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1. Introduction 
 
In the past decade, Ultimate Frisbee – commonly known as ‘ultimate’ – has transformed from a 
largely amateur sport to a professional arena with dedicated athletes and multiple leagues 
including the Ultimate Frisbee Association, the Premier Ultimate League, and the Western Ultimate 
League. Unlike established professional sports with sophisticated analytical frameworks like 
baseball's sabermetrics or football's Next Gen Stats, ultimate has historically relied on basic 
counting statistics such as goals, assists, and blocks, with analysis often limited to post hoc 
volunteer-tracked metrics. The emergence of professional leagues has been pivotal in driving more 
thorough data collection, with new tracking systems now capturing unprecedented detail – 
recording aspects of every throw, including thrower and receiver location, throw outcome, and 
game time. Despite these advancements, analytics in ultimate are still underdeveloped, leaving 
room for more refined methods to assess player contributions and team strategy.  

This paper presents the first empirical work to leverage this wealth of new data, specifically the 
four full seasons of spatial data provided by the Ultimate Frisbee Association, to introduce a 
machine learning framework for estimating player value and decision quality. We aim to capture 
more intricate aspects of gameplay – going beyond traditional metrics to provide a more accurate 
assessment of each throw’s contribution to team success. We use two primary models: 1) a 
Completion Probability (CP) model, which estimates the probability of a throw being successfully 
completed at any given target location, and 2) a Field Value (FV) model, which assigns positional 
value on the field as measured by scoring probability. We derive metrics from the CP model, FV 
model, and their combination that effectively evaluate player contributions, throwing performance, 
and team strategies. These metrics offer a data-driven approach to analyzing ultimate, establishing 
a more comprehensive understanding of the game. 

In this paper, we accomplish the following:  

Section 2: Provide an overview of ultimate, including the sport's background, our dataset, and 
previous work. 
Section 3: Introduce and develop two key models: a CP model to estimate the probability of a 
throw being completed, and a FV model to quantify the probability of scoring. 
Section 4: Leverage these models to create novel metrics, focusing on player contribution, 
throwing performance, and team strategy. 
Section 5: Evaluate the metrics to analyze their effectiveness, interpret what they measure, and 
assess their overall utility. 
Section 6: Demonstrate the practical application of these metrics in real-game scenarios, 
highlighting their ability to identify multiple MVP players, quantify thrower ability in the context of 
decision-making, and uncover overlooked players who provide significant value to their team. 
Section 7: Discuss the limitations of our study, avenues for future work and conclude. 
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1.1 Dataset 
 
Our analysis leverages a dataset provided by the Ultimate Frisbee Association, covering four full 
seasons of professional play from 2021 to 2024. The dataset includes 327,179 recorded throws 
across 604 games. This comprehensive collection is the largest of its kind in ultimate, offering a 
novel opportunity to explore throw-level metrics at an unprecedented scale. Key aspects of the 
dataset include its size and scope – covering all teams in the league and representing professional-
level play across four years – and its rich spatial and contextual features. Each entry provides 
precise field locations for both throwers and receivers, enabling detailed spatial analysis, while 
game-state variables such as the score differential and remaining time add important context for 
evaluating decision quality. A typical scoring possession involves a series of passes that advance the 
disc down the field, culminating in a catch in the end zone to complete the goal (Figure 1).  
 

 

  

Figure 1: Dataset Description (A) Example point illustrating 2 turnovers and a goal  
(B) Radial histogram displaying the most frequently used angles by throwers (C) Radial plot 
showing the most targeted locations relative to the thrower's position (D) Example data 

A. 

D. 

B. C. 
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2. Background 
 
We provide context for our research by outlining the basic rules of the sport and reviewing 
previous work in ultimate analytics.  

2.1. Ultimate Frisbee Rules 
 
Our data is based on the gameplay format of the Ultimate Frisbee Association, the premier men's 
professional league. In a typical match, two teams of seven players compete on a field that 
measures 80 yards in length and 53 ⅓ yards in width, with 20-yard end zones on either side. 
Players can pass the disc in any direction and must establish a pivot foot after receiving a pass. The 
player with the disc must release it within a 7-second stall count kept track of by game officials. 

Each game is divided into four 12-minute quarters, with teams alternating who receives the disc 
first at the beginning of each quarter. The game follows a "continuous play" format, where, apart 
from goals, fouls, or timeouts, the game rarely stops, maintaining a fast-paced flow. Possession 
changes, known as "turnovers", occur through either an incomplete pass (the disc is dropped, lands 
out of bounds, or is intercepted) or a stall (if the thrower does not release the disc before the 7-
second count). When a turnover occurs, the opposing team takes immediate possession at the spot 
of the turnover and attempts to move the disc in the opposite direction to score. A goal occurs when 
a team completes a pass into the opposing team's end zone. This earns one point, after which the 
scoring team initiates a "pull" (similar to a kickoff in football) to begin the next point. If a game ends 
in a tie at the end of regulation, a 5-minute overtime period is played, with the second overtime 
being a sudden death scenario where the next team to score wins.  

2.2 Previous Work 

Published research on ultimate analytics remains limited, with one of the most notable 
contributions being Weiss and Childers’ “Maps for Reasoning in Ultimate” [1] which laid important 
groundwork for understanding player performance through advanced metrics. Their study 
introduced innovative methodologies, such as completion and scoring maps, and provided initial 
insights into the value of throws in relation to expected scoring outcomes. Weiss et al. manually 
collected data on 3,195 throws from 10 exhibition club ultimate games, utilizing a smoothed K 
Nearest Neighbors model based on thrower and receiver coordinates. This work led to the creation 
of metrics like Expected Point Outcome and Effective Contribution to help quantify the expected 
value of a throw and the impact of a player's actions [2]. While their study was an important step 
forward, it was limited by the relatively small dataset, data collect on amateur rather than 
professional play, and a focus on thrower and receiver positions, without incorporating broader 
game state variables or modeling entire point outcomes. 

Our study both provides several novel approaches and improves on this work. We do this by 
leveraging a significantly larger and more comprehensive dataset. Additionally, we apply more 
robust modeling techniques, resulting in clearer, more actionable metrics that are designed for 
practical use in real-game scenarios. Our focus on player value, decision-making, and strategic 
outcomes offers a more complete understanding of ultimate. 
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In addition to this Weiss et al., analyses on blogs and web applications have also occasionally 
explored ultimate statistics with varying degrees of rigor and depth [3,4,5,6]. This gap in formal 
research highlights the need for further exploration and development of advanced analytics in 
ultimate. In other sports, analytics have revolutionized strategy, player development, and team 
performance, providing insights that have significantly advanced the understanding of the game 
such as Carter et al.'s work which laid the foundation for the widely impactful concept of Expected 
Points Added in football – a cornerstone of modern football analytics [7]. Prior to the Ultimate 
Frisbee Association’s in-depth data collection starting in 2021, similar progress in ultimate 
analytics was nearly impossible. With the current dataset, we have the opportunity to create a more 
refined framework that defines and quantifies offensive contribution and player performance in a 
way that surpasses traditional counting statistics. 

3. Models 
 
We introduce two key models: CP and FV. These models leverage play-by-play data and game state 
to predict the result of a given throw and the result of a point, respectively. The following sections 
detail the structure, implementation, and validation of these models. 

3.1 Features 

The features used in the models are derived from the thrower, receiver, throw, and game contexts.  

• Thrower Context: 
o Thrower X and Thrower Y: The cartesian coordinates of the thrower's position. 

• Receiver Context: 
o Receiver X and Receiver Y: The cartesian coordinates of the receiver’s position. 

• Throw Context: 
o Throw distance: The distance between the thrower and the receiver. 
o Throw angle: The throw angle, measured in degrees, with 0° forward, 180° 

backward, positive to the right, and negative to the left of the thrower. 
o Y differential: The difference in the y-coordinates of the thrower and receiver. 
o X differential: The difference in the x-coordinates of the thrower and receiver. 

• Game Context: 
o Game quarter: The current game quarter. 
o Quarter point: The point number in the current quarter. 
o Score differential: The point difference between the teams. 
o Time: The time remaining in the current quarter. 
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3.2 Model Definitions 
 
To evaluate strategic decision-making in the context of gameplay, we define two complementary 
probabilistic models: FV and CP. 

3.2.1 Field Value Model 

The FV model predicts the probability that a point culminates in a goal based on the thrower and 
game context. Mathematically, we model this as: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝(𝑋𝑋𝑡𝑡) ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜋𝜋(𝑋𝑋𝑖𝑖(𝑝𝑝)
𝑡𝑡  , 𝑋𝑋𝑖𝑖(𝑝𝑝)

𝑔𝑔 ))   

Where: 

• 𝜋𝜋(𝑋𝑋𝑖𝑖(𝑝𝑝)
𝑡𝑡  , 𝑋𝑋𝑖𝑖(𝑝𝑝)

𝑔𝑔 ) =  𝑃𝑃�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝 = 1 � 𝑋𝑋𝑖𝑖(𝑝𝑝)
𝑡𝑡  , 𝑋𝑋𝑖𝑖(𝑝𝑝)

𝑔𝑔 ) 
• 𝑋𝑋𝑖𝑖(𝑝𝑝)

𝑡𝑡  represents the thrower context and 𝑋𝑋𝑖𝑖(𝑝𝑝)
𝑔𝑔  represents the game context 

• 𝑖𝑖(𝑝𝑝) denotes the 𝑖𝑖th pass of point 𝑝𝑝, with 𝑖𝑖 =1, … , 𝑁𝑁𝑝𝑝  and 𝑝𝑝 =1, … , 𝑁𝑁𝑔𝑔   
• 𝑁𝑁𝑝𝑝  is the total number of passes in point 𝑝𝑝 
• 𝑁𝑁𝑔𝑔  is the total number of points in game 𝑔𝑔 

The model allows us to assess the strategic value of disc location continuously over the 
field.  We estimate 𝜋𝜋(𝑋𝑋𝑖𝑖(𝑝𝑝)

𝑡𝑡  , 𝑋𝑋𝑖𝑖(𝑝𝑝)
𝑔𝑔 ) via an ensemble of decision trees, which we fit using 

XGBoost. 

3.2.2 Completion Probability Model 

The CP model estimates the probability of a pass being successfully completed. It 
incorporates information about the thrower context, receiver context, throw context, and 
game context. Formally, this is expressed as: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜋𝜋(𝑋𝑋𝑖𝑖𝑡𝑡, 𝑋𝑋𝑖𝑖𝑟𝑟 , 𝑋𝑋𝑖𝑖𝑡𝑡ℎ, 𝑋𝑋𝑖𝑖
𝑔𝑔))  

Where: 

• 𝜋𝜋(𝑋𝑋𝑖𝑖𝑡𝑡, 𝑋𝑋𝑖𝑖𝑟𝑟 , 𝑋𝑋𝑖𝑖𝑡𝑡ℎ, 𝑋𝑋𝑖𝑖
𝑔𝑔) =  𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 1 | 𝑋𝑋𝑖𝑖𝑡𝑡 , 𝑋𝑋𝑖𝑖𝑟𝑟 , 𝑋𝑋𝑖𝑖𝑡𝑡ℎ, 𝑋𝑋𝑖𝑖

𝑔𝑔)  
• 𝑋𝑋𝑖𝑖𝑡𝑡 represents the thrower context, 𝑋𝑋𝑖𝑖𝑟𝑟  represents the receiver context, 𝑋𝑋𝑖𝑖𝑡𝑡ℎ represents 

throw context, and 𝑋𝑋𝑖𝑖
𝑔𝑔 represents the game context 

• 𝑖𝑖  indexes all throws 

As with the FV model, the CP model is estimate using an ensemble of decision trees and fitted using 
XGBoost. 
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3.3 Performance 
 
We fit our models using 5-fold cross-
validation and validate them against three 
hold-out sets: a player-based set of 50 
throwers with 200+ throws each, a 
temporal set from the latest 10 games to 
simulate future predictions, and a random 
20% subset. This approach ensures 
robust performance across both temporal 
and player-specific variations. 

Both CP and FV models demonstrate 
strong performance with high values in 
Area Under the Curve (AUC), accuracy, 
positive predictive value (PPV) and 
negative predictive value (NPV) scores 
(Table 1). The FV and CP models 
significantly outperform their respective 
baselines, which were developed using 
Weiss and Childers' methodology, across 
all datasets and measures. 

4. Metrics 
 
We now introduce the metrics developed from our models to improve the evaluation of player 
contributions and decision-making. We first introduce metrics derived from the CP model, then 
metrics derived from the FV model, and finally a metric that integrates both models. 
 
4.1 CP Metrics 

The Expected Completion Probability (xCP) is the throw’s prediction based on the CP model, 
defined as: 

𝑥𝑥𝑥𝑥𝑥𝑥 =  𝐶𝐶𝐶𝐶( 𝑋𝑋𝑡𝑡, 𝑋𝑋𝑟𝑟, 𝑋𝑋𝑡𝑡ℎ, 𝑋𝑋𝑔𝑔) 

Where the notation remains consistent with previous definitions. Building on this, Completion 
Percentage Over Expected (CPOE) quantifies the difference between actual completion rate and 
xCP. 

Let C = {0,1} be an indicator for whether the throw was completed (1) or not (0), then CPOE is 
defined for a specific throw as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶 − 𝑥𝑥𝑥𝑥𝑥𝑥 

This metric is directly comparable to the CPOE statistic commonly used to evaluate quarterbacks in 
football [8] and is well-suited for assessing the performance of throwers in ultimate. 



 7 

4.2 FV Metrics 

FV metrics measure the contribution of a throw, considering not just raw yardage gained, but also 
its impact on the offense's positioning and potential scoring opportunities.  

Expected Contribution (EC), originally introduced by Weiss and Childers [2], is redefined here with 
several improvements including the use of a more comprehensive dataset, the integration of 
additional game and throw context, and an enhancement of FV to model entire points rather than 
individual possessions. 

Let 𝐹𝐹𝐹𝐹𝑠𝑠 be the field value at the starting location (or the location of the thrower), 𝐹𝐹𝐹𝐹𝑒𝑒 be the field 
value at the end of the throw, and 𝐹𝐹𝐹𝐹𝑜𝑜 be the opponent’s field value at the end location of the throw 
given a turnover. Other notation is consistent as previously used.  

EC is defined for a single throw as: 

𝐸𝐸𝐸𝐸 = 𝐹𝐹𝐹𝐹𝑒𝑒 − 𝐹𝐹𝐹𝐹𝑠𝑠      if 𝐶𝐶 = 1 

𝐸𝐸𝐸𝐸 = − 𝐹𝐹𝐹𝐹𝑜𝑜               if 𝐶𝐶 = 0 

Further, we introduce an enhancement to the EC metric, which we call Adjusted Expected 
Contribution (aEC). This adjustment scales credit for scoring events so that the total contribution of 
all throws in a goal-scoring possession sum to exactly one. In contrast, the EC of goal-scoring 
possession throws sum to one minus the field value at the start of the possession. By eliminating 
the dependency on the starting FV, aEC provides a more equitable distribution of contributions 
across possessions. This also makes the metric more intuitive: for example, a single throw 
possession that results in a goal will have a contribution of one, directly reflecting the impact of that 
throw.  

aEC is defined for an individual throw as: 

𝑎𝑎𝑎𝑎𝑎𝑎 =  
𝐹𝐹𝐹𝐹𝑒𝑒 − 𝐹𝐹𝐹𝐹𝑠𝑠

1 − 𝐹𝐹𝐹𝐹𝑝𝑝
      if 𝐶𝐶 = 1 

𝑎𝑎𝑎𝑎𝑎𝑎 = − 𝐹𝐹𝐹𝐹𝑜𝑜                if 𝐶𝐶 = 0 

Where notation is consistent as above and 𝐹𝐹𝐹𝐹𝑝𝑝 being the FV of the starting throw of that possession.  

Because both throwers and receivers contribute to the success of a throw, EC and aEC metrics can 
be calculate separately for both players. In this paper, we use the metrics Receiver EC (R-EC), 
Thrower EC (T-EC), and their sum, Total EC (Tot EC), to quantify the individual contributions of 
each player. The same approach is applied to aEC, where we calculate Receiver aEC (R-aEC), 
Thrower aEC (T-aEC), and Total aEC (Tot aEC). 
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4.3 CP and FV Combined Metric 

We combine CP and FV to create a metric that captures the strategic impact of a throw in ultimate. 
Expected Throw Value (ETV) quantifies the expected value of a throw by integrating the probability 
of success with the potential field value at the throw's endpoint.  

ETV for a single throw is defined as: 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑥𝑥𝑥𝑥𝑥𝑥 ×  𝐹𝐹𝐹𝐹𝑒𝑒 − (1 − 𝑥𝑥𝑥𝑥𝑥𝑥) ×  𝐹𝐹𝐹𝐹𝑜𝑜 

The positive term (𝑥𝑥𝑥𝑥𝑥𝑥 ×  𝐹𝐹𝐹𝐹𝑒𝑒) accounts for the potential impact of the throw (𝐹𝐹𝐹𝐹𝑒𝑒) factoring in its 
risk (𝑥𝑥𝑥𝑥𝑥𝑥). The negative term ((1 − 𝑥𝑥𝑥𝑥𝑥𝑥) ×  𝐹𝐹𝐹𝐹𝑜𝑜) reflects the scoring opportunity of the opponent 
at the same location (𝐹𝐹𝐹𝐹𝑜𝑜) considering the probability of turnover (1 − 𝑥𝑥𝑥𝑥𝑥𝑥). This structure enables 
ETV to provide a comprehensive measure of a throw’s strategic value by considering both the 
potential gain from a successful throw and the risk of conceding a point while accounting for the 
probability of each outcome occurring. 

The ETV ranges from -1 to 1: 

• A value of 1 represents a throw with 100% completion into the end zone, resulting in a 
certain goal. 

• A value of -1 indicates the opposite: a certain interception in the defending end zone. 

5. Metric Analysis 
 
To effectively evaluate our novel metrics, we assess them based on their ability to distinguish 
between players (discrimination), their consistency over time (stability), their independence from 
other performance measures, and their relationship with established metrics [9,10]. Discrimination 
reflects a metric's capacity to differentiate players based on true performance differences, while 
stability indicates how reliably a metric predicts future performance. Independence evaluates 
whether a metric provides unique insights without significant overlap with others, and 
understanding its relation to established metrics helps validate its relevance and contextual 
significance.  

5.1 Discrimination and Stability 

We assess how well our novel metrics capture player value and decision-making reliability by 
evaluating their discrimination and stability against traditional baseline metrics. Discrimination 
reflects a metric's ability to distinguish between players by measuring how much of the observed 
variance in performance is due to true differences rather than random noise. Stability evaluates the 
consistency of a metric in representing a player’s performance over time, indicating its reliability 
for predicting future contributions. Stable metrics reduce the risk of overvaluing context-dependent 
or short-term fluctuations. We compare our novel metrics with conventional counting statistics 
(Figure 2). Our analysis shows that the novel metrics perform comparably to traditional metrics in 
both discrimination and stability, offering a reliable alternative for evaluating player performance.  
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5.2 Independence 
 
Using a Gaussian copula model to measure 
relationships between metrics quantifies their 
dependencies, providing a numerical representation of 
how much each metric offers unique information. This 
comparison identifies metrics that contribute distinct 
insights and avoid redundancy. Each metric's 
independence score is calculated based on its 
regression on established metrics. 

Our analysis reveals that most novel metrics exhibit 
strong independence, except for ETV (Figure 3). This 
suggests that ETV primarily reflects overall player 
involvement and throw frequency, rather than unique 
insights into throw quality or decision-making. As a 
result, ETV is more effective for throw selection and 
optimization of team strategy independent of individual 
performance. In contrast, adjusted metrics like aEC 
provide distinct insights with higher independence than 
EC, while CPOE and xCP isolate specific performance 
aspects, such as execution quality and shot selection. 

 

Figure 2: Discrimination vs. stability of ultimate metrics. Discrimination reflects a metric's ability 
to differentiate player performance, while stability measures consistency over time. Higher values 
indicate greater reliability and informativeness. Novel metrics (blue), like Expected Throw Value 
(ETV) and Completion Percentage Over Expected (CPOE), match traditional metrics (black) like 
goals (G) and assists (A) in both discrimination and stability. 

Figure 3: Independence scores of novel 
against traditional metrics. Higher scores 
reflect greater independence, indicating 
that a metric provides unique and non-
redundant information for performance 
analysis. 
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5.3 Relation to Established Metrics 

To assess the relevance of our metrics, we evaluate how closely they align with established metrics. 
By analyzing the correlation between the novel and traditional metrics, we can determine the 
specific aspects of player performance captured by the new metrics. We employed hierarchical 
clustering and used a dendrogram to visualize the relationships between the novel and traditional 
metrics (Figure 4). 

 

The dendrogram reveals several expected relationships, such as R-EC and R-aEC closely aligning 
with other receiver-based metrics, like goals. In contrast, T-EC and T-aEC are more strongly 
associated with efficiency metrics, suggesting that a thrower’s effectiveness is linked to overall 
team performance. Meanwhile, ETV clusters near traditional volume metrics, such as the number of 
throws, highlighting its focus on distribution rather than the quality of individual performance. 
Lastly, CPOE and xCP show the strongest, yet still modest, correlations with completion percentage 
and offensive efficiency metrics, indicating that while they capture some related aspects of 
performance, they provide distinct insights into throw execution and shot selection.  

  

Figure 4: Dendrogram illustrating the relationships among performance metrics in 
ultimate. By grouping metrics based on similarity, the dendrogram highlights how 
different metrics capture overlapping or distinct aspects of player and team 
performance.  
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6. Applications 
 
The insights gained from our analyses translate into practical applications that enhance decision-
making, strategy, and player evaluation in ultimate. We offer data-driven methods that can optimize 
team performance and player assessment. 

6.1 Decision-Making 

By plotting outcomes for every possible throw, we can visualize the most effective strategies in 
real-time. This allows teams to make informed decisions based on game state and field positioning. 
Utilizing Shapley Additive Explanations (SHAP) to identify feature importance, we identify the key 
factors that influence throw value, offering actionable insights into how specific decisions impact 
scoring opportunities. 

6.1.1 Field Plots 

We identify optimal target locations by plotting the smoothed ETV for every possible throw given a 
disc location and game state (Figure 5). In the middle of the field, ETV suggests advancing the disc 
by throwing closer to the sidelines. This is consistent with known strategies, as many teams use a 
‘vertical stack’, positioning players in the middle of the field while isolating the edges to create 
space. 

 

When the disc is near the sidelines, it’s often more effective to ‘reset’ the disc into the center of the 
field rather than attempting to advance it toward the end zone. This also aligns with recognized 
principles in ultimate, where coaches emphasize resetting the disc as a strategic option rather than 
forcing a low percentage throw down the sideline (Figure 6). 

A. B. C. D. 

Figure 5: Field plots illustrating different aspects of Expected Throw Value (ETV) with the 
disc at position (0, 50) in the first quarter, a score differential of 0, and 11 minutes 
remaining. (A) Field value for each receiver location (B) Field value of the opponent for each 
turnover location (C) Completion probability every possible throw (D) ETV derived from on 
prior field plots 
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These findings enable data-driven strategies to improve player positioning, real-time decision-
making, and scoring efficiency. They can aid training by emphasizing situational awareness and 
optimal positions for yardage gaining vs disc resets, encouraging a more efficient offense. 

6.1.2 Feature Trends 

SHAP provides a method for interpreting the contributions of individual features to a model’s 
predictions, quantifying how each feature impacts the final output. In the context of the ETV metric, 
SHAP allows for a detailed analysis of how different factors, such as player position and throw 
difficulty, influence throw value. This interpretability reveals which variables most affect ETV and 
how they interact. In these plots, each point corresponds to a single throw in our dataset, with the 
horizontal axis representing the feature value and the vertical axis indicating the SHAP value, which 
quantifies the contribution of that feature to the model's output. 

We identify trends in features such as throw distance and y differential which show a positive 
correlation with ETV up to a threshold, after which further increases in distance yield diminishing 
returns, reflecting the potential decline in throw accuracy or higher turnover risk. Additionally, 
plots examining time remaining in the quarter reveal the effect of player fatigue, with a marked 
decrease in ETV as time elapses. These plots provide a precise understanding of how different 
features influence scoring probability and throw completion (Figure 7). 

 

 

 

Figure 6: Field plots illustrating different aspects of Expected Throw Value (ETV) with the disc 
at position (27, 50) in the first quarter, a score differential of 0, and 11 minutes remaining. (A) 
Field value for each receiver location (B) Field value of the opponent for each turnover 
location (C) Completion probability every possible throw (D) ETV derived from on prior field 
plots 

A. B. C. D. 
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6.1.3 Feature Interactions 

Coloring SHAP value scatter plots provides an insightful way to visualize feature interactions and 
their collective impact on model predictions. By incorporating color based on other features, we can 
better understand how different factors interact to influence ETV.  

When examining the SHAP scatter plot of the thrower's x-position, the color gradient reveals how 
various features such as throw distance and field position interact. These scatter plots highlight a 
clear advantage to central positioning on the field (Figure 8). Specifically, when plotting the 
thrower’s x-position and coloring by other features, we observe that both long-yardage throws and 
throws toward the end zone result in higher ETV when made from the middle of the field, 
compared to low-yardage throws or throws not directed towards the end zone. In contrast, near the 
sidelines, lower yardage throws and those not targeting the endzone tend to have higher ETV. This 
illustrates and quantifies the strategic benefit of maintaining central positioning, where throwers 
have more options and greater control over play development, allowing for aggressive, yardage-
gaining throws. Additionally, the model suggests that throwing to the opposite side of the field often 
provides increased value, as ETV rises when both the thrower and receiver are positioned at 
opposite extremes of the field. This reinforces the idea that central positioning enhances flexibility 
and supports forward-moving, high-value plays, while sideline positioning restricts options, making 
lateral throws more favorable. 

 

 

 

Figure 7: SHAP interaction plots visualize the marginal contribution of features to Expected 
Throw Value (ETV). Each plot shows how the SHAP value (impact on final prediction) of a 
feature varies as the value of that feature. Positive SHAP values indicate a positive impact on 
the prediction, while negative values indicate a negative impact. (A) Y Differential (B) Throw 
Distance (C) Time Left 

A. B. C. 
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6.2 Player Assessment 

6.2.1 Play Contribution 

The EC and aEC metrics substantially improve upon traditional yardage-based statistics, such as 
throwing yards and receiving yards, by incorporating the positional value differences in throws. EC 
provides a more comprehensive assessment of the value generated by factoring in contextual 
elements like field position and situational impact. aEC goes a step further by scaling contributions 
so that each goal-scoring possession has the same total value, resulting in a more interpretable and 
context-independent measure. 

Empirical validation underscores the effectiveness of these metrics, with the top five players by 
total EC (Table 2) include 2021 MVP Ben Jagt and four other All-UFA team selections from their 
respective seasons. Notably, when examined by season, the MVP ranked #1 in EC in 2021 and 2022, 
#7 in 2023 and #4 in 2024, reflecting a strong alignment between EC rankings and recognized elite 
performance. Similarly, aEC also proves valuable in identifying top players (Table 3), including 
those with unique play styles such as high-risk, high-reward play of 2017 MVP Jonathan Nethercutt 
and 5 time All-UFA selection Pawel Janas.  

 

  

A. B. C. 

Figure 8: SHAP interaction plots visualize the marginal contribution of features to Expected 
Throw Value (ETV). The color gradient represents the value of an interacting feature, with 
warmer colors indicating higher values and cooler colors indicating lower values.  Each plot 
shows how the SHAP value (impact on final prediction) of a feature varies as the value of that 
feature and an interacting feature change. Positive SHAP values indicate a positive impact on 
the prediction, while negative values indicate a negative impact. (A) Y Differential (B) 
Receiver Y (C) Receiver X 
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In addition to identifying top players, coaches and players can evaluate how player roles and 
contributions interact by directly comparing T-EC to receiving R-EC. For instance, players with high 
R-EC but low T-EC emphasize their strength as a receiver (known as ‘cutters’), while players with 
higher T-EC demonstrate their effectiveness as a distributor (known as ‘handlers’). Another 
possible application is to analyze contributions on a per-possession basis. Coaches can gain a 
clearer picture of which players make the most significant impact when on the field, enabling data-
driven decisions regarding playing time and roster composition. For example, players with a high 
number of possessions but low contributions per possession should be played less than those with 
higher contribution per possession with fewer opportunities. 

6.2.2 Completion Evaluation 

CPOE and xCP are complementary metrics that provide a nuanced view of throwing performance 
(Table 4). xCP highlights decision-making tendencies, such as Gus Norrbom’s high xCP reflecting his 
focus on safe, high-percentage throws, or James Pollard’s and AJ Merriman’s lower xCPs indicating a 
preference for riskier plays. By examining xCP, we can identify players’ strategic tendencies and 
roles within their teams, whether as steady distributors or aggressive playmakers. 

CPOE, in contrast, evaluates a player’s ability to exceed or fall short of these baseline expectations, 
emphasizing their execution relative to the difficulty of their choices. Players like Matt Jackson, with 
both a high xCP and a strong CPOE, excel at reliably completing high-percentage throws. 
Meanwhile, Jonathan Nethercutt, with a lower xCP maintains a high CPOE demonstrating skill in 
completing challenging throws. These metrics improve upon conventional completion percentage 
by accounting for the context and complexity of throws, moving beyond raw outcomes to evaluate 
decision-making and execution. Together, CPOE and xCP paint a holistic picture of player 
performance. Coaches could use xCP to tailor offensive strategies, assigning high xCP players to 
handle key reset throws in high-pressure situations, ensuring possession retention. Similarly, 
players with low xCP and strong CPOE could be prioritized for initiating deep plays or critical end-
zone throws where precision in challenging situations is important. 
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7. Discussion 
 
7.1 Limitations 

We address several limitations of our study and data including the inability to accurately attribute 
credit between throwers and receivers, as both contribute to the success of a play, potentially 
leading to discrepancies in player evaluations. Additionally, differences in rules, timing, and field 
dimensions between the Ultimate Frisbee Association, the Premier Ultimate League, and the 
Western Ultimate League could affect performance metrics, requiring adjustments and league-
specific datasets. There is also a potential bias introduced by the location of completed and 
incomplete throws, as completed throws often land in different areas than incompletions, especially 
when they go out of bounds or are intercepted.  

7.2 Future Work 
 
Future research in the field of ultimate analytics presents several opportunities to refine and extend 
the application of our novel metrics. A key area for development is the inclusion of additional 
contextual data, such as stall count, teammate and defender locations, and other situational factors 
that are not currently captured systematically. These elements likely influence player decisions and 
outcomes and incorporating them would enhance the robustness of these metrics. Expanding the 
dataset to include these overlooked factors would also improve the predictive power and relevance 
of these metrics in various in-game contexts. Additionally, a significant avenue for future work lies 
in the development of defensive metrics, which remain underexplored. Integrating data on 
defensive positioning, pressure, and forced turnovers could offer a more balanced evaluation of 
player contributions, highlighting not only offensive strengths but also defensive impact.  
 
7.3 Conclusion 

In this paper, we introduce novel models and metrics learning that significantly enhances the 
analysis of player value and decision-making in ultimate. By leveraging a comprehensive dataset 
and modeling techniques, we develop two models to predict completion and score probability from 
thrower, receiver, throw, and game contexts. We use these models to create metrics that evaluate 
player contribution (EC and aEC), completion rates (CPOE and xCP), and guide overall strategy 
(ETV). These metrics offer a more nuanced and informative understanding of ultimate, surpassing 
the limitations of traditional statistics. Our findings demonstrate the reliability, stability, and unique 
insights provided by these metrics, making them valuable tools for coaches, analysts, and fans alike. 
The applications of these metrics are extensive, shaping strategy, player roles, playing time, 
quantifying impact, and more. By incorporating these metrics, teams can refine their strategies to 
improve both individual and team performance. 
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