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1. Introduction

In soccer, penalty kicks (PKs) are taken with fair regularity (~ once in four matches [1]) and often
constitute high-leverage, or game-pivotal, events given the sport’s low-scoring nature. In a
tabulation of 294,970 international, professional league, and professional cup match results
recorded on footystats.org [2], we find that 1-0 and 1-1 are the most common professional full-time
match scorelines, occurring 17.9 and 11 percent of the time, respectively. These outcomes are
followed by 2-1 (8.5%) and 0-0 (7.7%). Across all recorded match outcomes, average full-time goals
per professional match are 2.85. In the 2022-23 EPL, matches averaged 0.26 PKs and 0.194 PK-
conversions, equivalent to about 6.8% of goals scored according to tabulations of data from
transfermarket.com [3]. In 2023-24, this percentage rose to 7.6% [4]. Herein, we examine whether
professional penalty-takers strictly optimize on expected conversion-rate when choosing shot-
location, or whether behavioral considerations, such as “looking credible” by not missing the goal-
space entirely, are also at play.

There is a famous sports adage that goes, “A win is a win.” Despite the popularity of the adage,
behavioral considerations often cloud player- and coaching-optimization in sport. Perceptions
cause NFL coaches to invoke sub-optimal play-calling [5], which is not fully explained by risk-
aversion [6]. Among others, notable NBA Centers Shaquille O'Neal (retired) and Andre Drummond
(active) vowed never to shoot free-throws underhanded, given the shot’s optics, despite
demonstrated associated improvements for large-handed players [7],[8]. Both players in fact rate
as abysmal free-throw shooters, with O’'Neal shooting 52.7% for his career, and Drummond
shooting 48.2%. By comparison, NBA players in 2023-24 averaged about 78.4% from the free
throw line, with a standard deviation from player-to-player of approximately 9 percentage points.
Therefore, the threshold for a negative outlier is 51.4%; Drummond’s free throw accuracy is
negatively-outlying by the 3 standard-deviation rule, whereas O’Neal’s is close.

These low free-throw percentages spawned an opposing-team strategy of purposely and repeatedly
fouling such players (e.g., the “Hack-a-Shaq” defense). Like an intentional walk in baseball, such a
strategy automatically sent the player to the line to shoot free throws. Drummond once shot 36 free
throws in a game, making 13, and O’Neal once shot 39 in a playoff game, making 18. In a league that
has long-averaged ~1.1 points per possession, repeatedly giving 2 free throws to either player
equated to strong defense, in expectation. In other words, their free-throw shooting was a problem
for their respective teams. Be that as it may, O’Neal called the underhand free throw a “shot for
sissies.” For his part, Drummond tweeted, “Let me make this clear.... I'm not shooting free throws
underhand.” One might gather from this anecdote that certain players don’t care about certain
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important performance aspects. However, Drummond surely cares a great deal about his free-
throw shooting, even going so far as to change his primary shooting hand, first in practice and then
in games, in the middle of his NBA career. But he simply would not shoot underhanded. In a similar
vein, NBA players shooting corner three-point attempts hit the front of the rim twice as often as
they hit the side of the backboard. Given that the latter outcome is associated with novice shooting,
players tend to err disproportionately in the other direction, decreasing their overall accuracy on
the shot [9]. These examples suggest that professional athletes prefer to “keep up appearances” in
playing style, even at the ironic cost of performance decrements. Herein, we test whether this
behavior applies to penalty kicks in the beautiful game.

2. Methods

We study the spatial allocation of penalty kicks first game-theoretically, within a pair of modelled
games — one classical and the other a statistical game of chance — and then by analyzing a large
sample of professional PK-attempts empirically. In the game-theoretic analysis, we solve each game
to develop empirical predictions of PK-shot location distribution. For the complementary empirical
analysis, we use linear, polynomial, and ML-regularized Lasso regression models to further
estimate properties of the observed PK shot-location distribution. As in Almeida et al. (2016) [10],
we divide the goal-face planar-region into 8 partitions in the empirical analysis, to track shot-
locations as the ball crosses or nearly crosses. The partition space is represented as BlF ™=,
where each partition represents one-eighth of the total goal area (4 ft x 6 ft = 24 ft2 per partition; 8
ft x 24 ft = 192 ft2 for the total). Facing the goal and moving clockwise, from the top-left partition,
we call these: {Top Left, Top Middle Left, Top Middle Right, Top Right, Bottom Right, Bottom Middle
Right, Bottom Middle Left, Bottom Left}. Off-target penalty shots in the data are pinned to the
Euclidean-nearest partition as being the shooter’s intended target. Moreover, professional shooters
are taken as sufficiently skilled to always shoot to or nearest to their intended partition. With this
spatial set-up, we study the relationship between shot-volume-to-partition and partition-
conditional conversion-rate across penalty-shot partitions, for all (n = 536) penalty kicks in the
men’s 2015-2020 UEFA Champions and Europa Leagues, the most elite levels of international club
football in Europe.

3. Results

3.1 Classical Game-Theoretic Model: PK-Attempt as a Classical Game between PK-
Taker and Goalkeeper

We first consider a discrete, constant-sum, one-shot penalty-kick game between two players:
penalty-taker (T) and goalkeeper (G), or N = {T, G}. For expositional purposes, and unlike the
empirical section to follow, we restrict or simplify the game-theoretic strategy sets for each player
to an essential difference in shot locations: center partition or corner partition. The empirical
analysis will simultaneously consider the decision between top and bottom partition. It can be
easily verified that the succeeding results are not unique to this strategy set restriction. We
represent T’s strategy set as St = {Shoot Center, Shoot Corner}. Thatis, Player T can either
shoot to the center or shoot to the corner. For Player G, the strategy setis S; =

{Stay Center, Dive Corner}. The payoffto Player T, mr, is the conversion rate, whereas the payoff
to Player G, mg, is the non-conversion rate or the complement of the conversion rate. For the game,
we select conversion rates that are ordinally consistent with the underlying PK-data, such that any
equilibria found are qualitatively consistent with subsequent empirical equilibria. For a given
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strategy profile or game trial (e.g., S = {St,S¢} = {Shooter Center, Stay Center}), then, we have
that my = 1 — m4;. Lastly, the set of strategy profiles is simply the Cartesian product S;xS; such that
there are (2 - 2) or 4 possible strategy profiles in the game. The following normal-form game
representation of Table 1 summarizes payoffs and conditional best-response strategies in the game.

Table 1: Normal Form Representation of PK-game between PK-Taker and Goalkeeper

Player GG

Player T
Stay Center | Dive Corner

Shoot Center ‘{—i L) TI—:J =)

Shoot Corner l{—’ =) lfl =

107 10/

*Arrows represent best response given opponent’s strategy.

Table 1 verifies, via expositional best-response arrows, that a pure strategy Nash equilibrium does
not exist in the game. In A Course in Game Theory (MIT, 1994 [11]), Osborne and Rubinstein provide
an essential definition of a Nash equilibrium as a point or strategy profile in a non-cooperative
game at which no player can gain from unilateral deviation of strategy. Alternatively, a Nash
equilibrium is a point or strategy profile of mutual best response. In the above normal-form game,
each cell is a strategy profile. A pure strategy Nash equilibrium, then, is a cell for which all best-
response arrows point toward that cell. It is straightforward to see that no such strategy profile
exists in the above game. Of course, Nash (1950 [12]) proved in his seminal paper on non-
cooperative game solutions that at least one (Nash) equilibrium must exist in pure or mixed
strategy, a result that he developed from the generalized fixed-point theorem of Kakutani (1941
[13]). The implication of this result herein is that the present game possesses a mixed strategy Nash
equilibrium (msNe). The present game is a form of mixed coordination game, whereby T would like
to avoid coordinating on shot location, and G would like to coordinate on shot location. It is typical
for coordination games to have msNe solutions, as such games lack a focal point. Robustly, a msNe
emerges given both expected payoff-maximizing players and given “minimax players,” or players
who minimize their opponent’s maximum score. Under fixed-sum games such as this, it is a general
result that the same msNe emerges whether players are payoff-maximizing or “maximin” in their
objectives.
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We solve for the msNe as the likelihood (p;) that T chooses Shoot Center and the likelihood (q;)

G chooses Stay Center. Of course, these likelihoods imply their respective complements: the
likelihood (1 — p¢) that T will choose Shoot Corner and the likelihood (1 — q¢) that G will choose
Dive Corner. Then, amsNe is a set of probability allocations, {p;, q;}, such that the opponent is left
indifferent between her available strategies. That is, p; is the frequency of T choosing Shoot Center
such that G is indifferent on the margin between choosing Stay Center and Dive Corner.
Conversely, g is the frequency of G choosing Stay Center such that T is indifferent on the margin
between choosing Shoot Center and Shoot Corner. Formally,

pi = {p: € [0,1]: m;(Stay Center|p;) = n;(Dive Corner|p:)} (1)
and
q¢ = {q¢ € [0,1]: mr(Shoot Center|qg) = mr(Shoot Corner|qg)} (2)

As such, we use Table 1 to obtain p; as the solution to the equation:

Tpe + 11 —py) = 1Aps + 3(1 —py) (3)

Then, p{ = % and (1 —-p{) = %‘ Similarly, we obtain g as the solution to the equation:

3q6¢ +.9(1 —q¢) = 996 +.7(1 — q¢) (4)

Then, q; = %and 1—-gqp) = %. Equilibrium payoffs are n7 = %and = %, which reflect the
expectation of the observed shot conversion and miss rates (i.e., across all shot locations) under
equilibrium. This corresponds closely to empirically-observed conversion-rates. It is a general
result that a msNe, when it exists, creates expected invariance between strategies. It does so
because players forming a mixed strategy are more likely to choose a strategy that features a higher
expected payoff for them. However, this reliance is anticipated and countered by the opponent until
an equilibrium emerges. In this case, G Dives Corner most often, in anticipation that T will

Shoot Corner most often. This drives down returns from T choosing Shoot Corner to the point that

expected return from Shoot Corner and Shoot Center are equalized, at % in this case. This result is

general to games with msNe and not specific to the payoff values selected herein. In fact, the result
is definitionally-guaranteed under existence of a msNe.

This classical game-theoretic analysis has shown that a msNE exists in the PK-game. As such,
classical game-theory predicts for the PK-game that there is no expected correlation, positive or
negative, between location-conditional shot-volume and conversion-rate in the game’s equilibrium.
For the empirical section to follow, then, this game-theoretic finding predicts that, under optimal or
equilibrium shot-location allocations, there will be no significant correlation in either direction
between partition-level PK conversion-rate and partition-level PK shot-volume across any subsets
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of the partitions. According to this theoretical result, any relationship between these variables will
be driven away by strategic interaction if strategies are selected optimally.

3.2 Alternative Theoretical Model: PK-Attempt as a Mixed (Continuous-Discrete)
Statistical Game of Chance between PK-Taker and Nature

From a cursory examination of the study data to be analyzed, there emerges evidence that
goalkeepers do not directly influence shot conversion-rates to all partitions, or do so fairly
homogeneously. For example, observed shots to the top-right partition are never saved in the data.
They either are converted or miss the goal entirely. In this sense, the present PK-game has
properties of a statistical game of chance. Specifically, we can alternatively treat PK-attempts as a
game between the PK-taker, T, and “nature” or “chance,” C. Thatis, N = {C, T}. In this alternative
game, C first selects, from a continuous distribution, game conditions that influence the payoffs for
different shot-location strategies by T. Observing each draw, T then selects a shot-location partition
from the same discrete strategy set as in the classical game (i.e., St = {Shoot Center,

Shoot Corner}). For example, the a priori expected conversion-rate of a Center shot and a Corner
shot, respectively, are affected by nature from game-to-game, such as by nature presenting T with
different weather conditions and different goalkeepers. In the statistical game, nature also selects
how effective that goalkeeper is on a given night. Let us assume that, for the representative T in
match i, y ;(Shoot Corner) ~ N(u = 0.8,0 = 0.05) and 7y ;(Shoot Center) ~ N(u = 0.75,0 =
0.05), and that these two expected payoffs for match i are independently drawn by C, according to
the specified normal distributions, via the game/setting conditions selected by C. This
independence assumption takes the conditions that influence shooting to the center as
fundamentally different from those affecting shooting to the corner. For example, shooting to the
corner relies heavily on (conditions to support) pinpoint accuracy, while shots to the center may
rely more heavily on (conditions to support) a fast approach, a firm plant, and subsequent pace.

We further assume T has rational expectations as to how chance factors influence PK conversion-
rates at the shot level. Thatis, T has informed, unbiased estimates of his or her shot-location and
match conditional conversion-rates, wr ;(Shoot Corner) and mr;(Shoot Center), before taking a
given PK. Rational expectations is a microeconomic theory of decision-making that assumes agents
use all available information to make unbiased predictions and optimal choices based on those
predictions. It was developed by economists John Muth [14], Robert Lucas and Edward Prescott
[15], and Thomas Sargent [16], where the latter three scholars won Nobel Prizes partly for
contributions to the idea. Then, chance assigns location-conditional expected conversion-rates; T
infers his or her match-conditional expected-payoff draws from observing conditions and the
opposing goalkeeper, as well as from experience. Then, T receives the pair of expected payoffs after
they are drawn independently by C, and T then selects and executes the highest expected payoff
shot location for that shot attempt instance. We simulate these chance-based expected payoff pairs
for 1 billion PK takes, finding that T selects Shoot Corner approximately 0.76 proportion of the time
in this game. That is, 7 ; (Shoot Corner) > mr ;(Shoot Center), with likelihood 0.76 across
simulated match draws. This implies that T selects Shoot Center with likelihood (1 — 0.76) =
0.24. Though only calibrated with respect to the data and not with respect to the previous classical
game-theoretic setting, it is interesting to note that these shot-volume likelihoods match closely to
msNe likelihoods of shooting corner and shooting center for T. Moreover, ry ;(Shoot Corner) =
0.80000002, as close to expected in the simulation, whereas rcT_i(Shoot Center) = 0.7500023, as
also close to expected.
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However, we are not interested in the overall conversion-rates for these shot-locations but the
simulated location-dependent conversion-rate when the PK is actually shot to that location (i.e.,
when that location has the higher expected value such that it is the revealed or optimal shot
location). The former rates are never observed, whereas the latter are. This is because PK-takers in
the game only shoot to the optimal location for that shot (i.e., under the conditions drawn by
chance). That is, we only observe conversion-rates at locations when those locations are optimal
and, therefore, chosen for that trial. We find the latter observed/optimal conversion-rates within
the statistical game to be n;_i(Shoot Corner) = 0.814, as close to expected, in the simulation,
whereas w7 ;(Shoot Center) = 0.796. When observed, Corner shots are converted at an
equilibrium rate of 81.4% when taken in the statistical game; Center shots are converted at an
observed equilibrium rate of 79.6% when taken. Figure 1 represents the game in extensive, or
game-tree, form.

Figure 1: PK Statistical Game in Extensive Form

Nature

.--"-‘c--‘"'-
Center Shot Optimal (1 - p) = 0.24— —Cgrner Shot Optimal (p = 0.76)
o i S
B ~—__ B
T - N
.n‘"f ™~
Center Shot f.'hlmp-_uf" orner Shot Chosen Center Shot Chose \wﬁllut Chosen
{_,,-f"
Elconversion rate) = (.79 E(conversion rate) < 0.796 E(conversion rate) < 0.814 E(conversion rate) = (.814

A game tree is a directed graph, where the parent node initializes the game, subsequent child nodes
represent each possible game state, and terminal nodes represent outcomes. Edges from a given
node represent possible actions from that node. In this case, nature chooses either the Center shot
to be optimal for the shooter ((1 — p*) = 0.24) or the Corner shot to be optimal (p* = 0.76). Then,
the payoff-maximizing player selects either to Shoot Corner or Shoot Center given nature’s draws
for that trial. Blue paths from initial to terminal node represent the two possible equilibria for a
given trial conditional on nature’s draws for that trial.

From the statistical game results, there is a clear, positive correlation between location-conditional
conversion-rate and shot-location in the aggregate data of the statistical game of chance simulation,
whereby the 0.814 equilibrium conversion-rate location (Corner) is targeted with likelihood 0.76,
and the 0.796 equilibrium conversion-rate location (Center) is targeted with likelihood 0.24
(across n = 1 billion simulated PK-shots).

Over this big-data simulation sample, we find a positive relationship between equilibrium shot-
location frequency and equilibrium location-dependent conversion-rate. Simulated PK-shots were
roughly thrice as likely to go to the relatively high equilibrium conversion-rate location in the game.
Given that the simulation sample size is asymptotically large, we could take the relationship as
significant on faith. To test for the relationship, however, we also create a sampling distribution of
PK-simulations in R. We do so by resampling on the simulation code to form 100 samples, each
with 100 independent statistical PK-game trials. Each trial has the same underlying properties as in
the previous-simulated statistical game of chance. For each sample, we obtain mean (equilibrium)
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conversion-rate for Corner shots when chosen, mean (equilibrium) conversion-rate for Center
shots when chosen, proportional volume of Corner shots, and proportional volume of Center shots.
This gives us 2 x 100 or 200 sample-statistic data-pairs of (shot-volume to location, conversion-rate
at location when chosen). Figure 2 presents the game-generating PK-simulation and resampling
code in R.

Figure 2: Statistical PK-Game of Chance Simulation and Resampling Code

Ar}

library(tidyverse)

tibble() -»> simulations
for(simumulation_instance in

a <- rnorm(100,0.8, )
b <- rnorm( 5 > )

sum(a>b)/length(a) -> volume_a
-volume_a->volume_b

mean(a)
mean(b)

library(tidyverse)
pk_data <- tibble(a,b)

pk_data %>% filter(a>b) %>% summarise(mean_a=mean(a)) %>% pull(mean_a) -> observed_conversion_rate_a
pk_data %>% filter(b>a) %>% summarise(mean_b=mean(b)) %>% pull(mean_b)-> observed_conversion_rate_b

simulations <- bind_rows(simulations, tibble(volume_a = volume_a, volume_b=volume_b,
observed_conversion_rate_a=observed_conversion_rate_a,observed conversion_rate_b=observed_conversion_rate_ b ))

}

simulations %>% write_csv(

From the 200 sample-statistic data-pairs generated, we obtain a Pearson correlation coefficient
between location-dependent volume and location-dependent conversion-rate of +0.729, and this is
significant at extremely small a-levels (e.g., at the @« = 0.000000000000001 significance level).
With very high confidence, the statistical game of chance predicts a positive relationship between
location-dependent volume and location-dependent conversion-rate in the empirical data. This
theoretical result follows the basketball shot-location distributional results of Ehrlich and Sanders
(MIT SSAC, 2024,[17]), who find moderate, significant, positive correlation between location-
conditional NBA team-season shot-volume and expected points from 2016-2022.

Let us recap our two main theoretical findings. Under mixed-strategy Nash equilibrium, there is no
expected relationship between location-conditional conversion-rate and shot-volume (0
correlation), consistent with the general properties of a msNe. Under big-data simulation of a
statistical game of chance, we find an equilibrium correlation of +0.729. While these theoretical
findings are distinct, we can form a mutually consistent theoretical prediction from the intersection
of their complements. Namely:

Hy: If agents are optimizing according to any one or both of these games, we expect a hon-negative
correlation between location-conditional conversion-rate and shot-volume across all partition subsets.

Under msNe, we expect no correlation between volume and conversion-rate for any subset of the
partitions. Under the statistical game equilibrium, we expect a positive correlation for all subsets of
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the partitions. The intersection of the complement for these theoretical findings (i.e., that which we
do not expect) is a negative correlation for some partition subset. We empirically test this
theoretical prediction of non-negative correlation against a behavioral explanation. The stacked
spatial heat map plots of Figure 3 represent GAM-estimated spatial heat maps of conversion rate
and shot volume, respectively, estimated from the sample data at all locations across the goal space.
The figure demonstrates a clear spatial contrast between conversion-rate and shot-volume.

Figure 3: Stacked, Spatial Conversion-Rate and Shot-Volume Heat Maps
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Figure 3 provides fundamental information for our analysis. Moving vertically, conversion-rates
rise, along a fixed x-location, from bottom-to-top in the first spatial heat map. However, shot-
volumes largely fall moving from bottom-to-top. This contrast is most evident in the shape of the
color-based contours within the respective spatial plots of Figure 3. Whereas the contours of the
top plot are distinctly concave down, forming an inverted U-shape, the color-based contours of the
bottom plot are distinctly concave up, forming a standard U-shape.

Each top partition is unequivocally riskier than its southern neighbor in the bottom-half of the goal.
For example, top corner partitions each have 10 feet of post-or-crossbar borders versus 4 feet for
bottom-corner partitions. Top-middle partitions each have 6 feet of post-or-crossbar borders
versus 0 feet for bottom-middle partitions. Like bumpers in bowling, the ground acts as a guidance
mechanism to potentially steer off-target bottom partition shots toward target. There is no such
steering mechanism for top partition shots. Hence, it is more challenging in terms of placement to
control top shots against borders as compared to bottom shots, ceteris paribus, or for a given fixed,
partitioned range of x. Further, it is potentially more difficult to control top shots because they
simultaneously require both substantial lift and placement, whereas bottom-partition shots depend
more specifically on placement. The simultaneous challenge of lift and placement likely puts
additional demands on the PK-taker, who is already dealing with increased post-or-crossbar
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border-lengths. While a well-placed top-partition shot can decrease the likelihood of a save, it is not
a safe shot if a player wishes to appear as a “credible” on-target shooter.

Indeed, we find from the data that the missed goal rate for top-partition PK shots is 12.88% in the
data versus 2.48% for bottom partitioned goals. On the other hand, top-partition shots are saved
5.30% of the time versus 23.51% of the time for bottom-partition shots. Top and bottom shots are
fundamentally different. Therefore, we subset the partitions to find the correlation between shot-
volume and conversion-rate for a) the top and bottom corner partitions and b) the top and bottom
middle partitions. That is, Subset, = {Top Left, Bottom Left, Top Right, Bottom Right} Or =™ g
Subsety = {Top Middle Left, Bottom Middle Left, Top Middle Right, Bottom Middle Right} or .
Under our theoretical findings, no observed correlations should be negative under equilibrium. For
Subset,, we obtain a correlation between volume and conversion-rate of (—0.749). For Subsetg,
this correlation is —0.997.

We would like to verify whether these correlations are significantly negative. Unlike the regression
data analysis to follow, which is at the shot-level (n = 536), this summary correlation analysis is at
the partition-level, where there are a total of 8 partitions. Inferential significance testing at such a
low sample size is noisy. Using custom resampling code in R (see resampling. R file in github),
therefore, we bootstrap resample these correlations 30 times each. Bootstrap resampling is a
leading statistical tool for inferential testing in empirical settings that lack either sample size, a
counterfactual to the estimate obtained, or both. To do this we input each respective sample

correlation coefficient estimate, 7, along with its standard error (v (%)) We then t-test the
mean for each sampling distribution of resampled correlation values and find that the sampling
distribution means are each significantly negative (e.g., at the @ = 0.001 level). The t-statistics for
the respective tests are (—7.71) for Partition Subset A and (—10.85) for Partition Subset B. That is,
we observe significant, negative correlation from top-to-bottom for both subsets, which provides
strong evidence against either the classical or statistical game-theoretic equilibria holding globally,
as these require non-negative correlation between any and all partition subsets. Then, there is
strong preliminary evidence that behavioral factors are present, possibly with optimizing factors, in
determining PK-shot location. Specifically, top shots are more likely to miss the goal-face entirely,
and this appears to matter to PK-takers. Our regression and ML regularized Lasso models will
further examine whether behavioral and optimizing factors matter to PK-takers conditional on one
another. To understand this lack of correspondence, we first run the following shot-level model
specifications given in (1) and (2):

likelihood shot located to revealed bin,=8; + 5,- expected conversion rate at re-
vealed bin; + 35+ expected off-target rate given not-converted at revealed bin; +¢; (5)

likelihood shot located to revealed bin;=/8p + 51- expected conversion rate at re-
vealed bin;+ 42 expected conversion rate squared at revealed bin; + f33- expected
off-target rate given not-converted at revealed bin;+e;

(6)

The variable expected off-target rate given not-converted at revealed bin represents the proportion
of other shots to the observed partition that miss the goal given that they were not converted. This
variable considers the relative manner in which shots to a given partition are not converted (i.e.,

proportion of times missed versus saved) and is a behavioral rather than an optimization variable.
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It is behavioral, in the sense that the manner of not converting a PK-shot does not affect the match
score. A miss and a save are equivalent in terms of match-score effect, at zero effect. Then, the
materiality of the manner of a non-converted PK shot lies squarely in the optics of the shot. The
variable expected conversion rate at revealed bin considers the conversion-rate for other shots to
the observed partition and is an optimization variable in that it affects the match score. The variable
expected conversion rate squared at revealed bin is the square of the conversion-rate for other shots
to the observed partition. This is an optimization variable that allows for a non-linear relationship.

These models are related to a rational expectations model in economics in their interpretation of
decision-making. They each take the representative shooter as having an a priori rational
expectation of the conversion-rate from locating the ball to each respective partition, x; ; in both
models, as set by the conversion-rate of all other shots in the data located to that partition. The
observed shot is left out of the PK-taker’s rational expectations forming information set to avoid
endogenous outlook and estimation. The shooter also has an a priori likelihood of locating the ball
to the ex post chosen bin (i.e., a likelihood before the choice is made), y; or the dependent variable
in both models, as per rational expectations according to the likelihood that other shots in the data
were located to the ex post chosen bin. As such, the model considers whether a PK-taker having
empirical rational expectations uses partition-dependent conversion-rate expectations to improve
or even optimize the PK shot-location distribution across partitions. If the PK-taker behaves thus,
there will be a non-negative relationship between expected conversion-rate and shot-frequency
across partitions, as is derived and observed in the NBA shot chart analysis of Ehrlich and Sanders
(MIT SSAC 2024, [17]). Alternatively, the shooter may consider behavioral factors, such as a priori
expected off-target rate given the shot is not converted at revealed bin i, where this variable is set
with rational expectations as the off-target rate for all other shots to or nearest that partition in the
data that were not converted. Table 2 provides the results of estimating the linear (1) and
polynomial (2) models using least squares.

Table 2: Linear and Polynomial Regression Model Estimates, Locating PK-Shots

Dependent variable:

likelihood shot located to revealed bin

(1) (2)

expected off-target rate given
not-converted at revealed bin —0.477** —0.445***

(0.009) (0.009)
expected conversion rate
at revealed bin 1.492%** 3.997

(0.034) (0.317)
(.‘X[Jl‘l:t(.‘[l (fUIl\'(.‘rHi(Jll rate :‘5(]1[&1['(3(1
at revealed bin —1.748***

(0.220)

Constant —0.794%** —1.687***

(0.024) (0.115)
Observations 536 536
R? 0.852 0.868
Adjusted R? 0.852 0.867
Residual Std. Error 0.047 (df = 533) 0.045 (df = 532)
F Statistic 1,539.231*** (df = 2; 533) 1.166.280*** (df = 3: 532)
Note: "p<0.1; **p<0.05; """ p<0.01
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The models are highly-explanatory: Between 85.2% and 86.8% of the variation in PK-shot location
volume is explained by expected conversion rate at location, expected conversion rate squared at
location (Model 2), and expected off-target rate given not-converted at location. Each model
coefficient is highly significant, suggesting that PK-shot locations are intentional and explainable at
the top professional level. This intentionality does not reflect match score optimization alone,
however. Both models show that players consider both optimization and behavioral factors when
choosing a PK-shot location. The representative shooter locates the shot to a partition significantly
more as the expected conversion rate at location rises but does so significantly less as the expected
off-target rate given not-converted at location rises.

This suggest that players are not pure optimizers but also consider the optics of missed shots, and
this prevents either of the alternative theoretical equilibria from being obtained. This tradeoff
between optimization and a behavioral utility for the optics of play also costs their teams expected
goals. Model (2) provides equivalent results, both qualitatively and in statistical significance, and
also presents evidence that the optimization relationship observed is non-linear. The coefficient on
expected conversion rate at location attenuates in Model (2) with the inclusion of the quadratic
term, but not much. A joint F-test also determines that Model (2) constitutes our best specification.
Model (2) also suggests that PK-takers are risk averse, as their partition-dependent shot-volume
increases at a decreasing rate in conversion-rate. As the purpose of a PK-attempt is to maximize
expected goal (likelihood) directly, the presence of risk-aversion here represents another
behavioral factor on the part of the PK-taker. This factor is akin to the seminal findings of [5] and
[6] that NFL coaches are behaviorally risk-averse on fourth-down play-calls given that the objective
of an American football game, like that of a soccer match, is to maximize point margin.

To robustness check our results against multicollinearity, we also implement an ML-regularized
Lasso regression estimation for the specification of Model (1) in R using the glmnet and
selectivelnference packages. Regularization is a machine learning technique that reduces overfitting
in estimation settings that feature multicollinearity. In a Lasso regression, the hyperparameter, A,
balances the tradeoff between estimation bias and variance. At the best-fit hyperparameter, the ML
regularized Lasso regression yields coefficients of 1.154 (expected conversion rate at location) and
—0.387 (expected off-target rate given not-converted at location) with respective bootstrapped
standard errors of 0.024 and 0.007. Therefore, both coefficients are significant and maintain the
same sign as with the linear and polynomial regressions. Figure 4 provides the ML-regularized
Lasso model fit at different tuning parameters, 1. This plot shows a low mean-squared error,
especially at the best-fit model (0.0022). This indicates that the model provides close predictions of
variation in shot-volume by partition given expected conversion-rate and expected miss rate.
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Figure 4: ML regularized Lasso model fit at different tuning parameters, 1
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Using this ML-technique, we have robustness checked our results against inferential noise from
potential non-structural multicollinearity. We will now develop the analysis toward Figure 5, which
considers a contour plot of indifference curves derived from the output of the original Model 1.
Model (1) yields the following fitted regression model output:

a priori likelihood shot located to revealed bin; = —0.794 + 1.492 -
expected conversion rate at revealed bin; - 0.477 - expected off target rate at revealed bin; (7)

Recognizing that the expected off target rate is simply one minus the expected on-target rate, we
transform the model as follows, such that we can plot indifference curves on a standard two-good
Cartesian plane.

a priori likelihood shot located to revealed bin; = —0.794 + 1.492 -
expected conversion rate at revealed bin; + 0.477 - expected on target rate at revealed bin; (8)

To obtain sets of indifference curves from the latter equation, we simply fix y to some arbitrary
value, y,, and solve for one x variable in terms of the other (i.e., solve for values of x; and x, along
which y is fixed at y,).

yo = —0.794 + 1.492 - expected conversion rate at revealed bin;
+ 0.477 - expected on target rate at revealed bin; 9
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. —0.794—1.492- expected conversion rate at revealed bin;
expected on target rate at revealed bin; = Yo P Ve L (10)

We then change y, arbitrarily within its possible range to obtain a family of indifference curves
rendered in Mathematica.

Figure 5: Indifference Curves or Level Sets between expected conversion-rate at bin (x-axis)
and expected on-target rate at bin (y-axis)
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This contour plot represents sets of indifference curves for PK-takers (i.e., sets of negatively-sloped
(expected conversion-rate, expected on-target rate) tradeoff lines where the shooter is indifferent
or equally probable to shoot along a given line). Importantly, these are revealed or regression
estimate derived tradeoff lines. That is, they are based on the empirically-revealed shot-location
preferences of shooters. The slope of any given indifference curve tells us the tradeoff rate for the
representative shooter. The representative shooter would trade or give up a percentage point of
conversion rate to raise his or her on-target rate by 3.12 percentage points with indifference
according to Model 1. Conversely, the representative shooter would trade or give up a percentage
point of on-target rate to increase his or her conversion rate by 0.32 percentage points with
indifference according to Model 1. In other words, optimization utility is estimated to be 3.12 times
as important to the representative PK-taker on the margin as is behavioral utility.

IV. Conclusion

For penalty kicks in soccer, the classical and statistical game-theoretic models predict a non-
negative relationship between goal area partition-conditional shot-volume and conversion-rate for
a goal-optimizing penalty kick taker in soccer. However, we find a strong negative relationship
between goal area partition subsets of the study data, which considers 536 penalty kicks from the
2015-2020 UEFA Champions and Europa Leagues. The estimated indifference sets and the
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underlying inferential statistics of the linear, polynomial, and ML regularized Lasso regression
models indicate that penalty-takers (significantly) value both conversion-rate and on-target rate
when locating PK-shots. While partial optimizers, PK-takers in soccer deviate from optimal PK-
locating strategies in a manner that is consistent with the behavioral valuation of keeping up
appearances of highly-skilled play, in this case by limiting the likelihood of missing the goal entirely.
Optimization utility is estimated to be 3.12 times as important to the representative PK-taker on the
margin as is behavioral utility. The models are highly explanatory, indicating that optimization and
behavioral factors explain approximately 85.2% of PK-shot locating variation for top professional
players. The negative estimated slope of the indifference sets provides visual evidence that players
are revealed to value both conversion-rate and on-target rate. They trade-off between these
interests when selecting penalty-shot locations. We conclude strong statistical evidence that
suggests penalty-takers represent hybrid decision-makers: part rational-optimizers and part
behavioral-agents seeking to keep up appearances of highly-skilled play.

Our polynomial regression also suggests that PK-takers are risk averse, as their partition-
dependent shot-volume increases at a decreasing rate in conversion-rate. As the purpose of a PK-
attempt is to maximize expected goal (likelihood) directly, the presence of risk-aversion here
represents another behavioral factor on the part of the PK-taker. This factor is akin to seminal
findings that NFL coaches are behaviorally risk-averse on fourth-down play-calls given that the
objective of an American football game, like that of a soccer match, is to maximize point margin.
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