be lower for low and high-stress situations than for moderate (or optimal)
stress levels. Furthermore, the results indicate that execution and decision are impaired in
high-pressure situations.

Table 1: VAEP scoring execution average values and considered several instances after defining
intervals for low, medium, and high-pressure levels

VAEP Scoring Execution
Low Pressure Moderate Pressure  High Pressure
Avg Performance 0,00296 0,00299 0,00251
Number of Instancef 311035 129199 38282

Table 2: VAEP scoring average decision values considering the number of instances after defining
intervals for low, medium, and high-pressure levels.
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VAEP Scoring Decision
Low Pressure Moderate Pressure  High Pressure
Avg Performance 0,0041 0,00413 0,0038
Number of Instances 311035 129199 38282

Given that event stream data is clearly unbalanced towards attacking actions, we inspected how
pressure influenced performance on two types of these actions: take-one and shots. Although, the
two kinds of action suffer from increased contextual anxiety. As shown in Figure 6, pressure tends to
be especially detrimental to shot performance. On average, the shooting performance is much lower
for high-pressure situations than for lower and moderate-pressure conditions.
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Figure 6: VAEP execution scores according to normative contextual pressure for shots

3.5- Exploring the Performance Under Pressure Profile of the Top Scorers and the
Best-Rated Players for the Target Season

To examine the explainability power of our pressure metric, we explored how the top scorers and
the best players from Italian Serie A for the 2017-2018 season performed in situations with low,
moderate, and high-pressure levels. While always speculative, we can identify different performance
profiles by looking at these Figures, particularly when attending to additional information regarding
each player’s career evolution or other relevant developmental and demographic data.

In the case of top scorers (see Figure 7), high pressure seems to be generally
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detrimental to performance. However, there were two cases in which two players, Higuain

and Quagliarella, performed more valuable actions when the pressure was high. Curiously, these
players were two veteran international-level players aged over 30 and 34 years old, respectively. It
can be the case (as it is very likely) that players may learn how to cope better with high moments
of pressure as their careers unfold. The issue with Giovanni Simeone is the opposite; he was a young
talented player at 22 years old, and as pressure mounted, his performance declined. In

the last few years, he did not confirm all the potential that he early has shown up. Regarding

the best players (see Figure 8), we can see that several players have contributed the most to the
probability of their team scoring during high-pressure situations. The case in which a decline in
high-pressure situations was most evident was that of ]. llicic - a player whose career in the last
years has been reportedly affected by psychological issues.

M. Icardi C. Immaobile P. Dybala F. Quagliarella
D. Mertens E. DZzeko G. Higuain G. Simeone

Figure 7 - VAEP execution scores for the top scorers in the target league for low, medium, and
high-pressure situations.
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Figure 8 - VAEP execution scores for the best-rated players in the target league for low, medium,
and high-pressure situations.
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4. Use Case: Finding natural groups of players regarding their
performance under pressure profiles

One of the fundamental processes within football clubs is talent identification and recruitment.
However, talent identification is not a trivial task because the concept of talent is itself complex.
Investigation sport sciences suggest that rather than the sum of technical, tactical, physical, and
psychological skills, a talented football player exhibits the right balance of them [1]. Nevertheless,
given all the attention devoted to football, a new player that does not fit the team rapidly becomes
noticed and criticized, which inflicts tremendous pressure on all those involved in the talent
identification and recruitment process.

Herein, we used our pressure metric to inform player recruitment about the ability of football
players to cope with normative contextual stress. Regarding this use case, we have followed an
unsupervised machine learning approach to identify groups of distinct players concerning their
performance under low, moderate, and high-pressure levels.

Specifically, we have used the K-Means algorithm using the predefined 'sklearn’ criteria to cluster
football players regarding their performance at low, moderate, and high-pressure levels. We used
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the elbow method to identify the most appropriate number of clusters (see Appendix E), with 5
being the number of clusters indicated by the method.

While Table 3 provides the average values for each cluster given the features of low, moderate, and
high pressure, Figure 9 affords a more direct visualization of the identified profiles.

Cluster 1 comprises players that perform more valuable actions in low-pressure conditions,

with similar VAEP scores for both moderate and high-pressure situations. Cluster 2 groups

players that perform much better in high-pressure situations and are likely to be substitute players
thrown into tight matches that eventually make an assist or score a goal. Cluster 3 contains players
with very acceptable scores for both low and moderate levels categories but that seem to choke
under pressure; as pressure continuously mounts, their performance level decreases. Cluster 4
contains the players whose performances follow the typical inverted U-shape with better scores

in moderate-pressure situations. Finally, cluster 5 holds players whose performance

increases as pressure mounts, with very acceptable values for all the varying levels of pressure.

Table 3 - Frequency and average values for the low, medium, and high-pressure

Cluster 1 Cluster 2 Cluster 3  Cluster 4 Cluster 5

n=359 n=0l n=>54 n=46 n=56
Low 0.9990 0,3860 0.8716 0.3272 0.6650
Moderate  0,3443 0,3187 0.9314 1 0,8421
High 04671 1 0,3510 0,3352 09134
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Figure 9 - Graphical representation of the clusters
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Conclusions

In general terms, we think we provide a fair reflection regarding how Psychology sees football
players’ performance, particularly regarding the influence of normative contextual pressure and
how the psychological processes embedded in stressful generations occur.

By the way, those processes were considered when modeling normative contextual pressure,

the second aim. We made a considerable effort of data wrangling and feature engineering to
calculate the features required to model normative contextual stress in such a way that it accorded
one of the most prominent theories of stress - the Transactional Model of Stress by Lazarus and
[4]. Although future improvements are undoubtedly welcome, our work represents a

step ahead of the only known similar work [2].

Rather than presenting a solid and polished product, we wanted to demonstrate that we could use
raw data (i.e.,, event streams) to generate valuable knowledge regarding something as abstract as
football players’ psychological profiles. Furthermore, we wanted to show that such knowledge could
inform decision-making at a club level (e.g., talent identification and development). Indeed, our
model can be improved, and Machine Learning methods other than unsupervised knowledge can
and should be tested in the future.

Limitations and Future Work

Despite its merits, this work also has several significant limitations that shall be acknowledged. In
the first place, the available data to train the models we used to generate features was limited. We
only had data from one season for five different leagues. Thus, we needed data from competitions
other than the target league to use machine learning methods and generate the features.

Ideally, we would rather have a historical data set in which we would use data from the past to train
the models to be tested in current data. This would prevent several putative cultural biases
regarding the natural differences between each league. Furthermore, it would have enabled us to
use different data-mining approaches. For instance, we could have followed a time series paradigm
and inspected how vulnerability to stress evolved over extended time frames. We could even have
studied how coping ability changed throughout a player’s career and confirm/infirm the hypothesis
that more experienced football players are better than novices at dealing with normative
competitive stress.

Due to the extensive time required to treat the raw data and make it manageable to model
normative contextual pressure, we needed more time to optimize/tune each model we used during
our feature engineering process. In the future, such an optimization/tuning shall be performed
using grid search or Bayesian optimization methods.

Finally, it would be interesting to investigate how normative contextual pressure relates to
subjective measures of stress, such as the threat/challenges perception scales [7]. More than
providing us with a "ground truth" to evaluate the external validity of our metrics since they may
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estimate different things, it could be interesting to study in which cases normative pressure
correlates with perceived stress and the cases in which that doesn’t happen. Do the players
performing better in high-pressure situations perceive them as stressful? It is an open question.
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Appendix
A. VAEP scores estimation

Table 1. Classification Model Results for VAEP scores estimation

Train Test
R2 | MAE | MedAE | R2 | MAE | MedAE
scoring | 0.339 | 0.023 | 0.008 | 0.144 | 0.026 | 0.000
conceding | 0.224 | 0.008 | 0.002 | 0.030 | 0.009 [ 0.002
scoring | 0.256 | 0.026 | 0.008 | 0.040 [ 0.029 | 0.010
conceding | 0.214 | 0.009 | 0.002 | 0.021 | 0.009 [ 0.002

execution

decision

We can observe that the Coefficient of Determination (R?) score decreased from the training to the
testing condition, which was expectable, and also that these values are low. In ordinary situations,
such low scores would mean that the model cannot explain (or you only could explain very little)
the relationship between the variance of the features and the target variables. However, the R*score
is probably not the best metric to evaluate probability models regarding soccer data [4]. Concretely,
since goals are sporadic events that significantly influence the calculation of the VAEP scores, the R*
score is much more sensitive to the variance, and the Mean Absolute Error (MAE,) and the Median
Absolute Error (MedAE) may be better estimators. These values are pretty low and vary very little
from the training to the testing conditions.

B. Explanation of FiveThirtyEight's Soccer Power Index (SPI) and Importance
Metrics

The SPI rating is a team’s overall strength metric obtained through an attacking and a defensive
rating. The offensive rating corresponds to the number of goals a team is expected to score against
an average team in a neutral field. At the same time, the defensive consists of the number of goals a
team is likely to concede within the same condition. Given the SPI rating of two confronting teams,
the probable result of a match between them can be predicted according to an Elo-model fashioned
way (i.e., by direct pairwise comparison).

Though, as the season unfolds, the ratings are adjusted after each match based on the team'’s
performances, the SPI rating is calculated as defined in Equation 3 before the beginning of a season:
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* + L= (4)
Previous Season 3 Market Value

-2
-3

SPI

Pre—season

In its turn, importance measures how much a particular match outcome will affect the team’s
statistical outlook on the season. FiveThirtyEight calculates the importance of a game by generating
probabilities for each factor conditional on winning (or losing) the match and then finding the
difference between those two possible numbers. The factor with the maximum range of the
difference is taken, and the result is normalized between 0 and 100. Formally, the importance of a

game for a team is given by Equation 5:

Importance = max(P(win) — P(lose)), 0 € [Champion, UCL, EL, Relegated] (5)

C. In-Game Win-Draw-Loss Probabilities Estimation Models Performances

Table 2 - Classification model results for win-draw-loss probabilities estimation

Training Results
Standard Deviation

Avg. Accuracy
Random Forest 0.865 0.0538
0.639 0.0585

XG Boost
Logistic Regression 0.594 0.0492
Kneighbors Classifier 0.493 0.0537

D. Frequency of actions in our dataset

pass - 7

dribbl e - |-
interce ption - [ 3%
throw-in -[E 2%
cross -[lB-6%
clearance -Jl.3%
take on-[.o%
foul -l 0%
freekick short-l 8%
shot -JLa%
goalkick 3%
tackle -Jo.7%
comer crossed -[p.6%
.

Action Type

freekick crossed -p.3%
corner short-p2%
shot freekick-0.1%
penalty shot-0.0%

bad touch -0.0%
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E. The elbow curve for determining the optimal number of clusters
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