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1. Introduction 
  

In recent years, electronic sports (esports) have gained popularity, extending the existing landscape 
of the sports industry. Counter Strike 2 (CS2), a first-person shooter team game, stands as one of the 
most prominent esports titles in 2024. In this esport, two teams face off within a match, taking turns 
as attackers (Terrorists - Ts) and defenders (Counter Terrorists - CTs). A match consists of 2-minute 
rounds where Ts must plant a bomb at one of two bomb sites, while CTs must prevent it or defuse 
the bomb. The first team to win 13 rounds wins the match. With tournaments organized in front of 
large audiences and professional teams competing for substantial prize pools, the stakes of the 
professional scene are high. Despite these facts and the abundance of available data, only a few 
artificial intelligence-driven solutions have been explored so far regarding individual and team 
performance enhancement [1, 2, 3, 4], and it has not yet gained much popularity in practical use. 

This paper proposes a framework capable of evaluating player actions using graph neural networks 
(GNNs). This involves a reliable and consistent data-transforming process capable of creating 
heterogeneous graph datasets by parsing publicly available professional match replay files at a 
desired framerate. These heterogeneous graphs incorporate the players and the unique layout of the 
map the game is held on using different node types and connections. Extending this method, graphs 
are concatenated across time, creating discrete-time dynamic graphs. Leveraging the data, temporal 
heterogeneous GNNs (THGNNs) are trained to predict whether the attacker or the defender team 
would win the examined round. With models able to accurately predict round-winning chances at a 
frame-by-frame level, fluctuations in these probabilities are then examined within single rounds. The 
events prior to the probability changes are collected, and we use Shapley values to measure the 
contributions of the events for changes in winning chances. By associating players with the events, 
the impact of the individuals can be examined.  

The proposed framework, with GNN models exceeding the 76% accuracy mark, enables detailed 
analysis of key in-game events, such as opening kills and clutch plays, by measuring their impact on 
win probability. An illustration is visible on Figure 1.1, highlighting the impact of an opening 
elimination. The framework also excels at highlighting seemingly unimportant events that may not 
be immediately obvious, but still influence the team winning chances. This provides teams with 
valuable information about which actions are most impactful, regardless of their perceived 
significance. Additionally, the framework provides insights into how identical events, such as an 
opening kill, can have varying impacts depending on the context, such as weaponry or map 
positioning. This can help teams better understand the specific factors that amplify or reduce the 
effectiveness of similar actions across different scenarios.  
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                                        (a)                                                                                           (b) 

Figure 1.1: Analysis of an opening kill performed by the attacker called nexa in a match between 
teams G2 Esports and MOUZ. (a) The win probabilities predicted for the teams at the 
time of the event, with the opening kill timestamp highlighted. (b) The corresponding 
Shapley values highlight the most important factors regarding the event: the defender 
(labeled CT1) losing all their health and armor, and nexa (labeled as T9) increasing his 
damage stat, resulting in a 22% win probability decrease for the defenders. 

Our framework has the potential to revolutionize individual player performance analysis in the 
Counter Strike esports industry by providing a detailed, frame-by-frame assessment of player impact. 
This opens the possibility for detailed player evaluation methods as well as more profound ways of 
strategic planning, providing organizations with a competitive advantage. This paper is organized as 
follows. Section 2 outlines the process of creating the graph dataset. Section 3 describes our approach 
to training and optimizing the GNN model. Section 4 focuses on explanatory analysis and player 
evaluation. Section 5 presents various use cases for our framework in application. Section 6 reviews 
the related work in the field. Section 7 concludes the paper. 

2. Dataset creation 
 

An advantage of esports, compared to traditional sports, is that it takes place in a virtual environment. 
This factor makes the collection of tracking data more accessible. In the case of CS2, demo files—
exact copies of actual matches—are publicly available for download via a platform called HLTV1. For 
this study, we collected all professional match replays from S-tier tournaments held between the 
release of CS2 in October 2023 and September 2024, focusing the analysis on matches played on the 
map called Inferno. This yielded a total of 114 matches. 

To create the initial tracking dataset, the awpy package [1] is utilized, which efficiently extracts all 
essential data from the replay files. The matches were parsed at a rate of four snapshots per second. 
The resulting tracking data contains all state-describing features of the players, including their 

 
1 HLTV website: https://www.hltv.org/ 
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positions, velocities, weapons, inventories and health points. It also includes grenade trajectories, 
among other key attributes. Previous work by Xenopoulos et al. (2020) demonstrated that this level 
of tracking data in tabular format can be utilized for uncovering patterns within the game. However, 
Counter-Strike presents a unique challenge compared to traditional sports or other esports due to 
the variability in map layouts. Each map features its own distinctive structure and design, requiring 
strategies and tactics that are intricately tied to its specific playfield (e.g., Inferno). Players must adapt 
their gameplay to the unique features of the environment, employing map-specific tactics. To address 
this complexity, we decided to represent the game state using graphs, a format well-suited for 
capturing both the spatial layout of maps and the dynamic interactions between players and their 
environment. 

2.1.  Modeling the map layout 
 

The construction of the map graph was assisted by a former professional player, whose expertise 
played a crucial role in the accurate representation of the map. The task involved determining the 
placement of nodes V and adding edges E between them to form the Gmap = (V, E) map layout graph. 
A key consideration was balancing node placement to avoid redundancy from excessive density while 
ensuring the map's layout was accurately captured. We concluded that each node vi ∈ V should 
represent an area approximately the size of a smoke grenade’s coverage. Smoke grenades are crucial 
for strategic play, as they obscure key positions or pathways intentionally aligned with their size by 
map designers. This principle not only highlights important smoke points but also serves as an 
efficient unit for covering the map. The nodes were placed on the map accordingly. Each stored state-
describing properties in its feature vector, such as X, Y and Z coordinates and boolean flags indicating 
whether it is on fire or smoked.  To complete the graph, edges were added to represent pathways 
between the vertices. An undirected edge eij ∈ E connects nodes vi and vj if player movement is 
possible between them in both directions. To further enrich the environment graph, additional nodes 
were placed on common contact positions on the map to highlight engagement areas. These contact 
spots were identified using density-based clustering algorithms applied to player elimination data 
(frequent kill and death locations), with additional corrections and validation provided by the former 
professional player.  

2.2.  Dynamic graph snapshots 
 

The initial step to construct the dynamic graph dataset is the creation of static graphs representing 
game-states. These snapshots were built upon the predefined map graph, serving as the structural 
foundation for representing the game state. Using the tracking data, each snapshot was generated by 
adding the players as nodes to the map graph, positioned at their respective X, Y, Z coordinates to 
reflect their in-game locations. These player nodes serve a fundamentally different purpose than the 
map nodes, thus requiring significantly more features to be stored. As such, they were introduced as 
a new node type. This resulted in the graph being heterogeneous, comprising map type nodes with 
map-to-map edges representing the map layout, and player type nodes representing players. The 
latter node type contains a rich set of features, including state-describing attributes (e.g., X, Y, Z 
coordinates, velocity, view direction, weapons carried and equipped, health points), match statistics 
(e.g., damage dealt, successful eliminations, deaths), and general performance metrics from the 
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previous competitive year (e.g., HLTV Rating 2.1 [5], KAST2 or Impact3). The overall feature count for 
this node type exceeds 160. Each player node was connected to the nearest map node with a player-
to-map edge type, and a self-loop edge labeled player-is-player was also added, with its role to be 
clarified later.  

        
Figure 2.1: An example graph from the created dataset. The game state is from a quarterfinal match 

between teams Cloud9 and Heroic from the BLAST Premier Fall Final 2023 tournament. 

Graph-level features independent of individual nodes were also integrated into the graphs. These 
included general attributes, such as the remaining time, whether the bomb is planted, and if so, its 
coordinates and location. Aggregated team-level features were also included, for instance, the 
number of players alive, total team health, and the team equipment value. Additionally, the graph-
level vector also stored the output variable: a boolean flag indicating whether the defending team 
won the round. An example graph snapshot is visualized in Figure 2.1. 

To account for the temporal dynamics of this esport, Discrete-Time Dynamic Graphs (DTDGs) were 
created by concatenating 20 consecutive snapshots along the temporal axis to form 5-second time 
windows. Each round is segmented into such intervals. To enhance data diversity, additional 
intervals were created with a 2.5-second temporal offset. This preprocessing pipeline was applied to 

 
2 KAST (Kills-Assists-Survives-Traded) metric explanation from HLTV:  percentage of rounds in which the 
player either had a kill, assist, survived or was traded. 

3 Impact metric explanation from HLTV: Measures the impact made from multikills, opening kills and 
clutches. 
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all rounds across the 114 matches, yielding approximately 90.000 DTDGs, which formed the 
foundation for model training. 

3. Predicting the round-winner team 
 

To learn patterns from the dynamic heterogeneous graph dataset, we utilized THGNNs. The task of 
predicting the round winner is framed as a binary graph classification problem. Importantly, this 
classification task involves nearly balanced classes, as on the map Inferno, defenders (CTs) win 
approximately 50.5% of the rounds, while attackers (Ts) win 49.5% on big events according to HLTV. 
A probability prediction is generated for each of the 20 snapshots in the input dynamic graph 
provided to the model. Section 3.1 outlines the architectural design of the trained neural networks. 
Following this, Section 3.2 highlights the convolutional strategy detailing how the spatial dynamics 
of the graphs are captured. Section 3.3 presents the performance of the best-performing model and 
analyses its results from various perspectives. 

3.1.  Model architecture 
 

THGNNs are powerful tools for learning spatio-temporal patterns in graphs, offering a wide variety 
of convolutional possibilities and solutions for modeling dynamic graph data. In this paper, we 
propose the most successful strategy among the tested approaches. A dynamic graph, serving as the 
input to the THGNN, is processed through the network's architecture, which systematically extracts 
and learns spatial and temporal patterns. The architecture of the proposed network is composed of 
the following main parts:  

1.  The first step involves spatial convolutions.  In this step, the information stored in the nodes 
is propagated to their neighboring vertices through multiple convolutions, creating 
embeddings for each node. This operation is completed within each static graph that 
constitutes the dynamic graph, independently. The convolution strategy is described in detail 
in Section 3.2. 
 

2.  The second step focuses on learning temporal patterns. Once the spatial convolutions are 
applied and the node embeddings have been created, the GraphGRU [7] operator is utilized 
to capture the temporal dependencies and trends across the 20 static graphs that constitute 
a dynamic graph. The GraphGRU updates the node embeddings accordingly to reflect these 
temporal patterns. The network includes two GraphGRU layers to ensure separate learning 
for the two node types.  
 

3.  The last step involves the flattening of the static graphs into a batch of 20 vectors and passing 
them through dense layers in the network to produce the final predictions.  

Figure 3.1 visualizes the described network architecture. 
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Figure 3.1: Architecture of the proposed THGNN. Gi represents a static graph from the input dynamic 
graph, G’i is Gi after the spatial convolutions, G’’i is the flattened vector of Gi after the 
GRU layers and f (Gi) is the predicted win probability for the defender side for Gi, where 
i ∈ {1,…,t} and t is the number of snapshots in the dynamic graph. 

3.2.  Spatial convolution strategy 
 

The convolutional strategy used in the first part of the proposed network is based on the intuition 
that players are the primary sources of all changes in win probability, as they drive the events that 
influence it. This strategy is implemented through heterogeneous convolution layers, which are 
defined as an ordered sequence of convolution operations applied over specific edge types within the 
graph. The implemented layer following this strategy consists of three steps: 

1.  The initial step of the heterogeneous convolution layer involves the player nodes generating 
their own embeddings through the player-is-player self-loop edges. This step effectively 
performs dimensionality reduction, allowing the network to learn a more compact 
representation of the player features instead of manually selecting them.  
 

2.  In the second step, the information stored in the player embeddings are propagated to the 
nearest map nodes through player-to-map edges. This operation creates a map embedding 
that integrates both map-specific and player-related information.  
 

3.  Finally, the third step involves propagating the updated map embeddings among the map 
nodes via map-to-map edges. 

The complete, ordered sequence of operations within a single heterogeneous convolutional layer is 
illustrated in Figure 3.2, providing a clear visual representation of the information flow across the 
graph.  
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Figure 3.2: An example of a single layer of the described heterogeneous convolution applied on a 
graph. At each step, the edge over which the actual sub-convolution is applied is 
highlighted in red. 

 

Following the heterogeneous convolution layers, additional convolutions were applied along the 
map-to-map edges to further propagate player-related information across the map. The number of 
layers for both convolution types was treated as a hyperparameter to be optimized. The best-
performing model employs single-headed Graph Attention (GAT) [9] convolution for each sub-
convolution. This architecture begins with two heterogeneous convolution layers, followed by three 
map-to-map convolution layers. 

 

Model Log-Loss F1-score AUC 

Baseline 0.693 0.5 0.5 
Logistic Regression 0.4688 0.7387 0.7564 

XGBoost 
(proposed by P. Xenopoulos [1]) 0.5353 - 0.7913 

Proposed THGNN 0.4587 0.7463 0.8549 

Table 3.1: Performance of the proposed THGNN compared to other models, evaluated across 
different metrics. 
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3.3. Results 
 

After extensive hyperparameter optimization, the best-performing THGNN model was successfully 
trained, achieving an accuracy exceeding 76%. To validate the results of the THGNN, comparative 
models were trained using the tabular tracking dataset. These included a baseline model based on 
random predictions, a logistic regression and the XGBoost model proposed by Peter Xenopoulos [1]. 
Unlike the THGNN, which leverages temporal dependencies across snapshots, these tabular models 
generate predictions independently for each snapshot, without considering prior states. The training 
results, including the comparison of the THGNN with these baseline and tabular models, are 
summarized in Table 3.1. 

The evaluation of the models was based on log-loss, F1 score, and AUC. The results indicate that the 
proposed network outperforms all other models across these metrics. In addition to these, it is 
essential to examine the model's calibration [6], as the model’s primary purpose is probability 
estimation. Proper calibration is vital to ensure that the model contributes meaningfully to 
understanding the game dynamics. This requires reliable and interpretable probability outputs. The 
calibration curve of the THGNN (displayed in Figure 3.3) demonstrates that the model’s probabilities 
are well-calibrated, which is further reinforced by its low Expected Calibration Error. 

 

Figure 3.3: Calibration curve and Expected Calibration Error (ECE) of the proposed network. 

4. Evaluating player actions 
 

Explainability is a crucial aspect of artificial intelligence, especially in the field of sports analytics, 
where meaningful insights can drive player development and strategic improvements. 
Understanding the "why" behind model predictions is as important as the predictions themselves for 
the coaches and teams. Thus, in this section, we propose a technique to interpret the predictions of 
the THGNN model and leverage probability fluctuations to evaluate player actions. This approach 
aims to bridge the gap between complex AI models and practical, human-understandable insights. 
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4.1.  Event-based explanation approach 
 

To analyze the actions driving the probability fluctuations, a unique approach is proposed - one that 
focuses not on why the model predicts certain probabilities but on how fluctuations in these values 
correlate with player actions. This aligns with professional analysts' goals of identifying successful 
and poor decisions in gameplay.  

Let 𝑊𝑊(𝑡𝑡) denote the estimated win probability for the defenders at timestamp 𝑡𝑡 and 𝛥𝛥𝑊𝑊(𝑡𝑡 − 1, 𝑡𝑡) 
represent the change of the winning chance between timestamps t – 1 and 𝑡𝑡.  This is formally 
calculated as shown on Equation 4.1. 

 
𝛥𝛥𝑊𝑊(𝑡𝑡 − 1, 𝑡𝑡)  =  𝑊𝑊(𝑡𝑡) − 𝑊𝑊(𝑡𝑡 − 1) (4.1) 

Player actions are the primary drivers in the win probability changes. Thus, 𝛥𝛥𝑊𝑊(𝑡𝑡 − 1, 𝑡𝑡) can be 
expressed as the cumulative impact of all actions performed by all players between timestamps 𝑡𝑡 –  1 
and 𝑡𝑡. This can be expressed as shown on Equation 4.2 

 
𝛥𝛥𝑊𝑊(𝑡𝑡 − 1, 𝑡𝑡) = ��𝛿𝛿𝑊𝑊𝑎𝑎,𝑝𝑝

[𝑡𝑡−1,𝑡𝑡]

𝑛𝑛𝑝𝑝

𝑎𝑎=1
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𝑝𝑝=1

 (4.2) 

where 𝑝𝑝 denotes the player index, 𝑛𝑛𝑝𝑝 is the number of actions done by player 𝑝𝑝 between timestamps 
𝑡𝑡 –  1 and 𝑡𝑡, and 𝛿𝛿𝑊𝑊𝑎𝑎,𝑝𝑝

[𝑡𝑡−1,𝑡𝑡] represents the probability change caused by the single action 𝑎𝑎 by player 𝑝𝑝 
that happened between 𝑡𝑡 –  1 and 𝑡𝑡. In the above equation, the 𝛿𝛿𝑊𝑊𝑎𝑎,𝑝𝑝

[𝑡𝑡−1,𝑡𝑡] individual effects of actions 
are not determined directly - only their combined impact is known. However, by using a local 
explainability model and Shapley values [8], it is possible to identify the contribution of each action. 

4.2. Event datasets 
 

To compute the direction and magnitude of each action's impact on the win probability, an event 
dataset is created that captures the events of the selected round for analysis. This was achieved by 
extracting state-describing features of players and the map nodes from the static graphs that 
compose the dynamic graph. These features include player-specific attributes such as position, speed, 
view direction, and active weapon, as well as map-specific conditions like whether an area is burning 
or smoked. Only state-describing features were considered, as these are directly or indirectly 
influenced by player decisions. As a result, the event dataset was structured so that each feature 𝑓𝑓 
represented a specific state-describing feature of either a player or a map node. The 𝑡𝑡-th record in 
this dataset captured the changes of all 𝑓𝑓 features between consecutive timestamps 𝑡𝑡 −  1 and 𝑡𝑡 
within the round. An additional column is then added to this table, representing the win probability 
change between timestamps 𝑡𝑡 − 1 and 𝑡𝑡, which served as the output variable for the explainability 
model. 

The event dataset only captures actions occurring between consecutive snapshots. However, the 
THGNN model was trained on dynamic graphs representing 5-second intervals, meaning that actions 
taken seconds before a specific timestamp 𝑡𝑡 could still influence the win probability at 𝑡𝑡. This event 
dataset does not yet account for temporal patterns spanning the entire 5-second interval. To address 
this limitation, multiple event datasets were created with varying time differences: one capturing 
consecutive events and others aggregating events over 1, 2, 3, 4, and 5-second intervals. By training 
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separate explainability models on each of these datasets and aggregating their results, it becomes 
possible to analyze and interpret the cumulative impacts of actions from different parts of the time 
interval, providing a more comprehensive understanding of how player actions influence win 
probability changes. 

4.3. Explanation models and Shapley values 
 

Explainability models were trained on the event datasets to capture the relationships between player 
actions and changes in win probability across varying time intervals. Ridge regression models with 
𝛼𝛼 values of 0.1 were employed, intentionally overfitting the datasets to replicate the GNN’s 
predictions as closely as possible for the selected round. Subsequently, the SHAP Python package was 
utilized to estimate the Shapley values, quantifying each feature’s contribution to the win probability 
change. This process provided an initial set of SHAP-based explanations. 

However, post-processing was necessary to refine these explanations and align them with the 
domain requirements. A filtering mechanism was applied to the Shapley values of the features to 
ensure their relevance to the context, adhering to the following conditions: 

1. A player eliminated during the round cannot impact the win probability after their death. To 
address this, a 2-second time window following a player’s elimination was allowed, during 
which contributions could still be attributed4. After this period, the player's Shapley values 
are zero. 

2. If a state-describing feature 𝑓𝑓 does not change during the analyzed interval, its contribution 
to the win probability is zero. 

The Shapley analyses for the various time intervals were passed through this filter to ensure domain-
relevant explanations. Following this, the Shapley values for each feature were averaged across 
timestamps, aggregating contributions from different intervals. The resulting dataset provided, for 
any given time 𝑡𝑡, Shapley values for each feature based on the preceding 5 seconds, reflecting their 
impact on the win probability. Using this dataset, the impact 𝛿𝛿𝑊𝑊𝑎𝑎,𝑝𝑝

[𝑡𝑡1,𝑡𝑡2] of any specific action 𝑎𝑎 by 
player 𝑝𝑝 between timestamps 𝑡𝑡1 and 𝑡𝑡2 could be calculated with the formula shown in Equation 4.3 

 
𝛿𝛿𝑊𝑊𝑎𝑎,𝑝𝑝

[𝑡𝑡1,𝑡𝑡2] =  
𝑆𝑆𝑎𝑎

∑ �𝑆𝑆𝑓𝑓�𝑓𝑓
 𝛥𝛥𝛥𝛥(𝑡𝑡1, 𝑡𝑡2) (4.3) 

where 𝑆𝑆𝑎𝑎 is the Shapley value of the action 𝑎𝑎, ∑ �𝑆𝑆𝑓𝑓�𝑓𝑓  is the sum of the absolute values of all Shapley 
values for the features, and 𝛥𝛥𝑊𝑊(𝑡𝑡1, 𝑡𝑡2) is the win probability change between timestamps 𝑡𝑡1 and 𝑡𝑡2. 
As a result, each action carried out by the players is evaluated by the direction and magnitude it 
affected the team’s winning chances. 

 

 

 
4 In some cases, players with low health deliberately sacrifice themselves to give their teammates a 
strategic advantage.  
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5. Use cases 
 

This section highlights various use cases where the proposed framework can provide deep analytical 
insights to professional teams in this esport. By leveraging the framework, teams can gain 
information about important actions to better analyze their players. 

5.1.  Highlighting key events 
 

The proposed framework enables the analysis of a selected round by highlighting its key events - 
those critical moments that result in the most significant changes in win probability. These 
highlighted events represent the pivotal actions that shaped the outcome of the round. The 
explanation framework provides the tools to identify and interpret these impactful moments. Figure 
5.1 visualizes an example illustrating an elimination event. 

 
                                            (a)                                                                                           (b)  

Figure 5.1: An opening elimination event from IEM Dallas 2024 from a match between teams G2 and 
Heroic. (a) The win probability predicted by the proposed model. (b) Features with the 
highest impact corresponding to the opening kill and their effect on the win probability. 
The x axis represents the time stamps, while the y values show the probability changes 
between snapshots normalized between 0 and 1. Features highlighted in red have a 
positive effect on the defenders' win probability, while those in blue indicate events that 
drive the winning chance in a negative direction. 

The analysis shows that the opening kill successfully secured by siuhy, a member of the defending 
team, increased the defender’s win probability by 15%. The SHAP values demonstrate that the 
framework is capable of recognizing this. The features with the highest Shapley values are related to 
the attacker called Stewie2K (identified by T6) losing his life and siuhy’s increased dealt damages 
statistic. Another analytical example can be seen in Figure 5.2. In this scenario, a player from the 
attacking FaZe team called frozen, won a 1v2 clutch situation from a disadvantageous position, 
successfully defending the planted bomb and winning the round. Alongside the kills, the model 
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correctly identifies the importance of other events depending on the context. With very little time left 
in the round and the defenders needing to disarm the bomb, the start of the 5 second long defuse 
significantly boosted their chances of winning (+25%). However, once the defuse was interrupted, 
this advantage quickly diminished, as reflected by the model's evaluation. 

 

 
                            (a)                                                                                                             (b) 

Figure 5.2: A 1v2 clutch situation won by a player called frozen from the attacker team (FaZe) in the 
grand finals of the PGL Copenhagen major. (a) The probability predictions by the THGNN 
model, with the important events highlighted. (b) The result of the explanation analysis, 
highlighting the most important features with the highest impact on the win probability 
change. 

The analyses presented so far, when compared with the broadcast footage of the matches, reveal that 
the explanations align with intuition, confirming the model's ability to highlight and explain 
significant events. These examples strengthen the trustworthiness of the model. One of the 
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advantages of the model, however, is that it is also capable of emphasizing seemingly unimportant 
actions that may appear to have lesser significance. An example of this is presented in Figure 5.3. 

            

                                             (a)                                                                                           (b) 

 
  (c) 

Figure 5.3: Impact of an incendiary grenade exchange on the CT win probabilities. (a) Probability 
predictions for the examined interval. (b) The game-state visualized for the examined 
situation. (c) Shapley values highlighting the importance of the incendiary grenade 
events for the win probability. 

In this example, around the one-minute mark, the win probability for the Counter-Terrorists first 
decreases and then shows a noticeable increase for a brief period. While the cause of these changes 
is not immediately apparent from the match footage, the explanatory model identifies the key events 
behind them. At the 61-second mark, a defender drops an incendiary grenade, leading to a temporary 
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decrease in the win probability as the other defender, highlighted in yellow in Figure 5.3(b), is 
required to step back and retrieve it. Once the grenade is in his inventory and selected as the active 
weapon, the team's win probability increases by nearly 5%. Notably, four attackers are positioned 
nearby, preparing for a potential execution towards the bombsite the defenders guard. Had they 
decided to push, a well-timed incendiary grenade could have delayed their advance. Interestingly, 
the push does not occur, yet the model positively valued the grenade being held as an active weapon, 
recognizing the possible threat and the equipment’s potential impact. 

 
                                                    (a)                                                                                                    (b) 

Figure 5.4: A defender balancing the win probability of his team by throwing a smoke grenade. 
(a) The SHAP values highlighting the most important events. (b) The game-states 
visualized at the moment of the grenade throw (top) and two seconds after (bottom). 

Another analysis is presented in Figure 5.4, which further demonstrates the framework's ability to 
perform detailed evaluations. In this example, a smoke grenade thrown by the attacking team lands 
at a position known as A-long in the examined moment (visualized in Figure 5.4(b)). This is a common 
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tactic used by attackers to block the vision of potential defenders in that area and gain map control. 
A strategic countermeasure by the defender is to throw a smoke at the section of the map called 
middle, preventing the attackers from easily advancing and securing map control. The framework 
effectively recognizes the threat posed by the smoke landing on A-long, as shown by the SHAP values. 
However, the win probability does not change, as the defender immediately counters by throwing a 
smoke to the map area called middle, thus balancing the probabilities. The framework also highlights 
the defender’s smoke throwing as an action with positive impact, which is reflected in the SHAP 
values. This highlights the framework's precision in assessing and comparing the significance of 
various in-game events. 

5.2.   Event impact comparison 
 

One of the key advantages of the model is its ability to estimate round winning probabilities for the 
teams based on the specific context. As a result, the same events can have varying impacts (win 
probability changes) across varying situations. This allows for a deeper analysis of how similar 
actions influence outcomes in different contexts, prompting intriguing questions for professional 
players: why does an event have a greater or lesser effect across rounds, and what contextual factors 
contribute to these variations? A notable example is the opening kill: in professional Counter-Strike, 
securing the opening kill is crucial, as the team that first gains a man advantage has significantly more 
control over the round’s outcome. In the example shown in Figure 5.1, the opening kill by siuhy 
increased the defending team’s win probability by 15%. For comparison, Figure 5.5 illustrates 
several other opening kills from different matches and scenarios.  

 

 
                 (a)                                                                           (b)                                                                           (c) 

Figure 5.5: Opening eliminations across different games and scenarios. (a) An opening elimination 
by Stewie2K increased the attacker’s winning chance by almost 30%. (b) Boombl4 from 
the attacking team creates an opening and gains an additional 17% winning chance for 
his squad. (c) An opening by the player called nexa increases attacker win chances by 
22%. 
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In the first case, Stewie2K’s opening kill resulted in a nearly +30% increase in his team's win 
probability. This significant increase can likely be attributed to the fact that his team was 
considerably underpowered in terms of weaponry compared to the opponents, making the opening 
kill far more impactful. Notably, a double elimination occurs shortly thereafter, further boosting the 
win probability by +30%. The fact that two eliminations provide a similar win probability increase 
as the crucial opening kill underscores the importance of these key moments in shaping the outcome 
of the round. An opening elimination with balanced team equipment values is illustrated in Figure 
5.5(b). This event led to a +17% increase in the attacking team's win probability, significantly less as 
in the first scenario. Figure 5.5(c) analyzes another opening kill event in a round where both teams 
had balanced weaponry. However, in this case, the increase was 5% higher (+22%) compared to the 
previous. This can likely be attributed to the attackers being in a much stronger position to secure 
one of the bomb sites compared to the other attacking team in the (b) scenario, further amplifying 
the importance of this event.  

These examples demonstrate that identical events can have varying impact values depending on the 
context, offering professional teams a valuable opportunity to examine and understand these 
dynamics. Additionally, this framework allows teams to experiment with strategic executions by 
testing minimal variations, receiving quantitative feedback on which slightly altered scenarios 
resulted in the greatest impact, such as for opening kills. This type of analysis can provide crucial 
insights and help teams fine-tune their strategies, offering a significant advantage during 
preparation. 

6. Related work 
 

The primary goal of this project is to develop a machine learning-driven player action evaluation 
system, building on the methodology introduced by Peter Xenopoulos [1]. Their approach utilized an 
XGBoost model trained on tabular data representing game state with plenty of features, such as 
player positions, weapons, health, time remaining, and number of players alive, to predict the 
winning probabilities for Counter-Strike rounds. By generating predictions at multiple time points, 
they analyzed fluctuations in team win probabilities over time, attributing these changes to player 
actions and in-game events. They also proposed a novel player rating metric, Win Probability Added 
(WPA), which quantified a player’s impact on their team’s win probability by summing the effects of 
damage-related events within a round. This innovative approach provided a focused evaluation of 
players’ contributions through their damage impacts, showcasing the potential of win probability-
based metrics in assessing performance. Our solution improves upon the previous approach by using 
THGNNs to capture both the spatial structure of the map and temporal patterns in player actions, 
allowing for a more accurate and nuanced evaluation of player performance. In addition to these 
improvements, our framework is also capable of evaluating the significance of non-damage related 
events, providing a comprehensive assessment of player actions. 

7. Conclusion 
 

The presented work introduces a novel approach for evaluating player actions in professional 
Counter-Strike 2 using Temporal Heterogeneous Graph Neural Networks. This framework predicts 
round-winning probabilities at a frame-by-frame level, providing a detailed analysis of player actions 
and their impact on match outcomes. By incorporating both spatial and temporal graph convolutions, 
the model captures complex interactions between players and their environment, offering insights 
into the dynamics of the game. 
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We propose an explanation technique to examine fluctuations in win probability through Shapley 
values. These values attribute changes in win probability to specific player actions, such as 
eliminations, grenade usage, or positioning, giving coaches and analysts a deeper understanding of 
the effectiveness of each decision. This leads to more informed strategic planning, helping teams 
refine their tactics and focus on areas that most impact their success. Additionally, the framework 
can highlight critical moments in a round, such as opening kills or clutch plays, by measuring their 
effect on win probability. Teams can use these insights to better understand which actions are most 
influential in various situations.  

In conclusion, this work offers a powerful tool (available at [10]) for analyzing and improving player 
performance in Counter-Strike 2. By explaining and quantifying the impact of individual actions, the 
framework enables teams to optimize strategies and gain a competitive edge in esports. 
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Appendix 
 
A.1 Full round predictions 
In the Use Cases section, several situations were analyzed in detail, with a focus on specific events. 
This part of the appendix illustrates some examples of the win probabilities visualized for full rounds. 

 
Figure A.1.1: Estimated win probabilities for the teams in round seven at a PGL CS2 Major 

Copenhagen match between teams Vitality and Complexity. 
 
 
 

 
Figure A.1.2: Estimated win probabilities for the teams in round seven at the IEM Dallas 2024 event 

in a match between teams G2 Esports and MOUZ. 


