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1. Introduction 
The intricate duel between pitcher and batter lies at the heart of baseball, where each pitch can 
significantly alter the trajectory of a game. Predicting the outcome of individual pitches is a 
fundamental challenge with profound implications for optimizing defensive alignments, pitch 
sequencing, and overall game strategy. Traditional analytical methods have predominantly relied 
on aggregate statistics or heuristic strategies, such as evaluating player-specific batting averages by 
pitch type or adhering to conventional pitching philosophies like "hard in, soft away" [10]. While 
these approaches offer some insights, they often lack the granularity and adaptability needed to 
capture the rich context and temporal dependencies inherent in sequences of pitches. 

Advancements in machine learning have opened new avenues for modeling baseball at a finer scale. 
By leveraging extensive play-by-play data, recent research has employed sophisticated models to 
predict outcomes and inform strategic decisions [2, 3, 9]. However, many of these approaches focus 
on modeling the game at the level of at-bats or use static player embeddings, which may not 
generalize well to unseen players or adapt quickly to changing game contexts. Models operating at 
the at-bat level are limited in providing actionable insights for individual pitches, thereby 
restricting their utility in real-time decision-making where pitch-by-pitch analysis is crucial. 

To address these limitations, we propose a novel transformer-based neural network model 
designed specifically for predicting the outcomes of individual pitches [4]. Our model captures 
intricate relationships within sequences of pitches by learning dependencies such as how previous 
pitches influence current outcomes and how batters' recent tendencies inform their likely 
responses. Unlike methods relying on static player embeddings or aggregate statistics, our 
approach is dynamic and adaptable, capable of learning general trends in pitch outcomes while 
applying to any player with sufficient pitch context. This adaptability enables real-time deployment 
and application to players beyond those included in the training data. 

Furthermore, our model not only predicts the result of a pitch but also forecasts the likely hit 
location should contact occur. This dual predictive capability provides comprehensive insights that 
can inform both pitching strategies and defensive alignments.  
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2. Related Work 
Baseball analytics has increasingly embraced advanced machine learning techniques to deepen the 
understanding and prediction of player performance and game outcomes. While traditional 
sabermetrics offer foundational metrics, recent research endeavors have aimed to capture the 
nuanced and contextual aspects of player actions through sophisticated modeling approaches. 

Heaton and Mitra have significantly contributed to this field through their application of 
transformer-based models to player performance prediction. In their 2021 study, "Using Machine 
Learning to Describe How Players Impact the Game in the MLB," they explored the use of machine 
learning for player description and game outcome forecasting [1]. Employing a transformer-based 
architecture inspired by Natural Language Processing and Computer Vision, they created 
embeddings that reflect a player's influence over sequences of plate appearances. These 
embeddings provided a nuanced understanding of player performance, differentiating between 
various impact factors such as pitch sequencing and situational performance, thereby enhancing 
predictive tasks like game outcome prediction. 

Building upon this foundation, their 2023 paper, "Learning Contextual Event Embeddings to Predict 
Player Performance in the MLB," introduced a transformer-based model that generates 64-
dimensional embeddings to capture a player's short-term and long-term impact on the game [2]. By 
leveraging detailed play-by-play data and integrating contextual information such as pitch type, 
location, and game state, their model moved beyond traditional counting statistics. This approach 
not only provided a more dynamic representation of player performance but also achieved 
competitive prediction accuracy with major sportsbooks, all while making a larger number of 
predictions. 

In a different vein, Melville et al. (2023) presented a distinct approach in their paper, "A Game 
Theoretical Approach to Optimal Pitch Sequencing" [3]. They modeled the pitcher-batter 
interaction as a zero-sum game, seeking equilibrium strategies that optimize pitch sequencing to 
minimize the expected run value. By exploring three different game models with varying levels of 
information available to the batter, they incorporated strategic decision-making into pitch 
selection. Their introduction of OptimusPitch, a recurrent neural network designed to predict pitch 
outcomes based on sequential pitch data, integrated game theory with machine learning to provide 
actionable insights for optimal pitch sequencing. 

3. Methods 
Building upon these foundations, our research introduces a transformer-based neural network 
specifically tailored for single-pitch outcome prediction. Unlike Heaton and Mitra’s broader player 
embedding models, our approach focuses on granular, real-time predictions of pitch outcomes by 
modeling sequences of 400 consecutive pitches. This fine-grained focus allows us to capture 
intricate temporal dependencies and contextual factors that influence each pitch’s outcome, while 
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providing actionable insights for immediate strategic optimizations such as pitch sequencing and 
defensive alignments. 

Moreover, while Melville et al. integrate game theory with recurrent neural networks to derive 
optimal pitching strategies, our model operates independently of a strategic game-theoretic 
framework. Instead, we prioritize enhancing predictive accuracy at the single-pitch level, enabling 
real-time decision-making without the need for equilibrium computations. This distinction allows 
our model to be more flexible and applicable in dynamic in-game scenarios where immediate pitch 
outcome predictions are crucial. 

3.1. Data 

The dataset for this study was sourced from the Statcast database and collected using the 
pybaseball Python package [5, 6]. It comprises pitch-by-pitch data from every Major League 
Baseball (MLB) game between 2015 and 2024. Data from 2015 to 2022 was utilized for model 
training and validation, while data from 2023 to 2024 was reserved for testing purposes. Each 
record in the dataset corresponds to a single pitch and includes detailed information about the 
pitch itself, its outcome, the players involved, and the game context. 

For the single-pitch prediction task, sequences of pitches were constructed as input to the model, 
where each pitch is represented by a combination of continuous and categorical features that 
describe various aspects of the pitch, its result, and the game state. The continuous features include 
measurements such as pitch velocity, spin rate, exit velocity, launch angle, hit coordinates, and 
release point coordinates. The categorical features encompass the pitch result, pitch type, hit 
location, game state (including ball count, strike count, out count, base occupancy, and inning 
number), batter and pitcher handedness, and zone location. Meta-information such as player names 
and game identifiers were used solely for constructing sequences and were not included in the 
model's input features. 

In preparing the data for modeling, continuous features were standardized to have zero mean and 
unit variance to ensure uniform scaling and facilitate model training. Categorical features were 
transformed using one-hot encoding, converting them into binary vector representations suitable 
for input into the neural network. To reduce sparsity and improve computational efficiency, rare 
pitch types (e.g., intentional walks) and uncommon events (e.g., pickoffs) were excluded from the 
dataset. Additionally, semantically similar outcomes, such as "Grounded into Double Play" and 
"Fielder's Choice," were consolidated under the "Field Out" category to streamline the classification 
task. 

Each pitch is thus represented as an 87-dimensional feature vector, encompassing all continuous 
features and the expanded categorical features after one-hot encoding (Figure 1). In addition, mask 
dimensions are added for features related to the outcome of a pitch, these dimensions will be 
detailed further in 3.4.2. Input to our single-pitch prediction transformer model is structured as a 
sequence of these pitch feature vectors. 
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Figure 1: Pitch Feature Vector 

3.2. Sequence Modeling 

To create pitch sequences, all pitches are grouped by batter and ordered chronologically by game 
date, at-bat number, and pitch number—reconstructing the temporal sequence of events. 
Sequences of 400 consecutive pitches are then extracted for each player using a sliding window 
with a one-pitch overlap. Window sizes of 200, 400, and 600 pitches were experimented with, with 
400 pitches performing the best based on validation accuracy and computational efficiency. Each 
sequence represents a single training example, with subsequent sequences shifting the window 
forward by one pitch. For instance, a batter with 401 pitches in their history yields two sequences: 
the first spanning pitches 1-400 and the second spanning pitches 2-401. 

3.3 Model Architecture 

The architecture of the model used in this research leverages transformer-based networks, a class 
of models widely used for processing sequential data due to their capacity to capture intricate 
dependencies between elements within a sequence. In this section, we provide a detailed overview 
of the transformer foundation and how it is adapted in our model to predict pitch outcomes with 
high precision. 

3.3.1 Transformer Fundamentals 

Transformers process sequences by employing a self-attention mechanism, which dynamically 
assigns weights to each element based on its importance relative to others in the sequence. This 
capability enables the model to focus on critical interactions across pitches, regardless of their 
position within the sequence. To encode the sequential order of the data, transformers utilize 
positional encodings, which provide information about the temporal structure of the input. This 
architecture has proven highly efficient, especially when handling long sequences, due to its ability 
to process data in parallel [4]. 

3.3.2 Single-Pitch Prediction Transformer 

Our model builds on this foundation, specifically tailoring the transformer architecture to perform 
single-pitch result prediction. Each input sequence consists of 400 consecutive pitches, with each 
pitch represented as an 87-dimensional vector. The initial step in the model pipeline involves 
projecting the input vectors into a higher-dimensional space using a linear embedding layer. This 
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transformation produces rich feature representations, enhancing the model’s ability to learn 
complex relationships. 

To incorporate positional information into the sequence, sinusoidal positional encodings are added 
to the embedded features [4]. This step ensures that the model recognizes the order of pitches 
within the sequence, which is critical for capturing temporal dependencies. 

The core of the architecture consists of a 12-layer transformer encoder (Figure 2). Each layer 
integrates multi-head self-attention mechanisms and feedforward neural networks. The self-
attention mechanism allows the model to weigh the relevance of different pitches in the sequence, 
identifying patterns and dependencies that span multiple games or player interactions. Residual 
connections and layer normalization are incorporated into each layer to stabilize training and 
facilitate gradient flow [4]. 

A distinctive feature of the model is its handling of the final pitch in the sequence. While the 
transformer encoder processes the entire sequence, the original features of the last pitch are 
retained and passed through a linear transformation. This transformed representation is then 
concatenated with the encoder’s output for the final pitch. This residual connection ensures that 
critical information about the last pitch is preserved, complementing the contextual embeddings 
generated by the encoder. 

The concatenated features are passed through two fully connected layers with ReLU activations, 
refining the combined representation and producing the final predictions. In total, our model uses 
roughly 800,000 parameters. The model outputs a 24-dimensional vector, representing predictions 
for multiple tasks. Among these, two primary tasks are the prediction of pitch results and hit 
locations, both modeled as probability distributions. The pitch result is captured by a 10-class 
distribution, encompassing outcomes such as strikes, balls, singles, and home runs. Similarly, the hit 
location prediction includes nine classes, corresponding to fielder positions such as left field, 
shortstop, and right field. 

The remaining dimensions of the output vector correspond to predictions for several continuous 
features, such as launch angle, exit velocity, and hit coordinates. These continuous predictions were 
included as part of the model's multi-task learning framework, designed to improve the overall 
performance by encouraging the model to learn a broader set of interdependent tasks. However, 
upon evaluation, the predictions for these continuous features were found to be less accurate and 
ultimately not useful for practical applications. As a result, they are not utilized in the final model 
outputs or downstream analyses, though their inclusion during training may have contributed to 
the model's generalization capabilities. 
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Figure 2: Single-Pitch Prediction Transformer Architecture 

3.4 Model Training 

The model training process leverages a multi-task learning framework to predict both categorical 
and continuous features of pitch outcomes [11]. This framework enables the model to learn 
representations for multiple related tasks simultaneously, enhancing its understanding of baseball 
dynamics and supporting accurate single-pitch prediction. 
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3.4.1 Single Pitch Prediction 

Single pitch prediction refers to the model’s ability to infer the outcome of a single pitch within a 
sequence, specifically the final pitch of a 400-pitch sequence. The task involves predicting the true 
values of continuous result features like launch angle and exit velocity and generating probability 
distributions for two key outcome dimensions: pitch result (e.g., strike, ball, single) and hit location 
(e.g., shortstop, center field). These predictions rely on the observed characteristics of the pitch 
itself, and the context provided by preceding pitches in the sequence. 

3.4.2 Sub-Token Masking 

To allow for single pitch prediction during training and inference, the model applies sub-token 
masking to the final pitch in each sequence. This process selectively obscures outcome-related 
features while preserving observable characteristics of the pitch, ensuring the model cannot 
directly access the true result. 

● Masked Features: Outcome dimensions such as pitch result, hit location, launch speed, and 
hit coordinates are masked. For continuous features, the true values are replaced with their 
global mean values. For categorical features, the true value in the one-hot encoding is set to 
zero, and a "masked" dimension is activated to signal that the feature must be inferred. 

● Unmasked Features: Pitch-specific characteristics, including velocity, spin rate, and 
release point, remain unmasked. These features reflect real-world information available 
during a game and provide the foundation for outcome predictions. 

By leveraging sub-token masking, the model learns to infer unknown outcomes based on both the 
observable features of the final pitch and its surrounding context within the sequence. 

3.4.3 Loss Function 

 The multi-task loss function combines objectives for categorical and continuous predictions, 
reflecting the dual nature of the model's learning goals. The total loss is defined as: 

𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  0.7(𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 +  𝐿𝐿𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 )  +  0.3𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

where: 

● 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 and 𝐿𝐿𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻: Cross-entropy losses for categorical predictions [12]. These 
dominate the total loss, emphasizing the importance of accurate pitch result and hit location 
predictions. 

● 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: Mean squared error (MSE) loss for continuous predictions, such as launch 
speed and hit coordinates [13]. These auxiliary dimensions enrich the model’s 
understanding without detracting from the primary objectives. 
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The loss function prioritizes categorical predictions, ensuring the model excels at the core single-
pitch prediction tasks. The auxiliary continuous losses act as supplemental learning signals, 
improving the model’s representation of pitch dynamics. 

3.4.4 Training Procedure 

The model is trained on sequences of 400 pitches constructed from MLB games spanning 2015 to 
2022. For each sequence, the final pitch serves as the target for single-pitch prediction. Outcome 
features for the final pitch are masked, and the model learns to predict these masked values using 
the observed features of the pitch and the broader sequence context. By minimizing the multi-task 
loss, the model refines its ability to make accurate single-pitch predictions while generalizing 
effectively to new scenarios. 

4. Results 

This section presents a comprehensive evaluation of our transformer-based model's performance 
in predicting pitch outcomes and optimizing pitch sequencing strategies. We compare our model 
against two baselines: a historical average baseline and an XGBoost model trained on the same pre-
2023 data. The evaluations focus on the models' abilities to rank probable outcomes effectively 
despite inherent class imbalances, adapt to different player types with distinct hitting tendencies, 
and identify optimal pitches in specific game scenarios. 

We begin by describing the models used in the evaluation: 

Historical Average Baseline: This baseline computes the mean distribution of pitch outcomes 
using data from the 2022 season and predicts this same distribution for every pitch in the 2023 
season. It serves as a naive benchmark, lacking adaptability to specific game contexts or player 
tendencies. 

XGBoost Model: An XGBoost classifier is trained on the same feature set used for the transformer 
model but operates on individual pitches without sequential context. XGBoost is known for its 
effectiveness in handling structured data and capturing nonlinear relationships, providing a robust 
baseline for comparison [14]. 

Transformer-Based Model: Our proposed model utilizes sequences of 400 pitches to predict 
single-pitch outcomes, leveraging its ability to model sequential dependencies and contextual 
nuances within the game. By incorporating the sequential nature of baseball events, the 
transformer model aims to provide more accurate and context-sensitive predictions. 

The following subsections detail the evaluation of these models using top-k precision metrics, 
demonstrate the transformer model's adaptability through player-specific analyses, and illustrate 
its practical utility with an optimal pitch selection framework applied in a case study. 
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4.1 Top-K Precision Metrics 

To evaluate the models' abilities to prioritize the most probable and strategically significant 
outcomes, we employed top-k precision metrics, focusing specifically on top-4 precision. This 
metric assesses the proportion of times the true outcome is among the top-k predicted probabilities 
for each pitch, providing insights into the models' effectiveness in ranking likely outcomes. 

4.1.1 Rationale for Choosing Top-4 Precision 

The choice of k = 4 is motivated by the class imbalance inherent in baseball pitch outcomes. Since 
events like 'Ball' and 'Strike' dominate, traditional accuracy metrics do not adequately capture the 
models' performance on less frequent but crucial events. By considering the top four predicted 
outcomes, we ensure that both common and significant rare events are included, providing a 
balanced evaluation of the models' predictive capabilities. 

4.1.2 Results 

For each pitch in the 2023 season test set, each model generated a probability distribution over 
possible pitch outcomes and hit locations. The top four outcomes with the highest predicted 
probabilities were selected as the model's predictions for that pitch. The top-4 precision for each 
outcome class was then calculated as the proportion of times the true outcome appeared within the 
model's top four predictions. The historical average baseline in this case makes predictions by 
randomly sampling 4 events using the historical distribution from the 2022 season. The top-4 
precision metrics for each model can be seen in Tables 1 and 2. 

Outcome 
Historical 
Average 

XGBoost 
Baseline 

Transformer 
Model 

Ball 0.96 0.99 0.99 

Strike 0.96 0.99 0.99 

Double 0.13 0.3 0.43 

Field Out 0.76 0.99 0.99 

Hit by Pitch 0.02 0.95 0.96 

Home Run 0.09 0.23 0.34 

Single 0.35 0.86 0.97 

Strikeout 0.48 0.99 0.99 

Triple 0 0 0 

Walk 0.2 0.99 0.99 

Table 1: Top-4 Precisions for Pitch Outcomes 
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For common outcomes such as 'Ball' and 'Strike', both the transformer and XGBoost models 
achieved exceptionally high top-4 precision scores, exceeding 99%. The randomized baseline 
performed significantly worse, highlighting the importance of model-driven predictions over naive 
approaches. 

For less frequent but strategically important outcomes, the transformer model demonstrated a 
notable advantage. For 'Single', the transformer achieved a top-4 precision of 97%, outperforming 
the XGBoost model's 86% and the randomized baseline's 35%. Similarly, for 'Double' and 'Home 
Run', the transformer model achieved precisions of 43% and 34%, respectively, compared to 30% 
and 23% for XGBoost, and substantially lower scores for the randomized baseline. 

Hit Location 
Historical 
Average 

XGBoost 
Baseline 

Transformer 
Model 

Pitcher 0.13 0.05 0.14 

Catcher 0.04 0.06 0.12 

First Base 0.24 0.31 0.32 

Second Base 0.38 0.45 0.53 

Third Base 0.32 0.51 0.52 

Shortstop 0.41 0.56 0.6 

Left Field 0.47 0.77 0.78 

Center Field 0.51 0.83 0.83 

Right Field 0.48 0.76 0.73 

Table 2: Top-4 Precisions for Hit Locations 

For positions like 'Shortstop', 'Second Base', and 'Third Base', the transformer model achieves top-4 
precisions of 60%, 53%, and 52%, respectively. These are higher than the XGBoost model's scores 
of 56%, 45%, and 51%, and significantly exceed the historical baseline's scores. Accurate 
predictions in these positions are vital for infield defensive alignments and can influence decisions 
on player positioning and shifts. 

The transformer model also performs well in predicting hits to outfield positions. It achieves top-4 
precisions of 78% for 'Left Field', 83% for 'Center Field', and 73% for 'Right Field'. These scores are 
comparable to or slightly lower than the XGBoost model's scores for 'Center Field' and 'Right Field' 
but still represent strong predictive performance. The historical baseline lags behind, highlighting 
the advantage of the transformer model in leveraging contextual information. 

For less common hit locations like 'Pitcher' and 'Catcher', the transformer model shows a significant 
improvement over the XGBoost model and the historical baseline. Although the absolute precision 
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percentages are lower due to the rarity of these events, the transformer model's ability to better 
predict these outcomes demonstrates its nuanced understanding of player tendencies and pitch 
contexts 

The transformer-based model's superior performance in top-4 precision metrics, particularly for 
less frequent but impactful events like 'Double' and 'Home Run', underscores its ability to adapt 
predictions based on the specific context of each pitch. While both the transformer and XGBoost 
models performed similarly on common outcomes ('Strikeout' and 'Field Out'), the transformer 
model showed a significant advantage in predicting less frequent events, which are crucial for 
strategic decision-making. 

4.2 Model Adaptability to Player Tendencies 

To evaluate the models' abilities to adapt predictions based on specific player tendencies, we 
conducted a comparative analysis using two players with distinct hitting profiles: Aaron Judge, a 
well known power hitter, and Luis Arraez, a premier contact hitter. By comparing the aggregated 
stat predictions from both the transformer-based model and the XGBoost baseline against the 
actual statistics from the 2023 season, (Both models have only been trained on data prior to the 
2023 season), we assessed how well each model captures the unique characteristics of these 
players. 

For each player, we used both models to predict the outcome probabilities for every pitch they 
faced during the 2023 season. Summing these probabilities across all pitches provided the expected 
totals for each event category. This approach allowed us to evaluate how effectively each model 
adapts to individual player tendencies without explicit player identifiers in the input data. 

Aaron Judge faced a total of 1,612 pitches in the 2023 season. Table 3 presents the predicted and 
actual event counts. 

Outcome 
XGBoost 

Predicted 
Transformer 

Predicted Actual Count 

Ball 639.81 630.09 619 

Strike 634.66 586.32 603 

Double 11.04 15.66 14 

Field Out 101.44 126.09 121 

Hit by Pitch 0.51 0.26 0 

Home Run 13.94 25.6 32 

Single 37.97 42.85 36 
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Strikeout 107.5 105.76 107 

Triple 0.62 0.91 0 

Walk 64.5 67.46 69 

Table 3: Predicted vs. Actual Event Counts for Aaron Judge 

Luis Arraez faced a total of 1,848 pitches in the 2023 season. Table 4 shows the predicted and 
actual event counts. 

Outcome 
XGBoost 

Predicted 
Transformer 

Predicted Actual Count 

Ball 614.31 478.08 484 

Strike 812.71 677.65 663 

Double 19.27 24.09 21 

Field Out 205.44 256.61 263 

Hit by Pitch 2.19 2.07 3 

Home Run 12.59 6.27 9 

Single 64.54 100.42 116 

Strikeout 88.22 37.96 25 

Triple 2.2 2.79 2 

Walk 26.53 15.06 15 

Table 4: Predicted vs. Actual Event Counts for Luis Arraez 

For Aaron Judge, the transformer model predicts a higher number of home runs (25.60) and 
doubles (15.66) compared to the XGBoost model's predictions (13.94 home runs and 11.04 
doubles). The transformer's predictions for home runs are closer to the actual count of 32, 
indicating a better adaptation to Judge's power-hitting tendency. Both models predict a similar 
number of singles, with the transformer slightly higher (42.85) than XGBoost (37.97), compared to 
the actual count of 36. 

Regarding strikeouts, both models perform comparably, with predictions close to the actual count 
of 107. The transformer model predicts 105.76 strikeouts, while XGBoost predicts 107.50. This 
suggests that both models effectively capture Judge's strikeout rate. 
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For Luis Arraez, the transformer model predicts significantly more singles (100.42) than the 
XGBoost model (64.54), aligning more closely with the actual count of 116. This reflects Arraez's 
contact-hitting profile. The transformer model also predicts fewer strikeouts (37.96) compared to 
XGBoost (88.22), approaching the actual count of 25. Although the transformer overestimates 
strikeouts, it substantially outperforms XGBoost in capturing Arraez's low strikeout tendency. 

In terms of home runs, the transformer model predicts fewer (6.27) than XGBoost (12.59), which is 
closer to the actual count of 9. This suggests the transformer better recognizes Arraez's lower 
propensity for hitting home runs. 

We also analyzed the predicted hit locations to assess how well each model captures the players' 
tendencies in directing the ball. Tables 5 and 6 present the predicted and actual counts for hit 
locations. 

Hit Location 
XGBoost 

Predicted 
Transformer 

Predicted Actual Count 

Pitcher 5.5 4.75 2 

Catcher 2.22 2.08 0 

First Base 6.4 8.09 4 

Second Base 15.84 15.46 13 

Third Base 22.07 27.03 26 

Shortstop 24.58 26.63 22 

Left Field 24.18 33.42 40 

Center Field 28.86 37.83 38 

Right Field 27.42 32.63 25 

Table 5: Predicted vs. Actual Hit Locations for Aaron Judge 

Hit Location 
XGBoost 

Predicted 
Transformer 

Predicted Actual Count 

Pitcher 12.46 22.22 14 

Catcher 3.26 3.4 1 

First Base 30.67 29.75 31 

Second Base 44.17 58.75 56 

Third Base 20.41 28.26 23 
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Shortstop 30.03 48.39 37 

Left Field 51.11 82.35 93 

Center Field 52.24 65.59 92 

Right Field 43.27 37.28 52 

Table 6: Predicted vs. Actual Hit Locations for Luis Arraez 

For Judge, the transformer model predicts higher counts of hits to the outfield positions—Left Field, 
Center Field, and Right Field—aligning more closely with the actual counts. For instance, it predicts 
33.42 hits to Left Field and 37.83 to Center Field, compared to XGBoost's 24.18 and 28.86, 
respectively. The actual counts are 40 for Left Field and 38 for Center Field. This suggests the 
transformer model better captures Judge's tendency to hit deep into the outfield. 

For Arraez, the transformer model predicts higher counts of hits to infield positions like Second 
Base and Shortstop, which corresponds with his contact-hitting style that often results in ground 
balls and line drives. The transformer predicts 58.75 hits to Second Base and 48.39 to Shortstop, 
closer to the actual counts of 56 and 37, respectively, than XGBoost's predictions. 

Moreover, the transformer's prediction of hits to Left Field (82.35) is closer to the actual count (93) 
compared to XGBoost's 51.11. This further indicates the transformer's enhanced ability to capture 
Arraez's hitting patterns. 

The transformer-based model demonstrates a superior ability to adapt its predictions to the 
specific tendencies of individual players. By leveraging sequential and contextual information, it 
more accurately predicts key statistics for both a power hitter and a contact hitter without explicit 
player identifiers. 

For Aaron Judge, the transformer model better predicts home runs and doubles, reflecting his 
power-hitting profile. For Luis Arraez, it more accurately forecasts singles and lower strikeout 
numbers, aligning with his contact-hitting style. The XGBoost model, while capturing general 
trends, does not adjust its predictions as effectively based on player-specific tendencies. 

These findings highlight the transformer's capacity to model nuanced player behaviors, offering 
valuable insights for personalized strategic decisions in pitching and defensive alignments. The 
ability to adapt to individual players enhances the model's practical utility in real-world baseball 
analytics. 

4.3 Optimal Pitch Selection Framework & Case Study 

To demonstrate the practical utility of our transformer-based model, we developed an optimal 
pitch selection framework designed to identify the most effective pitch for inducing a desired 
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outcome in a specific game situation. This framework leverages the model's predictive capabilities 
to simulate and evaluate various pitch scenarios, ultimately guiding strategic decision-making for 
pitchers and coaches. 

The framework operates by simulating potential pitches and ranking them based on their predicted 
probabilities of achieving a specified result. For the current batter, we begin by constructing a 
contextual sequence using the most recent 399 pitches they have faced. This sequence provides the 
input context for the model, mirroring the data used during training, and captures the batter's 
recent tendencies and responses to different pitch types and locations. 

We then define the desired pitch outcome, specifying both the event (e.g., 'Field Out', 'Strikeout') 
and, if applicable, the hit location (e.g., 'Shortstop', 'Center Field'). Additionally, we may identify 
events and hit locations to minimize, such as 'Home Run' or 'Left Field', reflecting strategic 
considerations to avoid unfavorable outcomes. 

For the current pitcher, we generate all feasible combinations of pitch types they are known to 
throw and possible strike zone locations. (For this study, we use 13 different strike zone locations, 
Figure 3. However, this approach can be generalized to use any number of strike zone locations, 
with a higher number enhancing the granularity of the framework's pitch recommendations). Each 
combination represents a potential pitch that could be delivered in the game situation. To ensure 
realism, we assign average values for continuous pitch features like velocity and spin rate, 
calculated based on the pitcher's historical data for each pitch type. This process maintains 
consistency with the pitcher's typical performance and enhances the credibility of the simulations. 

Each simulated pitch is appended as the 400th pitch in the batter's sequence, effectively creating 
multiple sequences that differ only in the final pitch. The transformer model processes each 
sequence and outputs probability distributions over possible pitch results and hit locations for the 
simulated pitch. These probabilities reflect the model's assessment of how likely each outcome is, 
given the batter's recent history and the characteristics of the simulated pitch. 

To rank the simulated pitches, we compute a pitch score for each based on a weighted combination 
of the probabilities of the desired outcomes and hit locations, while subtracting the probabilities of 
undesired events or hit locations to penalize pitches likely to result in unfavorable outcomes. 
Mathematically, the score S for a simulated pitch is calculated as: 

𝑆𝑆 =  𝜔𝜔1 ⋅ ∑(𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) + 𝜔𝜔2 ⋅ ∑(𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) −𝜔𝜔3
⋅ ∑(𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 + 𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) 

Equation 1: Pitch Score  

where 𝜔𝜔1, 𝜔𝜔2, and 𝜔𝜔3 are adjustable weights reflecting the relative importance of each term, and P 
denotes the model's predicted probabilities. The weights allow for customization based on strategic 
priorities, such as emphasizing the desired event over the hit location or placing greater 
importance on avoiding specific undesired outcomes. 

After calculating the scores, we rank the simulated pitches accordingly. The pitch with the highest 
score is considered optimal, as it maximizes the likelihood of the desired outcome while minimizing 
the risk of undesired events. 
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4.3.1 Case Study 

To illustrate the practical application and effectiveness of our optimal pitch selection framework, 
we conduct a case study involving various game scenarios featuring batter Shohei Ohtani and 
pitchers Gerrit Cole and Gregory Santos. This case study demonstrates the model's ability to adapt 
to specific situations and players, providing data-driven recommendations that align with strategic 
objectives. 

Scenario 1: First Pitch of the Game 

In the first scenario, we consider the initial pitch of the game, where the pitcher aims to gain an 
early advantage by getting ahead in the count. The strategic objective is to maximize the probability 
of a strike while minimizing the likelihood of the batter achieving a hit. To formalize this within our 
framework, we define the desired event as 'Strike' and the undesired events as all 'Hit' events (i.e., 
'Single', 'Double', 'Triple', 'Home Run'). The score S, as defined earlier (Equation 1), is calculated for 
each simulated pitch using the specified weights: 0.4 for the desired event, 0.6 for minimizing 
undesired events, and 0 for hit location. The score reflects the trade-off between increasing the 
likelihood of a strike and reducing the risk of a hit, with no emphasis placed on the predicted hit 
location in this scenario. 

Applying the framework with these parameters, the model simulates all feasible pitch types and 
zones for Gerrit Cole, incorporating his pitch repertoire and historical performance data. The top 
three pitches recommended by the model are knuckle curveballs delivered to zones 2, 5, and 3, 
respectively. These zones correspond to specific areas within the strike zone from the perspective 
of the Catcher, as illustrated in Figure 3. The recommendation aligns with strategic pitching 
practices, as knuckle curveballs can be effective in inducing initial strikes against batters who may 
be anticipating fastballs early in the count. 

 

Figure 3: First Strike Pitch Recommendations 
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Scenario 2: Advancing the Count to 0-2 

Building on the first scenario, we assume that the first recommended knuckle curveball to zone 2 
resulted in a strike, followed by a fastball to zone 2, also resulting in a strike, bringing the count to 
0-2. At this juncture, the pitcher aims to capitalize on the advantageous count by attempting to 
strike out the batter while minimizing the risk of a hit. The desired event is now set to 'Strikeout', 
with the undesired events remaining as all 'Hit' events. The weights are adjusted accordingly to 
reflect the increased emphasis on achieving a strikeout. 

Under these conditions, the model recommends low fastballs delivered to zones 7, 8, and 9 (Figure 
4). These zones are located at the bottom of the strike zone, aligning with Shohei Ohtani's known 
tendency to strikeout on pitches lower in the zone (Appendix A). This recommendation is 
consistent with Gerrit Cole's strengths, as his fastball is among his most effective pitches (Appendix 
B). By targeting Ohtani's weakness against low pitches, the model's suggested approach capitalizes 
on both the batter's tendencies and the pitcher's strengths, maximizing the chance of a strikeout. 

To further assess the model's adaptability, we replace Gerrit Cole with a different pitcher, Gregory 
Santos, known for his breaking pitches rather than a dominant fastball (Appendix C). In the same 0-
2 count scenario, the model now recommends a slider to zones 1 and 4, or a sinker to zone 9 
(Figure 5). This shift in recommendations reflects the model's consideration of the pitcher's 
strengths and historical performance. By suggesting pitches that align with Santos's repertoire, the 
model demonstrates its capacity to tailor strategies based on the specific pitcher, enhancing the 
effectiveness of the pitch selection. 

 

 

 

Figure 4: Gerrit Cole Strikeout Pitches 
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Scenario 3: Inducing a Ground Ball for a Double Play 

In the final scenario, we reset the count and return to Gerrit Cole as the pitcher, with the game 
context now including a runner on first base. The strategic objective is to induce a ground ball that 
could result in a double play, thereby minimizing the opponent's scoring opportunity. To achieve 
this, we set the desired event to 'Field Out' and the desired hit locations to infield positions, 
specifically targeting hit locations associated with ground balls to infielders. The undesired events 
remain as all 'Hit' events to reduce the chance of the batter reaching base safely. The weights are 
assigned as 0.4 for the desired event, 0.3 for the desired hit location, and 0.3 for minimizing 
undesired events, balancing the importance of inducing an out, directing the ball to the infield, and 
avoiding hits. 

Applying the framework with these parameters, the model recommends cutters delivered to zones 
3 and 12, or a changeup to zone 4 (Figure 6). The high and inside cutters are likely intended to jam 
the batter, leveraging their speed and horizontal movement to induce weak contact. The 
recommendation of the changeup to zone 4 may reflect its potential to induce a ground ball in this 
specific scenario, possibly based on patterns observed in the batter's recent performance captured 
by the context window. Figure 7 presents a heatmap of the model's predicted hit locations for these 
recommended pitches, illustrating the concentration of likely contact toward the infield positions. 

Figure 5: Gregory Santos Strikeout Pitches 
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Figure 6: Ground Ball Inducing PItches 

Figure 7: Hit Location Heatmap for Ground-Ball Inducing Pitches 
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These scenarios highlight the model's ability to adapt its recommendations based on the specific 
game context, batter-pitcher matchups, and strategic objectives. By simulating potential pitches and 
evaluating their predicted outcomes, the framework provides actionable insights that align with 
both the pitcher's strengths and the desired tactical outcomes. The model's recommendations 
consider not only the probabilities of achieving the desired events but also the minimization of 
undesired outcomes, offering a balanced approach to risk and reward. 

5. Conclusion 
 
In this study, we developed a transformer-based neural network model to predict individual pitch 
outcomes and hit locations in Major League Baseball. By leveraging sequences of pitches and rich 
contextual information, our model outperformed baseline models, including a historical average and 
an XGBoost classifier. The transformer model excelled in predicting less frequent but strategically 
significant events such as singles, doubles, and home runs, and demonstrated enhanced adaptability 
to individual player tendencies without relying on explicit player identifiers. 
 
The optimal pitch selection framework further showcased the model's practical utility by providing 
actionable insights tailored to specific game contexts, batter profiles, and pitcher strengths. The case 
study involving Shohei Ohtani and Gerrit Cole illustrated how the model can inform strategic 
decisions, optimize pitch selection, and enhance defensive alignments. By predicting both pitch 
outcomes and hit locations, our model bridges the gap between advanced analytics and real-time 
decision-making, offering comprehensive support for coaches and players. 

5.1 Future Work 
 
While our model has demonstrated significant capabilities, several avenues exist for further 
enhancement. 
 
Our current approach focuses primarily on the batter's historical pitch sequence, effectively being 
"playerless" from the pitcher's perspective. In practice, both pitchers and batters adjust their 
strategies based on knowledge of each other's tendencies. Incorporating explicit information about 
the current pitcher could enhance the model's predictive accuracy and adaptability. One potential 
direction is to create pitcher embeddings analogous to the batter embeddings generated from the 
context window. By using sequences of the pitcher's previous pitches, the model could learn 
representations that capture the pitcher's style, strengths, and tendencies. Including detailed 
information about the pitcher's arsenal—such as pitch types, average velocities, and usage 
frequencies—could provide valuable context, leading to more nuanced predictions and strategic 
recommendations. 
 
In the current model, certain events are grouped into broader categories to streamline the 
classification task (e.g., grouping "Fielder's Choice," "Fly Ball," and "Field Out" under "Field Out"). 
While this simplifies the model and reduces sparsity, it abstracts away details that could be valuable 
for strategic planning. Future work could explore separating these grouped events into more specific 
categories, increasing the granularity of predictions. By distinguishing between different types of 
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outs or hits, the model might provide more detailed insights into likely outcomes, enhancing 
defensive strategies and player positioning. Addressing potential challenges related to class 
imbalance and data sparsity would be essential to maintain high predictive performance with an 
expanded classification task. 
 
By focusing on these areas, we aim to further refine the model's capabilities and increase its 
applicability in real-world baseball analytics. Incorporating pitcher context and increasing prediction 
granularity could enhance the model's precision and strategic value, contributing to the evolving 
landscape of baseball analytics and decision-making. 
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Appendix 

A. Shohei Ohtani Strikeout Rate by Zone 2023 
 
The below figure shows Shohei Ohtani's strikeout rates by zone for the 2023 MLB season. The 
number in each zone represents the percentage of Ohtani's total strikeouts in 2023 that occurred 
on a pitch to that zone [8]. 
 

 
 

B. Gerrit Cole Run Value by Pitch Type 2023 
 
The below table shows Gerrit Cole's run value and run value per 100 pitches by pitch type for the 
2023 MLB season. Run value is the impact of an event based on the runners on base, outs, ball and 
strike count, with a higher number indicating higher value [7, 8]. 
 

Pitch Type Run Value Run Value/100 
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4-Seam Fastball 29 1.7 

Slider 9 1.4 

Curveball 4 1.0 

Changeup 2 0.7 

Cutter 0 0.2 

 

C. Gregory Santos Run Value by Pitch Type 2023 
 
The below table shows Gregory Santos’ run value and run value per 100 pitches by pitch type for 
the 2023 MLB season. Run value is the impact of an event based on the runners on base, outs, ball 
and strike count, with a higher number indicating higher value [7, 8]. 
 

Pitch Type Run Value Run Value/100 

Slider 17 3.1 

4-Seam Fastball 1 3.6 

Changeup 0 -2.8 

Sinker -8 -1.8 
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