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1. Introduction  
 
In soccer, penalty kicks (PKs) are taken with fair regularity (~ once in four matches [1]) and often 
constitute high-leverage, or game-pivotal, events given the sport’s low-scoring nature. In a 
tabulation of 294,970 international, professional league, and professional cup match results 
recorded on footystats.org [2], we find that 1-0 and 1-1 are the most common professional full-time 
match scorelines, occurring 17.9 and 11 percent of the time, respectively. These outcomes are 
followed by 2-1 (8.5%) and 0-0 (7.7%). Across all recorded match outcomes, average full-time goals 
per professional match are 2.85. In the 2022-23 EPL, matches averaged 0.26 PKs and 0.194 PK-
conversions, equivalent to about 6.8% of goals scored according to tabulations of data from 
transfermarket.com [3]. In 2023-24, this percentage rose to 7.6% [4]. Herein, we examine whether 
professional penalty-takers strictly optimize on expected conversion-rate when choosing shot-
location, or whether behavioral considerations, such as “looking credible” by not missing the goal-
space entirely, are also at play.  
 
There is a famous sports adage that goes, “A win is a win.” Despite the popularity of the adage, 
behavioral considerations often cloud player- and coaching-optimization in sport. Perceptions 
cause NFL coaches to invoke sub-optimal play-calling [5], which is not fully explained by risk-
aversion [6]. Among others, notable NBA Centers Shaquille O’Neal (retired) and Andre Drummond 
(active) vowed never to shoot free-throws underhanded, given the shot’s optics, despite 
demonstrated associated improvements for large-handed players [7],[8]. Both players in fact rate 
as abysmal free-throw shooters, with O’Neal shooting 52.7% for his career, and Drummond 
shooting 48.2%. By comparison, NBA players in 2023-24 averaged about 78.4% from the free 
throw line, with a standard deviation from player-to-player of approximately 9 percentage points. 
Therefore, the threshold for a negative outlier is 51.4%; Drummond’s free throw accuracy is 
negatively-outlying by the 3 standard-deviation rule, whereas O’Neal’s is close.  
 
These low free-throw percentages spawned an opposing-team strategy of purposely and repeatedly 
fouling such players (e.g., the “Hack-a-Shaq” defense). Like an intentional walk in baseball, such a 
strategy automatically sent the player to the line to shoot free throws. Drummond once shot 36 free 
throws in a game, making 13, and O’Neal once shot 39 in a playoff game, making 18. In a league that 
has long-averaged ~1.1 points per possession, repeatedly giving 2 free throws to either player 
equated to strong defense, in expectation. In other words, their free-throw shooting was a problem 
for their respective teams. Be that as it may, O’Neal called the underhand free throw a “shot for 
sissies.” For his part, Drummond tweeted, “Let me make this clear…. I’m not shooting free throws 
underhand.” One might gather from this anecdote that certain players don’t care about certain 
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important performance aspects. However, Drummond surely cares a great deal about his free-
throw shooting, even going so far as to change his primary shooting hand, first in practice and then 
in games, in the middle of his NBA career. But he simply would not shoot underhanded. In a similar 
vein, NBA players shooting corner three-point attempts hit the front of the rim twice as often as 
they hit the side of the backboard. Given that the latter outcome is associated with novice shooting, 
players tend to err disproportionately in the other direction, decreasing their overall accuracy on 
the shot [9]. These examples suggest that professional athletes prefer to “keep up appearances” in 
playing style, even at the ironic cost of performance decrements. Herein, we test whether this 
behavior applies to penalty kicks in the beautiful game. 
 
2. Methods 
We study the spatial allocation of penalty kicks first game-theoretically, within a pair of modelled 
games — one classical and the other a statistical game of chance — and then by analyzing a large 
sample of professional PK-attempts empirically. In the game-theoretic analysis, we solve each game 
to develop empirical predictions of PK-shot location distribution. For the complementary empirical 
analysis, we use linear, polynomial, and ML-regularized Lasso regression models to further 
estimate properties of the observed PK shot-location distribution. As in Almeida et al. (2016) [10], 
we divide the goal-face planar-region into 8 partitions in the empirical analysis, to track shot-
locations as the ball crosses or nearly crosses. The partition space is represented as , 
where each partition represents one-eighth of the total goal area (4 ft x 6 ft = 24 ft2 per partition; 8 
ft x 24 ft = 192 ft2 for the total). Facing the goal and moving clockwise, from the top-left partition, 
we call these: {Top Left, Top Middle Left, Top Middle Right, Top Right, Bottom Right, Bottom Middle 
Right, Bottom Middle Left, Bottom Left}. Off-target penalty shots in the data are pinned to the 
Euclidean-nearest partition as being the shooter’s intended target. Moreover, professional shooters 
are taken as sufficiently skilled to always shoot to or nearest to their intended partition. With this 
spatial set-up, we study the relationship between shot-volume-to-partition and partition-
conditional conversion-rate across penalty-shot partitions, for all (n = 536) penalty kicks in the 
men’s  2015-2020 UEFA Champions and Europa Leagues, the most elite levels of international club 
football in Europe. 
 
3. Results 

3.1 Classical Game-Theoretic Model: PK-Attempt as a Classical Game between PK-
Taker and Goalkeeper  
We first consider a discrete, constant-sum, one-shot penalty-kick game between two players: 
penalty-taker (𝑇𝑇) and goalkeeper (𝐺𝐺), or  𝑁𝑁 = {𝑇𝑇, 𝐺𝐺}. For expositional purposes, and unlike the 
empirical section to follow, we restrict or simplify the game-theoretic strategy sets for each player 
to an essential difference in shot locations: center partition or corner partition. The empirical 
analysis will simultaneously consider the decision between top and bottom partition. It can be 
easily verified that the succeeding results are not unique to this strategy set restriction. We 
represent 𝑇𝑇’s strategy set as 𝑆𝑆𝑇𝑇  =  {𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶}. That is, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇 can either 
shoot to the center or shoot to the corner. For 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺, the strategy set is 𝑆𝑆𝐺𝐺 =
{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶}. The payoff to 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇, 𝜋𝜋𝑇𝑇, is the conversion rate, whereas the payoff 
to 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺, 𝜋𝜋𝐺𝐺 , is the non-conversion rate or the complement of the conversion rate. For the game, 
we select conversion rates that are ordinally consistent with the underlying PK-data, such that any 
equilibria found are qualitatively consistent with subsequent empirical equilibria. For a given 
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strategy profile or game trial (e.g., 𝑺𝑺 = {𝑆𝑆𝑇𝑇, 𝑆𝑆𝐺𝐺} = {𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶}), then, we have 
that 𝜋𝜋𝑇𝑇 = 1 − 𝜋𝜋𝐺𝐺 . Lastly, the set of strategy profiles is simply the Cartesian product 𝑆𝑆𝐺𝐺𝑥𝑥𝑆𝑆𝑇𝑇 such that 
there are (2 ⋅ 2) or 4 possible strategy profiles in the game. The following normal-form game 
representation of Table 1 summarizes payoffs and conditional best-response strategies in the game.  

Table 1: Normal Form Representation of PK-game between PK-Taker and Goalkeeper 

 

Table 1 verifies, via expositional best-response arrows, that a pure strategy Nash equilibrium does 
not exist in the game. In A Course in Game Theory (MIT, 1994 [11]), Osborne and Rubinstein provide 
an essential definition of a Nash equilibrium as a point or strategy profile in a non-cooperative 
game at which no player can gain from unilateral deviation of strategy. Alternatively, a Nash 
equilibrium is a point or strategy profile of mutual best response. In the above normal-form game, 
each cell is a strategy profile. A pure strategy Nash equilibrium, then, is a cell for which all best-
response arrows point toward that cell. It is straightforward to see that no such strategy profile 
exists in the above game. Of course, Nash (1950 [12]) proved in his seminal paper on non-
cooperative game solutions that at least one (Nash) equilibrium must exist in pure or mixed 
strategy, a result that he developed from the generalized fixed-point theorem of Kakutani (1941 
[13]). The implication of this result herein is that the present game possesses a mixed strategy Nash 
equilibrium (msNe). The present game is a form of mixed coordination game, whereby 𝑇𝑇 would like 
to avoid coordinating on shot location, and 𝐺𝐺 would like to coordinate on shot location. It is typical 
for coordination games to have msNe solutions, as such games lack a focal point. Robustly, a msNe 
emerges given both expected payoff-maximizing players and given “minimax players,” or players 
who minimize their opponent’s maximum score. Under fixed-sum games such as this, it is a general 
result that the same msNe emerges whether players are payoff-maximizing or “maximin” in their 
objectives.  
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We solve for the msNe as the likelihood (𝑝𝑝𝑡𝑡∗)  that 𝑇𝑇 chooses 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and the likelihood (𝑞𝑞𝐺𝐺∗ ) 
𝐺𝐺 chooses 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Of course, these likelihoods imply their respective complements: the 
likelihood (1 − 𝑝𝑝𝑡𝑡∗) that 𝑇𝑇 will choose 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and the likelihood (1 − 𝑞𝑞𝐺𝐺∗ ) that 𝐺𝐺 will choose 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Then, a 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is a set of probability allocations, {𝑝𝑝𝑡𝑡∗, 𝑞𝑞𝐺𝐺∗ }, such that the opponent is left 
indifferent between her available strategies. That is, 𝑝𝑝𝑡𝑡∗ is the frequency of 𝑇𝑇 choosing 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
such that 𝐺𝐺 is indifferent on the margin between choosing 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 
Conversely, 𝑞𝑞𝐺𝐺∗  is the frequency of 𝐺𝐺 choosing 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 such that 𝑇𝑇 is indifferent on the margin 
between choosing 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Formally, 
 
 
 𝑝𝑝𝑡𝑡∗ = {𝑝𝑝𝑡𝑡 ∈ [0,1]: 𝜋𝜋𝐺𝐺(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑝𝑝𝑡𝑡) = 𝜋𝜋𝐺𝐺(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑝𝑝𝑡𝑡)}                                                                   (1) 
 
and  
 
𝑞𝑞𝐺𝐺∗ = {𝑞𝑞𝐺𝐺 ∈ [0,1]: 𝜋𝜋𝑇𝑇(𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑞𝑞𝐺𝐺) = 𝜋𝜋𝑇𝑇(𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑞𝑞𝐺𝐺)}                                                             (2) 
 
 
As such, we use Table 1 to obtain 𝑝𝑝𝑡𝑡∗ as the solution to the equation: 
 
 7𝑝𝑝𝑡𝑡 + .1(1 − 𝑝𝑝𝑡𝑡) =  .1𝑝𝑝𝑡𝑡  +  .3(1 − 𝑝𝑝𝑡𝑡)                                                                                                                 (3)  
 
 
Then, 𝑝𝑝𝑡𝑡∗ = 1

4
  and  (1 − 𝑝𝑝𝑡𝑡∗) = 3

4
.  Similarly, we obtain 𝑞𝑞𝐺𝐺∗  as the solution to the equation: 

 
 
 3𝑞𝑞𝐺𝐺 + .9(1 − 𝑞𝑞𝐺𝐺) = .9𝑞𝑞𝐺𝐺 + .7(1 − 𝑞𝑞𝐺𝐺)                                                                                                                 (4) 
 
 
Then, 𝑞𝑞𝐺𝐺∗  = 1

4
 and (1 − 𝑞𝑞𝐺𝐺∗ ) = 3

4
 . Equilibrium payoffs are 𝜋𝜋𝑇𝑇∗ = 3

4
 and 𝜋𝜋𝐺𝐺∗ = 1

4
, which reflect the 

expectation of the observed shot conversion and miss rates (i.e., across all shot locations) under 
equilibrium. This corresponds closely to empirically-observed conversion-rates. It is a general 
result that a 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, when it exists, creates expected invariance between strategies. It does so 
because players forming a mixed strategy are more likely to choose a strategy that features a higher 
expected payoff for them. However, this reliance is anticipated and countered by the opponent until 
an equilibrium emerges. In this case, 𝐺𝐺 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 most often, in anticipation that 𝑇𝑇 will 
𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 most often. This drives down returns from 𝑇𝑇 choosing 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 to the point that 
expected return from 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are equalized, at  3

4
  in this case. This result is 

general to games with msNe and not specific to the payoff values selected herein. In fact, the result 
is definitionally-guaranteed under existence of a msNe. 
 
This classical game-theoretic analysis has shown that a msNE exists in the PK-game. As such, 
classical game-theory predicts for the PK-game that there is no expected correlation, positive or 
negative, between location-conditional shot-volume and conversion-rate in the game’s equilibrium. 
For the empirical section to follow, then, this game-theoretic finding predicts that, under optimal or 
equilibrium shot-location allocations, there will be no significant correlation in either direction 
between partition-level PK conversion-rate and partition-level PK shot-volume across any subsets 
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of the partitions. According to this theoretical result, any relationship between these variables will 
be driven away by strategic interaction if strategies are selected optimally.  

3.2 Alternative Theoretical Model: PK-Attempt as a Mixed (Continuous-Discrete) 
Statistical Game of Chance between PK-Taker and Nature 

From a cursory examination of the study data to be analyzed, there emerges evidence that 
goalkeepers do not directly influence shot conversion-rates to all partitions, or do so fairly 
homogeneously. For example, observed shots to the top-right partition are never saved in the data. 
They either are converted or miss the goal entirely. In this sense, the present 𝑃𝑃𝑃𝑃-game has 
properties of a statistical game of chance. Specifically, we can alternatively treat 𝑃𝑃𝑃𝑃-attempts as a 
game between the 𝑃𝑃𝑃𝑃-𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑇𝑇, and “𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛” or “𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,” 𝐶𝐶. That is, 𝑁𝑁 = {𝐶𝐶, 𝑇𝑇}. In this alternative 
game, 𝐶𝐶 first selects, from a continuous distribution, game conditions that influence the payoffs for 
different shot-location strategies by 𝑇𝑇. Observing each draw, T then selects a shot-location partition 
from the same discrete strategy set as in the classical game (i.e., 𝑆𝑆𝑇𝑇  = {𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,
𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶}). For example, the 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 expected conversion-rate of a Center shot and a Corner 
shot, respectively, are affected by 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 from game-to-game, such as by 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 presenting 𝑇𝑇 with 
different weather conditions and different goalkeepers. In the statistical game, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 also selects 
how effective that goalkeeper is on a given night. Let us assume that, for the representative 𝑇𝑇 in 
match 𝑖𝑖, 𝜋𝜋𝑇𝑇,𝑖𝑖(𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) ~ 𝑁𝑁(𝜇𝜇 =  0.8, 𝜎𝜎 = 0.05) and 𝜋𝜋𝑇𝑇,𝑖𝑖(𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) ~ 𝑁𝑁(𝜇𝜇 = 0.75, 𝜎𝜎 =
0.05), and that these two expected payoffs for match 𝑖𝑖 are independently drawn by 𝐶𝐶, according to 
the specified normal distributions, via the game/setting conditions selected by 𝐶𝐶. This 
independence assumption takes the conditions that influence shooting to the center as 
fundamentally different from those affecting shooting to the corner. For example, shooting to the 
corner relies heavily on (conditions to support) pinpoint accuracy, while shots to the center may 
rely more heavily on (conditions to support) a fast approach, a firm plant, and subsequent pace.  
 
We further assume 𝑇𝑇 has rational expectations as to how chance factors influence 𝑃𝑃𝑃𝑃 conversion-
rates at the shot level. That is, 𝑇𝑇 has informed, unbiased estimates of his or her shot-location and 
match conditional conversion-rates, 𝜋𝜋𝑇𝑇,𝑖𝑖(𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) and  𝜋𝜋𝑇𝑇,𝑖𝑖(𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), before taking a 
given 𝑃𝑃𝑃𝑃. Rational expectations is a microeconomic theory of decision-making that assumes agents 
use all available information to make unbiased predictions and optimal choices based on those 
predictions. It was developed by economists John Muth [14], Robert Lucas and Edward Prescott 
[15], and Thomas Sargent [16], where the latter three scholars won Nobel Prizes partly for 
contributions to the idea. Then, chance assigns location-conditional expected conversion-rates; 𝑇𝑇 
infers his or her match-conditional expected-payoff draws from observing conditions and the 
opposing goalkeeper, as well as from experience. Then, 𝑇𝑇 receives the pair of expected payoffs after 
they are drawn independently by 𝐶𝐶, and 𝑇𝑇 then selects and executes the highest expected payoff 
shot location for that shot attempt instance. We simulate these chance-based expected payoff pairs 
for 1 billion 𝑃𝑃𝑃𝑃 takes, finding that 𝑇𝑇 selects Shoot Corner approximately 0.76 proportion of the time 
in this game. That is, 𝜋𝜋𝑇𝑇,𝑖𝑖(𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) > 𝜋𝜋𝑇𝑇,𝑖𝑖(𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), with likelihood 0.76 across 
simulated match draws. This implies that 𝑇𝑇 selects 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 with likelihood (1 − 0.76)  =
 0.24. Though only calibrated with respect to the data and not with respect to the previous classical 
game-theoretic setting, it is interesting to note that these shot-volume likelihoods match closely to 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 likelihoods of shooting corner and shooting center for 𝑇𝑇. Moreover, 𝜋𝜋𝑇𝑇,𝑖𝑖(𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) =
0.80000002, as close to expected in the simulation, whereas 𝜋𝜋𝑇𝑇,𝑖𝑖(𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 0.7500023, as 
also close to expected.  
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However, we are not interested in the overall conversion-rates for these shot-locations but the 
simulated location-dependent conversion-rate when the 𝑃𝑃𝑃𝑃 is actually shot to that location (i.e., 
when that location has the higher expected value such that it is the revealed or optimal shot 
location). The former rates are never observed, whereas the latter are. This is because 𝑃𝑃𝑃𝑃-takers in 
the game only shoot to the optimal location for that shot (i.e., under the conditions drawn by 
chance). That is, we only observe conversion-rates at locations when those locations are optimal 
and, therefore, chosen for that trial. We find the latter observed/optimal conversion-rates within 
the statistical game to be 𝜋𝜋𝑇𝑇,𝑖𝑖

∗ (𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 0.814, as close to expected, in the simulation, 
whereas 𝜋𝜋𝑇𝑇,𝑖𝑖

∗ (𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 0.796. When observed, Corner shots are converted at an 
equilibrium rate of 81.4% when taken in the statistical game; Center shots are converted at an 
observed equilibrium rate of 79.6% when taken. Figure 1 represents the game in extensive, or 
game-tree, form.  
 
Figure 1: PK Statistical Game in Extensive Form 

 
 
 
A game tree is a directed graph, where the parent node initializes the game, subsequent child nodes 
represent each possible game state, and terminal nodes represent outcomes. Edges from a given 
node represent possible actions from that node. In this case, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 chooses either the Center shot 
to be optimal for the shooter ((1 − 𝑝𝑝∗) ≈  0.24) or the Corner shot to be optimal (𝑝𝑝∗ ≈  0.76). Then, 
the payoff-maximizing player selects either to 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 or 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 given 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛’𝑠𝑠 draws 
for that trial. Blue paths from initial to terminal node represent the two possible equilibria for a 
given trial conditional on 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛’𝑠𝑠 draws for that trial.  
 
From the statistical game results, there is a clear, positive correlation between location-conditional 
conversion-rate and shot-location in the aggregate data of the statistical game of chance simulation, 
whereby the 0.814 equilibrium conversion-rate location (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) is targeted with likelihood 0.76, 
and the 0.796 equilibrium conversion-rate location (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) is targeted with likelihood 0.24 
(across 𝑛𝑛 = 1 billion simulated 𝑃𝑃𝑃𝑃-shots).  
 
Over this big-data simulation sample, we find a positive relationship between equilibrium shot-
location frequency and equilibrium location-dependent conversion-rate. Simulated 𝑃𝑃𝑃𝑃-shots were 
roughly thrice as likely to go to the relatively high equilibrium conversion-rate location in the game. 
Given that the simulation sample size is asymptotically large, we could take the relationship as 
significant on faith. To test for the relationship, however, we also create a sampling distribution of 
𝑃𝑃𝑃𝑃-simulations in 𝑅𝑅. We do so by resampling on the simulation code to form 100 samples, each 
with 100 independent statistical 𝑃𝑃𝑃𝑃-game trials. Each trial has the same underlying properties as in 
the previous-simulated statistical game of chance. For each sample, we obtain mean (equilibrium) 
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conversion-rate for Corner shots when chosen, mean (equilibrium) conversion-rate for Center 
shots when chosen, proportional volume of Corner shots, and proportional volume of Center shots. 
This gives us 2 𝑥𝑥 100 or 200 sample-statistic data-pairs of (shot-volume to location, conversion-rate 
at location when chosen). Figure 2 presents the game-generating PK-simulation and resampling 
code in 𝑅𝑅.  
 
Figure 2: Statistical PK-Game of Chance Simulation and Resampling Code 

 
 
 
From the 200 sample-statistic data-pairs generated, we obtain a 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 correlation coefficient 
between location-dependent volume and location-dependent conversion-rate of +0.729, and this is 
significant at extremely small 𝛼𝛼-levels (e.g., at the 𝛼𝛼 = 0.000000000000001 significance level). 
With very high confidence, the statistical game of chance predicts a positive relationship between 
location-dependent volume and location-dependent conversion-rate in the empirical data. This 
theoretical result follows the basketball shot-location distributional results of Ehrlich and Sanders 
(MIT SSAC, 2024,[17]), who find moderate, significant, positive correlation between location-
conditional NBA team-season shot-volume and expected points from 2016-2022.   
 
Let us recap our two main theoretical findings. Under mixed-strategy Nash equilibrium, there is no 
expected relationship between location-conditional conversion-rate and shot-volume (0 
correlation), consistent with the general properties of a msNe. Under big-data simulation of a 
statistical game of chance, we find an equilibrium correlation of +0.729. While these theoretical 
findings are distinct, we can form a mutually consistent theoretical prediction from the intersection 
of their complements. Namely:  
 
𝐻𝐻0: If agents are optimizing according to any one or both of these games, we expect a non-negative 
correlation between location-conditional conversion-rate and shot-volume across all partition subsets.  
 
Under msNe, we expect no correlation between volume and conversion-rate for any subset of the 
partitions. Under the statistical game equilibrium, we expect a positive correlation for all subsets of 
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the partitions. The intersection of the complement for these theoretical findings (i.e., that which we 
do not expect) is a negative correlation for some partition subset. We empirically test this 
theoretical prediction of non-negative correlation against a behavioral explanation. The stacked 
spatial heat map plots of Figure 3 represent GAM-estimated spatial heat maps of conversion rate 
and shot volume, respectively, estimated from the sample data at all locations across the goal space. 
The figure demonstrates a clear spatial contrast between conversion-rate and shot-volume. 
 
Figure 3: Stacked, Spatial Conversion-Rate and Shot-Volume Heat Maps 
 

 
Figure 3 provides fundamental information for our analysis. Moving vertically, conversion-rates 
rise, along a fixed x-location, from bottom-to-top in the first spatial heat map. However, shot-
volumes largely fall moving from bottom-to-top. This contrast is most evident in the shape of the 
color-based contours within the respective spatial plots of Figure 3. Whereas the contours of the 
top plot are distinctly concave down, forming an inverted U-shape, the color-based contours of the 
bottom plot are distinctly concave up, forming a standard U-shape.  

Each top partition is unequivocally riskier than its southern neighbor in the bottom-half of the goal. 
For example, top corner partitions each have 10 feet of post-or-crossbar borders versus 4 feet for 
bottom-corner partitions. Top-middle partitions each have 6 feet of post-or-crossbar borders 
versus 0 feet for bottom-middle partitions. Like bumpers in bowling, the ground acts as a guidance 
mechanism to potentially steer off-target bottom partition shots toward target. There is no such 
steering mechanism for top partition shots. Hence, it is more challenging in terms of placement to 
control top shots against borders as compared to bottom shots, ceteris paribus, or for a given fixed, 
partitioned range of x. Further, it is potentially more difficult to control top shots because they 
simultaneously require both substantial lift and placement, whereas bottom-partition shots depend 
more specifically on placement. The simultaneous challenge of lift and placement likely puts 
additional demands on the PK-taker, who is already dealing with increased post-or-crossbar 



 9 

border-lengths. While a well-placed top-partition shot can decrease the likelihood of a save, it is not 
a safe shot if a player wishes to appear as a “credible” on-target shooter.  

Indeed, we find from the data that the missed goal rate for top-partition PK shots is 12.88% in the 
data versus 2.48% for bottom partitioned goals. On the other hand, top-partition shots are saved 
5.30% of the time versus 23.51% of the time for bottom-partition shots. Top and bottom shots are 
fundamentally different. Therefore, we subset the partitions to find the correlation between shot-
volume and conversion-rate for a) the top and bottom corner partitions and b) the top and bottom 
middle partitions. That is, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝐴𝐴 =  {𝑇𝑇𝑇𝑇𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡} or   and 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝐵𝐵  =  {𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡} or . 
Under our theoretical findings, no observed correlations should be negative under equilibrium. For 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝐴𝐴, we obtain a correlation between volume and conversion-rate of (−0.749). For 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝐵𝐵, 
this correlation is  −0.997.  

We would like to verify whether these correlations are significantly negative. Unlike the regression 
data analysis to follow, which is at the shot-level (𝑛𝑛 = 536), this summary correlation analysis is at 
the partition-level, where there are a total of 8 partitions. Inferential significance testing at such a 
low sample size is noisy. Using custom resampling code in 𝑅𝑅 (see resampling. 𝑅𝑅 file in github), 
therefore, we 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 resample these correlations 30 times each. Bootstrap resampling is a 
leading statistical tool for inferential testing in empirical settings that lack either sample size, a 
counterfactual to the estimate obtained, or both. To do this we input each respective sample 
correlation coefficient estimate, 𝑟𝑟, along with its standard error (√��1 − 𝑟𝑟2�

𝑛𝑛−2
�). We then 𝑡𝑡-test the 

mean for each sampling distribution of resampled correlation values and find that the sampling 
distribution means are each significantly negative (e.g., at the 𝛼𝛼 = 0.001 level). The 𝑡𝑡-statistics for 
the respective tests are (−7.71) for Partition Subset A and (−10.85) for Partition Subset B. That is, 
we observe significant, negative correlation from top-to-bottom for both subsets, which provides 
strong evidence against either the classical or statistical game-theoretic equilibria holding globally, 
as these require non-negative correlation between any and all partition subsets. Then, there is 
strong preliminary evidence that behavioral factors are present, possibly with optimizing factors, in 
determining PK-shot location. Specifically, top shots are more likely to miss the goal-face entirely, 
and this appears to matter to PK-takers. Our regression and ML regularized Lasso models will 
further examine whether behavioral and optimizing factors matter to PK-takers conditional on one 
another. To understand this lack of correspondence, we first run the following shot-level model 
specifications given in (1) and (2):  

   (5)   

   (6) 

The variable expected off-target rate given not-converted at revealed bin represents the proportion 
of other shots to the observed partition that miss the goal given that they were not converted. This 
variable considers the relative manner in which shots to a given partition are not converted (i.e., 
proportion of times missed versus saved) and is a behavioral rather than an optimization variable. 
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It is behavioral, in the sense that the manner of not converting a PK-shot does not affect the match 
score. A miss and a save are equivalent in terms of match-score effect, at zero effect. Then, the 
materiality of the manner of a non-converted PK shot lies squarely in the optics of the shot. The 
variable expected conversion rate at revealed bin considers the conversion-rate for other shots to 
the observed partition and is an optimization variable in that it affects the match score. The variable 
expected conversion rate squared at revealed bin is the square of the conversion-rate for other shots 
to the observed partition. This is an optimization variable that allows for a non-linear relationship.  

These models are related to a rational expectations model in economics in their interpretation of 
decision-making. They each take the representative shooter as having an 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 rational 
expectation of the conversion-rate from locating the ball to each respective partition, 𝑥𝑥1,𝑖𝑖 in both 
models, as set by the conversion-rate of all other shots in the data located to that partition. The 
observed shot is left out of the PK-taker’s rational expectations forming information set to avoid 
endogenous outlook and estimation. The shooter also has an 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 likelihood of locating the ball 
to the 𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 chosen bin (i.e., a likelihood before the choice is made), 𝑦𝑦𝑖𝑖  or the dependent variable 
in both models, as per rational expectations according to the likelihood that other shots in the data 
were located to the ex post chosen bin. As such, the model considers whether a PK-taker having 
empirical rational expectations uses partition-dependent conversion-rate expectations to improve 
or even optimize the PK shot-location distribution across partitions. If the PK-taker behaves thus, 
there will be a non-negative relationship between expected conversion-rate and shot-frequency 
across partitions, as is derived and observed in the NBA shot chart analysis of Ehrlich and Sanders 
(MIT SSAC 2024, [17]). Alternatively, the shooter may consider behavioral factors, such as a priori 
expected off-target rate given the shot is not converted at revealed bin i, where this variable is set 
with rational expectations as the off-target rate for all other shots to or nearest that partition in the 
data that were not converted. Table 2 provides the results of estimating the linear (1) and 
polynomial (2) models using least squares. 

Table 2: Linear and Polynomial Regression Model Estimates, Locating PK-Shots 
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The models are highly-explanatory: Between 85.2% and 86.8% of the variation in PK-shot location 
volume is explained by expected conversion rate at location, expected conversion rate squared at 
location (Model 2), and expected off-target rate given not-converted at location. Each model 
coefficient is highly significant, suggesting that PK-shot locations are intentional and explainable at 
the top professional level. This intentionality does not reflect match score optimization alone, 
however. Both models show that players consider both optimization and behavioral factors when 
choosing a PK-shot location. The representative shooter locates the shot to a partition significantly 
more as the expected conversion rate at location rises but does so significantly less as the expected 
off-target rate given not-converted at location rises.  

This suggest that players are not pure optimizers but also consider the optics of missed shots, and 
this prevents either of the alternative theoretical equilibria from being obtained. This tradeoff 
between optimization and a behavioral utility for the optics of play also costs their teams expected 
goals. Model (2) provides equivalent results, both qualitatively and in statistical significance, and 
also presents evidence that the optimization relationship observed is non-linear. The coefficient on 
expected conversion rate at location attenuates in Model (2) with the inclusion of the quadratic 
term, but not much. A joint F-test also determines that Model (2) constitutes our best specification. 
Model (2) also suggests that PK-takers are risk averse, as their partition-dependent shot-volume 
increases at a decreasing rate in conversion-rate. As the purpose of a PK-attempt is to maximize 
expected goal (likelihood) directly, the presence of risk-aversion here represents another 
behavioral factor on the part of the PK-taker. This factor is akin to the seminal findings of [5] and 
[6] that NFL coaches are behaviorally risk-averse on fourth-down play-calls given that the objective 
of an American football game, like that of a soccer match, is to maximize point margin.   

To robustness check our results against multicollinearity, we also implement an ML-regularized 
Lasso regression estimation for the specification of Model (1) in R using the glmnet and 
selectiveInference packages. Regularization is a machine learning technique that reduces overfitting 
in estimation settings that feature multicollinearity. In a Lasso regression, the hyperparameter, 𝜆𝜆, 
balances the tradeoff between estimation bias and variance. At the best-fit hyperparameter, the ML 
regularized Lasso regression yields coefficients of 1.154 (expected conversion rate at location) and 
−0.387 (expected off-target rate given not-converted at location) with respective bootstrapped 
standard errors of 0.024 and 0.007. Therefore, both coefficients are significant and maintain the 
same sign as with the linear and polynomial regressions. Figure 4 provides the ML-regularized 
Lasso model fit at different tuning parameters, 𝜆𝜆.  This plot shows a low mean-squared error, 
especially at the best-fit model (0.0022). This indicates that the model provides close predictions of 
variation in shot-volume by partition given expected conversion-rate and expected miss rate.  
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Figure 4: ML regularized Lasso model fit at different tuning parameters, 𝝀𝝀 

 
 

Using this ML-technique, we have robustness checked our results against inferential noise from 
potential non-structural multicollinearity. We will now develop the analysis toward Figure 5, which 
considers a contour plot of indifference curves derived from the output of the original Model 1. 
Model (1) yields the following fitted regression model output:   

a priori likelihood shot located to revealed bini  =  −0.794 +  1.492 ⋅
expected conversion rate at revealed bini  –  0.477 ⋅  expected off target rate at revealed bini         (7) 

Recognizing that the expected off target rate is simply one minus the expected on-target rate, we 
transform the model as follows, such that we can plot indifference curves on a standard two-good 
Cartesian plane.  

a priori likelihood shot located to revealed bini  =  −0.794 +  1.492 ⋅
 expected conversion rate at revealed bini +  0.477 ⋅  expected on target rate at revealed bini        (8)  

To obtain sets of indifference curves from the latter equation, we simply fix 𝑦𝑦 to some arbitrary 
value, 𝑦𝑦0, and solve for one 𝑥𝑥 variable in terms of the other (i.e., solve for values of 𝑥𝑥1 and 𝑥𝑥2 along 
which 𝑦𝑦 is fixed at 𝑦𝑦0).  

                          y0  =  −0.794 +  1.492 ⋅  expected conversion rate at revealed bini                                          
+  0.477 ⋅  expected on target rate at revealed bini                                                                            (9) 
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                        expected on target rate at revealed bini  = y0−0.794−1.492⋅ expected conversion rate at revealed bini
0.477

     (10) 

We then change 𝑦𝑦0 arbitrarily within its possible range to obtain a family of indifference curves 
rendered in 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

Figure 5: Indifference Curves or Level Sets between expected conversion-rate at bin (x-axis) 
and expected on-target rate at bin (y-axis) 

                                       
 
 
This contour plot represents sets of indifference curves for PK-takers (i.e., sets of negatively-sloped 
(expected conversion-rate, expected on-target rate) tradeoff lines where the shooter is indifferent 
or equally probable to shoot along a given line). Importantly, these are revealed or regression 
estimate derived tradeoff lines. That is, they are based on the empirically-revealed shot-location 
preferences of shooters. The slope of any given indifference curve tells us the tradeoff rate for the 
representative shooter. The representative shooter would trade or give up a percentage point of 
conversion rate to raise his or her on-target rate by 3.12 percentage points with indifference 
according to Model 1. Conversely, the representative shooter would trade or give up a percentage 
point of on-target rate to increase his or her conversion rate by 0.32 percentage points with 
indifference according to Model 1. In other words, optimization utility is estimated to be 3.12 times 
as important to the representative PK-taker on the margin as is behavioral utility.   
 
IV. Conclusion 

For penalty kicks in soccer, the classical and statistical game-theoretic models predict a non-
negative relationship between goal area partition-conditional shot-volume and conversion-rate for 
a goal-optimizing penalty kick taker in soccer. However, we find a strong negative relationship 
between goal area partition subsets of the study data, which considers 536 penalty kicks from the 
2015-2020 UEFA Champions and Europa Leagues. The estimated indifference sets and the 

Expected on-target 
rate at bin 

Expected conversion-rate at bin 
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underlying inferential statistics of the linear, polynomial, and ML regularized Lasso regression 
models indicate that penalty-takers (significantly) value both conversion-rate and on-target rate 
when locating PK-shots. While partial optimizers, PK-takers in soccer deviate from optimal PK-
locating strategies in a manner that is consistent with the behavioral valuation of keeping up 
appearances of highly-skilled play, in this case by limiting the likelihood of missing the goal entirely. 
Optimization utility is estimated to be 3.12 times as important to the representative PK-taker on the 
margin as is behavioral utility. The models are highly explanatory, indicating that optimization and 
behavioral factors explain approximately 85.2% of PK-shot locating variation for top professional 
players. The negative estimated slope of the indifference sets provides visual evidence that players 
are revealed to value both conversion-rate and on-target rate. They trade-off between these 
interests when selecting penalty-shot locations. We conclude strong statistical evidence that 
suggests penalty-takers represent hybrid decision-makers: part rational-optimizers and part 
behavioral-agents seeking to keep up appearances of highly-skilled play.  

Our polynomial regression also suggests that PK-takers are risk averse, as their partition-
dependent shot-volume increases at a decreasing rate in conversion-rate. As the purpose of a PK-
attempt is to maximize expected goal (likelihood) directly, the presence of risk-aversion here 
represents another behavioral factor on the part of the PK-taker. This factor is akin to seminal 
findings that NFL coaches are behaviorally risk-averse on fourth-down play-calls given that the 
objective of an American football game, like that of a soccer match, is to maximize point margin.   
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