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1. Introduction 
 
Methods to assess the ongoing financial performance of invested monies are essential for financial 
analysts. Examples are ubiquitous: mutual fund fact sheets report historical returns, publicly-
traded companies report quarterly earnings to shareholders, and lenders report on defaulted and 
delinquent loans. In the vast majority of these cases, both the cash inflows and outflows of invested 
capital may be recorded as market prices. This makes the financial return calculations rudimentary. 

For example, to calculate the realized return on investment (ROI) for a sequence of cash flows, it is 
possible to utilize the internal rate of return (IRR) methodology of Berk and Demarzo (2007, §4.8). 
That is, we solve for the rate of return, 𝑟𝑟, such that the discounted present value of future return 
cash flows equals the time zero investment. Formally, let 𝐶𝐶𝐶𝐶0 be the initial (i.e., negative) 
investment, and 𝐶𝐶𝐹𝐹1, . . . ,𝐶𝐶𝐹𝐹𝐾𝐾 be the positive future cash flows. For simplicity, we assume all cash 
flows occur on equally spaced intervals. Because we are performing a realized, ex post, return 
calculation, all 𝐶𝐶𝐹𝐹𝑡𝑡 , 𝑡𝑡 =  1, . . .𝐾𝐾, are assumed known. Then, 

�𝑟𝑟:𝐶𝐶𝐹𝐹0 = �
𝐶𝐶𝐹𝐹𝑡𝑡

(1 + 𝑟𝑟)𝑡𝑡

𝐾𝐾

𝑡𝑡=1

� (1) 

is the realized ROI. Aside from simple forms of (1), solving for 𝑟𝑟 will typically require the use of 
optimization software (e.g., Varma, 2021). 

Complexities arise when one side of (1) does not have a clear monetary cash value or market price, 
however. One such case is the player contract in the National Basketball Association (NBA). 
Specifically, given a financial investment into an NBA player via a con tractual salary, it is of interest 
to assess the realized return vis-à-vis on court activities (i.e., points, rebounds, etc.). It is not 
immediately clear how to value such on court performance in financial terms, and it is this curiosity 
that is the object of our study. In other words, we endeavor to propose a methodology capable of 
combining a player’s salary and on court performance in such a way as to produce an equivalent 
formulation of (1). In doing so, we may then solve for 𝑟𝑟, which is the ROI we desire to estimate. 

Financially quantifying on court performance would benefit numerous NBA stakeholders: e.g., 
informing player evaluations, informing roster building decisions, assessing team roster building 
competency, and comparing the relative financial efficiency of NBA teams and players. 
Furthermore, with the recent value of NBA franchises reaching $4 billion (Wojnarowski, 2022), the 
answers to these questions have become more important than ever. It is natural, then, to suppose 
there exists a great number of studies that consider both on court performance and salary 
simultaneously to arrive at methods to measure realized ROI or IRR of a player’s contract in view of 
said player’s on court performance. A survey of related studies (e.g., Idson and Kahane, 2000; Berri 
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et al., 2005; Tunaru et al., 2005; Berri and Krautmann, 2006; Berri et al., 2007a; Simmons and Berri, 
2011; Halevy et al., 2012; 61 Kuehn, 2017) indicates that this is not the case, however. 

We thus propose the first known unified framework to consider both on court performance and 
salary concomitantly to derive a realized contractual ROI for players in the NBA. It is a five-part 
process. The first step is to select a measurement period, such as a single NBA regular season. Step 
two is to select a model to assign fractional credit to players within a single game for all completed 
games in the measurement time period. Step three is to estimate a Single Game Value (SGV) in 
dollars for all completed games in the measurement time period. Steps two and three may occur 
simultaneously after step one. The fourth step is to combine the results of steps two and three to 
derive player cash flows that are based on relative on court performance. The final step is to use a 
player’s contractual salary as an invested cash flow and the now derived performance-based cash 
flows to solve for the ROI via (1). The complete ROI process is summarized in Figure 1. 

 

Figure 1: NBA Contractual ROI Estimation Framework Summary. 

We illustrate this proposed framework with a novel player credit estimator, the Wealth 
Redistribution Merit Share (WRMS). It is a general estimator that translates an on court player 
performance estimate into a standardized fractional share, akin to a wealth redistribution exercise 
that starts from perfect uniformity and reallocates credit via relative performance. We show the 
WRMS estimator is asymptotically unbiased to the natural share, and it is calibrated to a 
replacement player, often desirable in sports analysis (e.g., Shea and Baker, 2012). As an 
illustration, we present a novel applied study of player performance using logistic regression for 
data from the 2022-2023 NBA regular season. The attractiveness of the WRMS is that an analyst is 
free to choose a player performance estimate, and we present such comparisons. The formal 
statements of these results may be found in Theorem 2.1. Given we desire to recover (1), our 
performance measurements are constrained to a single game. This allows us to present a 
methodology to compare a player with high-performance and frequent missed games against a 
player with average performance but consistent availability (e.g., Figure 3). To our knowledge, such 
a perspective remains unexplored in the sports analysis literature. We also propose a model based 
on ticket sales and television revenue to estimate the SGV. Conditional on the WRMS estimates, 
Theorem 3.1 ensures our player share dollar estimates are unbiased to total game value. 
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The paper proceeds as follows. Section 2 begins by heuristically deriving the WRMS starting from 
the natural share concept and an assumption of complete naivete. Section 2.1 then offers a novel 
logistic regression player performance measurement, including a review of per-game on court 
player performance models. The entirety of Section 2 is dedicated to step II in Figure 1. Section 3 
then builds upon the work of Section 2 to complete the ROI calculation. It thus includes steps III, IV, 
and V in Figure 1. In both Sections 2 and 3, we provide empirical illustrations of all methods using 
data from the 2022-2023 NBA regular season. The paper concludes in Section 4. The Appendix 
provides complete proofs, and the Supplemental Material includes a brief review of basic finance, a 
detailed literature review, a glossary of common basketball abbreviations, details on a theoretical 
derivation of a Cauchy distribution, an index reference, expanded details on the logistic regression 
model we employ, a comparison of player performance measurements, and simulation studies. All 
data and replication code used herein may be found at [git repository BLINDED]. 

2. Wealth Redistribution Merit Share 
 
The entirety of this section addresses step II of the ROI framework of Figure 1. We first derive the 
WRMS with a heuristic argument built from the natural share concept. We then expand upon 
potential on court performance measurement estimators in Section 2.1. Section 2.2 closes with 
empirical estimates from the 2022-2023 NBA regular season. 

To begin, assume there are 𝑁𝑁 ≥  1, 𝑁𝑁 ∈  ℤ total games over the investment horizon selected in step 
I of Figure 1. Let the current game be denoted by 𝑔𝑔 ∈  ℤ, 1 ≤  𝑔𝑔 ≤  𝑁𝑁. Per NBA league rules, we 
assume each team will roster 15 players (National Basketball Association, 2018), and so 30 players 
within each game have the potential to contribute. We will index each player by 𝑚𝑚 ∈  ℤ, 1 ≤  𝑚𝑚 ≤
 30, for each game, 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁. It is desirable to only award players that appear in each game 
(i.e., MIN > 0) with credit.1  This allows us to treat missed games as defaults in the ROI framework. 
In the sequel, we denote the set of players with positive minutes played in game 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁, as 
ℳ𝑔𝑔, and the set of 30 players with the potential to appear in game 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁, as ℳ�𝑔𝑔. Per NBA 
rules (National Basketball Association, 2018), a minimum of 10 players (5 per team) will receive 
playing time (i.e., MIN > 0). Formally, then, 10 ≤  #{ℳ𝑔𝑔}  ≤  #{ℳ�𝑔𝑔}  =  30 and ℳ𝑔𝑔  ⊂  ℳ�𝑔𝑔. 

To calibrate the wealth redistribution estimate based upon on court performance, let us first 
assume there exists some performance measure, ∆𝑔𝑔𝑔𝑔 ∈ ℝ, for each player, 𝑚𝑚, 𝑚𝑚 ∈  ℳ𝑔𝑔, in each 
game 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁. Hence, the natural player credit game share, 𝒩𝒩𝑔𝑔𝑔𝑔 for player 𝑚𝑚, 𝑚𝑚 ∈  ℳ𝑔𝑔, in 
game 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁, becomes 

𝒩𝒩𝑔𝑔𝑔𝑔 =
Δ𝑔𝑔𝑔𝑔𝟏𝟏𝑚𝑚∈ℳ𝑔𝑔

∑ Δ𝑔𝑔𝑔𝑔𝟏𝟏𝜔𝜔∈ℳ𝑔𝑔𝜔𝜔∈ℳ�𝑔𝑔
, (2) 

 
where 𝟏𝟏𝑞𝑞  =  1 if statement 𝑞𝑞 is true and 0 otherwise. It is immediate that ∑ 𝒩𝒩𝑔𝑔𝑔𝑔𝑚𝑚 = 1 for all 1 ≤ g 
≤ N. Intuitively, this implies that players for both teams compete by way of on court performance 
for a share of the estimated SGV in dollars. Practically, each player 𝑚𝑚, 𝑚𝑚 ∈  ℳ�𝑔𝑔, for game 𝑔𝑔, 1 ≤
 𝑔𝑔 ≤  𝑁𝑁, would receive the 𝒩𝒩𝑔𝑔𝑔𝑔 percentage share of the SGV. For any player 𝑚𝑚, 𝑚𝑚 ∈  {ℳ�𝑔𝑔 \ ℳ𝑔𝑔}, 

 
1 A full glossary of common NBA abbreviations my be found in the Supplemental Material. 
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𝒩𝒩𝑔𝑔𝑔𝑔 = 0 (i.e., players without playing time receive no credit). All subsequent calculations will build 
from the natural share construct in (2). 

As a starting point, we begin with an assumption of complete naivete. Specifically, we assign a 
degenerative random variable 𝑊𝑊 for ∆𝑔𝑔𝑔𝑔 such that 𝑃𝑃𝑃𝑃(𝑊𝑊 =  𝑐𝑐)  =  1, 𝑐𝑐 ∈  ℝ, for all 𝑚𝑚, 𝑚𝑚 ∈  ℳ�𝑔𝑔, 
and 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁. In this case, the expected credit share of a player 𝑚𝑚 ∈ ℳ𝑔𝑔, given the total 
number of players in the set ℳ𝑔𝑔 is known, is the uniform share: the inverse of the cardinality of the 
set ℳ𝑔𝑔. Symbolically, the uniform credit share is 𝐸𝐸(𝒩𝒩𝑔𝑔𝑔𝑔 | ℳ𝑔𝑔,∆𝑔𝑔𝑔𝑔 ∼  𝑊𝑊)  =  1/#{ℳ𝑔𝑔}. Hence, we 
approximate the complete naivete credit share as 1/𝐸𝐸[#{ℳ𝑔𝑔}]; that is, the inverse of the average 
number of players appearing in a game over the measurement time period. If we define 𝑚𝑚∗ =
∑ ∑ 𝟏𝟏𝑚𝑚∈ℳ𝑔𝑔𝑚𝑚𝑔𝑔 , then an immediate estimator of 1/𝐸𝐸[#{ℳ𝑔𝑔}] is 1/𝑚𝑚� , where 𝑚𝑚� = 𝑚𝑚∗/𝑁𝑁. 

To incorporate a version of the replacement player standardization widely preferred in sports 
analysis (e.g., Shea and Baker, 2012), we define the sample statistics 

Δ�𝑚𝑚∗ =
1
𝑚𝑚∗� � Δ𝑔𝑔𝑔𝑔

𝑚𝑚∈ℳ𝑔𝑔

𝑁𝑁

𝑔𝑔=1

, (3) 

and 

𝑠𝑠(Δ𝑚𝑚∗) = �
1

𝑚𝑚∗ − 1
� � �Δ𝑔𝑔𝑔𝑔 − Δ�𝑚𝑚∗�2

𝑚𝑚∈ℳ𝑔𝑔

𝑁𝑁

𝑔𝑔=1

. (4) 

We define Wealth Redistribution Merit Share or WRMS as follows. 

Theorem 2.1 (Wealth Redistribution Merit Share). Assume there are 𝑁𝑁 ≥  1, 𝑁𝑁 ∈  ℤ, total games 
over the investment time horizon. Further assume the set ℳ𝑔𝑔 is known for all 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁. Let 
𝒮𝒮 = {Δ𝑔𝑔𝑔𝑔}1≤𝑔𝑔≤𝑁𝑁,𝑚𝑚∈ℳ𝑔𝑔be a sample of independent and identically distributed (i.i.d.) performance 
measure random variables. Define the wealth redistribution merit share (WRMS) estimator for 
player 𝑚𝑚, 𝑚𝑚 ∈ ℳ𝑔𝑔 for any game 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁, as 

𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔 =
1

𝑠𝑠(Δ𝑚𝑚∗) �Δ𝑔𝑔𝑔𝑔 − Δ�𝑚𝑚∗�
1
𝑚𝑚�

+
1
𝑚𝑚�

. (5) 

Then the following properties hold. 

(i) The estimator 𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔 is standardized to return a sample mean and sample standard 
deviation of 1/𝑚𝑚�  for any 𝒮𝒮.  That is, 

1
𝑚𝑚∗� � 𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔

𝑚𝑚∈ℳ𝑔𝑔

𝑁𝑁

𝑔𝑔=1

= �
1

𝑚𝑚∗ − 1
� � �𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔 −

1
𝑚𝑚�
�
2

𝑚𝑚∈ℳ𝑔𝑔

𝑁𝑁

𝑔𝑔=1

=
1
𝑚𝑚�

.  
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(ii) For any 𝒮𝒮, ℳ𝑔𝑔 will be known for all 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁. Hence, the bias of 𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔 to the 
conditional natural share, 𝒩𝒩𝑔𝑔𝑔𝑔|ℳ𝑔𝑔, denoted by Bias(𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔,𝒩𝒩𝑔𝑔𝑔𝑔|ℳ𝑔𝑔), for all 𝑚𝑚, 𝑚𝑚 ∈
ℳ𝑔𝑔, and any 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁, is 

Bias �𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔,𝒩𝒩𝑔𝑔𝑔𝑔�ℳ𝑔𝑔� =
1
𝑚𝑚�
− 𝐸𝐸�𝒩𝒩𝑔𝑔𝑔𝑔�ℳ𝑔𝑔� =

1
𝑚𝑚�
−

1
#{ℳ𝑔𝑔}

,  

assuming 𝐸𝐸�𝒩𝒩𝑔𝑔𝑔𝑔�ℳ𝑔𝑔� exists.  Further, if 𝐸𝐸�𝒩𝒩𝑔𝑔𝑔𝑔�ℳ𝑔𝑔� exists, then, as 𝑁𝑁 → ∞, 

Bias �𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔,𝒩𝒩𝑔𝑔𝑔𝑔�ℳ𝑔𝑔�
𝑝𝑝
→ 0.  

(iii) Suppose the i.i.d. random variables ∆𝑔𝑔𝑔𝑔 ∈ 𝒮𝒮 are parametric random variables 
parameterized by 𝚯𝚯. Let 𝚯𝚯�𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝑓𝑓(𝒮𝒮) be a maximum likelihood estimate (MLE) of 𝚯𝚯. 
For any function, ℎ1 of 𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔 such that ℎ1(𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔)  ≡  ℎ2(𝚯𝚯), the maximum 
likelihood estimate of ℎ1(𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔) is ℎ2(𝚯𝚯�𝑀𝑀𝑀𝑀𝑀𝑀). 

Proof. See Appendix A. 
◻ 

In an economic interpretation, the WRMS of (5) may be thought of as a prescriptive allocation of the 
SGV share of wealth earned by a player 𝑚𝑚, 𝑚𝑚 ∈ ℳ𝑔𝑔, in reference to the performance measure ∆𝑔𝑔𝑔𝑔, 
in comparison to uniformity (i.e., complete naivete) for any game 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁. Below average 
games, (i.e., ∆𝑔𝑔𝑔𝑔 < Δ�𝑚𝑚∗) will decrease the share below 1/𝑚𝑚� , and above average games (i.e., ∆𝑔𝑔𝑔𝑔>
Δ�𝑚𝑚∗) will increase the share above 1/𝑚𝑚� . In effect, then, (5) is a wealth redistribution tool. That is, 
starting from the complete naivete assumption that all players appearing in a game have equal 
performance and thus a perfect uniformity of wealth share, the WRMS then redistributes the wealth 
to each player based on each player’s on court performance in comparison to an average (or 
replacement) player. A notable property of (5) is that players who perform well on the losing team 
may still receive a large share of the SGV. Finally, observe that by definition 

� � 𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔
𝑚𝑚 ∈ℳ𝑔𝑔

𝑁𝑁

𝑔𝑔=1

= 𝑁𝑁, (6) 

which ensures an unbiased estimate at the aggregate level (i.e., the total reallocation of games sums 
to the original total of games, 𝑁𝑁). 

2.1. Performance Measurement 
At present, the i.i.d. on court performance measure random variable, denoted by ∆𝑔𝑔𝑔𝑔 for all 𝑚𝑚, 𝑚𝑚 ∈
ℳ𝑔𝑔, and 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁, has been left unspecified. Part II of the ROI framework of Figure 1 requires 
the basketball performance-based calculations to be contained within a single game unit. This is 
because the overall ROI framework of Figure 1 treats a player’s contractual salary as invested 
capital that is intended to generate per game returns or positive payments. Particularly bad games 
become negative cash flows (losses), and missed games are treated as defaults or missed payments. 
Outside of the financial ROI framework of Figure 1, the purely basketball importance of the single 
game unit is well-known (e.g., Oliver, 2004, Chapter 16, pg. 192), and it is thus a natural delineation 
of NBA performance units. Furthermore, working on a per-game basis offers some advantages. For 
example, per possession standardization (e.g., Oliver, 2004, pg. 25) is not necessary because each 
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team uses approximately the same number of possessions within one game (Berri et al., 2007b, pg. 
101). Finally, our per-game approach to performance measurement implies that running season 
per game totals (e.g., (16) of Section 2.2) allow analysts to determine the exact inflection point of an 
excellent player that misses many games versus a solid player that consistently plays (e.g., Figure 
3.) 

Does an existing performance estimator adequately meet our per-game requirements? Given what 
is available at present, we believe the answer is largely negative. Many previous studies have 
become dated when compared against recent player tracking data (e.g., Berri, 1999; Page et al., 
2007; Fearnhead and Taylor, 2011; Martínez, 2012; Casals and Martínez, 2013). In a promising 
study, Lackritz and Horowitz (2021) create a model to assign fractional credit to scoring statistics 
for players in the NBA. Unfortunately, Lackritz and Horowitz (2021) consider only offensive 
statistics. Idson and Kahane (2000) and Tunaru et al. (2005) do not consider basketball. In a 
comprehensive review, Terner and Franks (2021) further our findings that a per-game approach is 
largely unstudied. (The Supplemental Material provides a more detailed literature review.) 

One prevalent basketball performance estimator does limit all calculations to a single game: Game 
Score (Sports Reference LLC, 2023). Per (Sports Reference LLC, 2023), Game Score (GmSc) is 
defined as 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  𝑃𝑃𝑃𝑃𝑃𝑃 +  0.4𝐹𝐹𝐹𝐹 −  0.7𝐹𝐹𝐹𝐹𝐹𝐹 −  0.4(𝐹𝐹𝐹𝐹𝐹𝐹 −  𝐹𝐹𝐹𝐹) +  0.7𝑂𝑂𝑂𝑂𝑂𝑂 +  0.3𝐷𝐷𝐷𝐷𝐷𝐷 +  𝑆𝑆𝑆𝑆𝑆𝑆
+  0.7𝐴𝐴𝐴𝐴𝐴𝐴 +  0.7𝐵𝐵𝐵𝐵𝐵𝐵 −  0.4𝑃𝑃𝑃𝑃 −  𝑇𝑇𝑇𝑇𝑇𝑇, (7) 

where the abbreviations follow National Basketball Association (2023).2  Despite the per game 
nature of (7), there are some limitations. First, GmSc does not utilize any of the recent NBA data 
advancements (National Basketball Association, 2023). Second, it relies on hard-coded coefficients, 
which are both difficult to interpret without greater context and potentially unstable over time. 
Finally, GmSc was derived outside of the peer-review process, which has garnered criticism (e.g., 
Berri and Bradbury, 2010). 

There is a much discussed level of subjectivity to assigning credit to players in a basketball game 
(e.g., Oliver, 2004; Berri et al., 2007b). Given this, it is our intention to propose the general WRMS in 
Theorem 2.1, of which the analyst is free to choose the performance estimator for ∆. For example, 
the Win Score (WSc) of Berri et al. (2007b), defined as 

𝑊𝑊𝑊𝑊𝑊𝑊 =  𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑂𝑂𝑂𝑂𝑂𝑂 +  𝐷𝐷𝐷𝐷𝐷𝐷 +  𝑆𝑆𝑆𝑆𝑆𝑆 +  0.5𝐵𝐵𝐵𝐵𝐵𝐵 +  0.5𝐴𝐴𝐴𝐴𝐴𝐴 −  𝐹𝐹𝐹𝐹𝐹𝐹 −  0.5𝐹𝐹𝐹𝐹𝐹𝐹 

 − 𝑇𝑇𝑇𝑇𝑇𝑇 −  0.5𝑃𝑃𝑃𝑃, 
(8) 

may be instead recoded on a per-game basis. 3 

For the purposes of presenting a timely and robust performance measurement model for ∆, we will 
employ a logistic regression model as follows (Kutner et al., 2005). Let 𝑦𝑦𝑖𝑖 = 1 (win) or 𝑦𝑦𝑖𝑖 = 0 (loss) 
with probability 𝑃𝑃𝑃𝑃(𝑦𝑦𝑖𝑖 = 1 |𝒙𝒙𝑖𝑖,𝜷𝜷) ≡ 𝑝𝑝𝑖𝑖, where 𝒙𝒙𝑖𝑖 =  (1,𝑋𝑋𝑖𝑖1, . . . ,𝑋𝑋𝑖𝑖𝑖𝑖) is a row of the design matrix of 
team level statistics, X. That is, 𝑦𝑦𝑖𝑖  is a Bernoulli random variable with parameter, 𝑝𝑝𝑖𝑖 , for 𝑖𝑖 =  1, . . . ,𝑛𝑛. 
Notice here the indexing 𝑖𝑖, 1 ≤  𝑖𝑖 ≤  𝑛𝑛 is for game outcome. Hence, for each 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁 =  𝑛𝑛/2, 

 
2 A full glossary of common NBA abbreviations may be found in the Supplemental Material. 
3 A full glossary of common NBA abbreviations may be found in the Supplemental Material. 
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there are two game outcomes, 𝑖𝑖 =  2𝑔𝑔 and 𝑖𝑖 =  2𝑔𝑔 −  1. As we will introduce another indexing 
variable, 𝑗𝑗, for the covariates, we provide an index reference in the Supplemental Material. 

The formulation of the model implies merit performance credit is directly connected to winning 
games, though alternative optimization objectives, such as championships or revenue may instead 
be used. The binary logit regression model has the form, for 𝑖𝑖 =  1, . . . , 𝑛𝑛, 

logit(𝑝𝑝𝑖𝑖) = log �
𝑝𝑝𝑖𝑖

1 − 𝑝𝑝𝑖𝑖
� = 𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷. (9) 

The form (9) implies 

𝑝𝑝𝑖𝑖 =
exp (𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷)

1 + exp (𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷)
=

1
1 + exp (−𝒙𝒙𝑖𝑖𝑇𝑇𝜷𝜷)

.  

Hence, the regression coefficients are called log-odds ratios. That is, 𝛽𝛽𝑗𝑗 is the additive increase in 
the log-odds success probability from a unit increase in 𝑥𝑥𝑖𝑖𝑖𝑖 , when all other 𝑥𝑥𝑖𝑖𝑗𝑗∗ ’s, 𝑗𝑗∗ ≠ 𝑗𝑗 are held 
fixed, 𝑗𝑗, 𝑗𝑗∗ =  1, . . . ,𝑘𝑘. Thus, at the team level, any field in X that returns a positive (and significant) 
coefficient estimate can be interpreted as having a positive contribution to winning and vice versa 
for negative coefficients. 

Logistic regression in the context of basketball game data outcome offers some pleasing 
interpretations. First, if we center each covariate, 𝑋𝑋𝑖𝑖𝑖𝑖 , i.e., replace 𝑋𝑋𝑖𝑖𝑖𝑖  with (𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋�𝑗𝑗), where 𝑋𝑋�𝑗𝑗 =
∑𝑋𝑋𝑖𝑖𝑖𝑖/𝑛𝑛, then the intercept, 𝛽𝛽0, becomes the logit at the mean. In other words, an average game by a 
team yields a 𝑝𝑝(𝑋𝑋�1, . . . ,𝑋𝑋�𝑘𝑘)  =  𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0)/(1 +  𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0)) probability of winning. Hence, 𝛽𝛽0 = 0 
implies 𝑝𝑝(𝑋𝑋�1, . . . ,𝑋𝑋�𝑘𝑘) = 0.5, a quite reasonable assumption. Second, if we both assume 𝛽𝛽0 = 0 and 
that each NBA team has the required roster of 15 players per game (National Basketball 
Association, 2018), then we may distribute the logit of the team’s win probability linearly to the 
logit of each player’s individual win probability. This is a direct result of team level statistics 
equaling the sum of individual player level statistics (with minor exceptions; e.g., a team turnover is 
not credited to an individual player). We formalize this property in Theorem 2.2. 

Theorem 2.2. Let 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 represent the individual total for player 𝑚𝑚,𝑚𝑚 =  1, . . . ,15, for statistical 
category 𝑗𝑗, 𝑗𝑗 =  1, . . . ,𝑘𝑘 for game outcome 𝑖𝑖, 𝑖𝑖 =  1, . . . ,𝑛𝑛. Fix 𝑗𝑗 =  1, . . . , 𝑘𝑘 and define the team total 
statistics for game outcome 𝑖𝑖, 𝑖𝑖 =  1, . . . ,𝑛𝑛, as 

X𝑖𝑖𝑖𝑖• = � 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

15

𝑚𝑚=1

.  

Then 

X𝑖𝑖𝑖𝑖• − 𝑋𝑋�𝑖𝑖𝑖𝑖• = � (𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑋𝑋�𝑖𝑖𝑖𝑖𝑖𝑖)
15

𝑚𝑚=1

, (10) 

where 𝑋𝑋�𝑖𝑖𝑖𝑖• = ∑ X𝑖𝑖𝑖𝑖•/𝑛𝑛𝑖𝑖  and 𝑋𝑋�𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖/15𝑛𝑛𝑚𝑚𝑖𝑖 . Further, if we assume 𝛽𝛽0 = 0 and recall (9), 
then 



 8 

logit(𝑝𝑝𝑖𝑖) = (𝒙𝒙𝑖𝑖∗)𝑇𝑇𝜷𝜷 = � 𝒙𝒙𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷 = � logit(𝑝𝑝𝑖𝑖𝑖𝑖)
15

𝑚𝑚=1

15

𝑚𝑚=1

. (11) 

where 𝑝𝑝𝑖𝑖  is the win probability for game outcome 𝑖𝑖, 𝑖𝑖 =  1, . . . ,𝑛𝑛, (𝒙𝒙𝑖𝑖∗)𝑇𝑇 = (X𝑖𝑖1• − 𝑋𝑋�𝑖𝑖1•, . . . , X𝑖𝑖𝑖𝑖• −
𝑋𝑋�𝑖𝑖𝑖𝑖•)𝑇𝑇, 𝒙𝒙𝑖𝑖𝑖𝑖𝑇𝑇 = (𝑋𝑋𝑖𝑖1𝑚𝑚 − 𝑋𝑋�𝑖𝑖1𝑚𝑚, … ,𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑋𝑋�𝑖𝑖𝑖𝑖𝑖𝑖)𝑇𝑇, and 𝑝𝑝𝑖𝑖𝑖𝑖 is the win probability for player 𝑚𝑚,𝑚𝑚 =
1, . . . ,15, 

𝑝𝑝𝑖𝑖𝑖𝑖 =
exp (𝒙𝒙𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷)

1 + exp (𝒙𝒙𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷)
.  

That is, the team level logit of the win probability may be written as a sum of the logits of the 
individual player win probabilities. 

Proof. See Appendix A. 
◻ 

The first part of Theorem 2.2 may be reminiscent of finding the treatment effects of balanced 
experiment designs (e.g., Montgomery, 2020). 

Remark. There is an important assumption of independence underlying the logistic regression 
model of (9) and Theorem 2.2. This independence assumption also plays an important role in 
Theorem 2.1. For a greater discussion, see Section 4. 

Remark. We acknowledge an abuse of notation in the indices appearing in Theorem 2.2. 
Specifically, when the vector notation appears, we drop the 𝑗𝑗 covariate index and shift the player 
index, 𝑚𝑚, to the 𝑗𝑗th position, e.g., (11). The player index, 𝑚𝑚, also shifts from game, 1 ≤  𝑚𝑚 ≤  30, to 
team, 1 ≤  𝑚𝑚 ≤  15. We may equivalently index over ℳ�  or ℳ by name, 𝜋𝜋, or 𝑚𝑚, 1 ≤  𝑚𝑚 ≤  30, for 
any game 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁. This is done beginning at the end of Section 2.2, i.e., (15). For an index 
reference, see the Supplemental Material. 

To translate (11) to the performance measurement, ∆𝑔𝑔𝑔𝑔, 𝑚𝑚 ∈ ℳ𝑔𝑔, it is necessary to shift the index 
from game outcome, 𝑖𝑖, 1 ≤  𝑖𝑖 ≤  𝑛𝑛, to game, 𝑔𝑔,𝑔𝑔 =  1, . . . ,𝑛𝑛/2 (recall 𝑁𝑁 =  𝑛𝑛/2). Hence, to use (11) 
with Theorem 2.1, we obtain the estimator 

𝒲𝒲(𝑿𝑿)𝑔𝑔𝑔𝑔 =
1

𝑠𝑠(WL)𝑚𝑚∗
�logit�𝑝𝑝𝑔𝑔𝑔𝑔� −WL�����𝑚𝑚∗�

1
𝑚𝑚�

+
1
𝑚𝑚�

. (12) 

where WL�����𝑚𝑚∗ = ∑ ∑ logit�𝑝𝑝𝑔𝑔𝑔𝑔�/𝑚𝑚∗
𝑚𝑚 ∈ℳ𝑔𝑔𝑔𝑔  and 𝑠𝑠(WL)𝑚𝑚∗

2 = ∑ ∑ �logit�𝑝𝑝𝑔𝑔𝑔𝑔� − WL�����𝑚𝑚∗�2/(𝑚𝑚∗ −𝑚𝑚 ∈ℳ𝑔𝑔𝑔𝑔

1). For the sake of performance measurement comparison, we may also use (7) to define the 
estimator for player 𝑚𝑚, 𝑚𝑚 ∈ ℳ𝑔𝑔 in game 𝑔𝑔,𝑔𝑔 =  1, . . . ,𝑛𝑛/2, 

GmSc∗(𝑿𝑿)𝑔𝑔𝑔𝑔 =
1

𝑠𝑠(GS)𝑚𝑚∗
�GmSc𝑔𝑔𝑔𝑔 − GS����𝑚𝑚∗�

1
𝑚𝑚�

+
1
𝑚𝑚�

. (13) 

where GS����𝑚𝑚∗ = ∑ ∑ GmSc𝑔𝑔𝑔𝑔/𝑚𝑚∗
𝑚𝑚 ∈ℳ𝑔𝑔𝑔𝑔  and 𝑠𝑠(GS)𝑚𝑚∗

2 = ∑ ∑ �GmSc𝑔𝑔𝑔𝑔 − GS����𝑚𝑚∗�2/(𝑚𝑚∗ − 1)𝑚𝑚 ∈ℳ𝑔𝑔𝑔𝑔 . 
Similarly, via (8) we define for player 𝑚𝑚, 𝑚𝑚 ∈ ℳ𝑔𝑔 in game 𝑔𝑔,𝑔𝑔 =  1, . . . , 𝑛𝑛/2, 
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WnSc∗(𝑿𝑿)𝑔𝑔𝑔𝑔 =
1

𝑠𝑠(WS)𝑚𝑚∗
�WnSc𝑔𝑔𝑔𝑔 −WS����𝑚𝑚∗�

1
𝑚𝑚�

+
1
𝑚𝑚�

. (14) 

where WS����𝑚𝑚∗ = ∑ ∑ WnSc𝑔𝑔𝑔𝑔/𝑚𝑚∗
𝑚𝑚 ∈ℳ𝑔𝑔𝑔𝑔  and 𝑠𝑠(WS)𝑚𝑚∗

2 = ∑ ∑ �WnSc𝑔𝑔𝑔𝑔 − WS����𝑚𝑚∗�2/(𝑚𝑚∗ − 1)𝑚𝑚 ∈ℳ𝑔𝑔𝑔𝑔 . 
By property (i) of Theorem 2.1, both (13) and (14) remain equivalently standardized to a sample 
mean and sample standard deviation of 1/𝑚𝑚� . Hence, we can directly compare wealth allocation 
differences between (12), (13), and (14) (e.g., Figure 2). 

In closing this section, it may be tempting to ask why (2) cannot be used directly if Δ𝑔𝑔𝑔𝑔 ≡
logit�𝑝𝑝𝑔𝑔𝑔𝑔� for all 𝑚𝑚 ∈ ℳ𝑔𝑔, and 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁. The trouble is that, under the assumptions of 
Theorem 2.2, the conditional natural share in this construct, for any given 𝑚𝑚, 𝑚𝑚 ∈ ℳ𝑔𝑔, 𝑔𝑔, 1 ≤  𝑔𝑔 ≤
 𝑁𝑁, is 

𝒩𝒩gm|ℳ𝑔𝑔,𝑿𝑿 =
logit�𝑝𝑝𝑔𝑔𝑔𝑔�

∑ logit�𝑝𝑝𝑔𝑔𝑔𝑔�𝜔𝜔∈ℳ𝑔𝑔

≈
𝑈𝑈

𝑈𝑈 + 𝑉𝑉
,  

where 𝑈𝑈~𝑁𝑁(0,𝜎𝜎𝑢𝑢2), 𝑉𝑉~𝑁𝑁(0,𝜎𝜎𝑣𝑣2), and 𝑈𝑈 ⊥ 𝑉𝑉. This is because, with some abuse of notation and 
allowance for heuristics, logit�𝑝𝑝𝑔𝑔𝑔𝑔� ≡ �𝒙𝒙𝑔𝑔𝑔𝑔∗ �𝑇𝑇𝜷𝜷 ≈ 𝑁𝑁(0,𝜎𝜎2) (recall 𝛽𝛽0 =  0 by assumption and the 
covariates are centered). Hence, it can be shown that 𝑈𝑈/(𝑈𝑈 + 𝑉𝑉) follows a Cauchy distribution with 
location parameter 𝑥𝑥0 = 1/𝑎𝑎 and scale parameter 𝛾𝛾 =  √𝑎𝑎 − 1/𝑎𝑎, where 𝑎𝑎 = 𝜎𝜎𝑣𝑣2+𝜎𝜎𝑢𝑢2

𝜎𝜎𝑢𝑢2
= #�ℳ𝑔𝑔� (see 

the Supplemental Material). Therefore, 𝐸𝐸(𝒩𝒩𝑔𝑔𝑔𝑔|ℳ𝑔𝑔)  does not exist! (The median is the location 
parameter, 1/#�ℳ𝑔𝑔�.) Thus, without the stabilization of (5), players would be subject to extreme 
wealth shares, rendering almost all estimates practically useless. This is an additional advantage of 
the formulation of (5) in that it is robust to the practical use of a logistic regression model for 
performance measurement, commonly used in the literature (e.g., Teramoto and Cross, 2010; Daly-
Grafstein and Bornn, 2019; Terner and Franks, 2021). 

2.2. Empirical Results 
We now employ the methods of Section 2.1 to NBA player statistics from the 2022-2023 NBA 
regular season (National Basketball Association, 2023). To compile an updated set of on court 
performance statistics, we utilize the python package nba_api (Patel, 2018). Because we require 
game-by-game statistics, we design a custom game-by-game query wrapper for Patel (2018). The 
result is a novel data set of 1,226 2022-2023 NBA regular season games (i.e., 𝑛𝑛 =  2,452) spanning 
36 statistical categories (see the Supplemental Material for details). For completeness, we note that 
four games did not report player tracking data and were excluded: GSW @ SAS on January 13, 2023, 
CHI @ DET on January 19, 2023, POR @ SAS on April 6, 2023, and MIN @ SAS on April 8, 2023. To 
obtain the data and replication code, please navigate to the public github repository at 
https://github.com/jackson-lautier/nba_roi. 

In constructing the initial logistic regression and selecting the 36 data fields, we employ three 
modeling principles: aligning merit to winning, valuing as much on court activity as possible, and 
avoiding double counting. The variable selection process consists of first fitting a logistic regression 
model at the team level for all 36 statistical on court data fields. For simplicity, we then remove 
covariates that are not statistically significant at 𝛼𝛼 =  0.10 and perform a second logistic 
regression. In this second model, we estimate 𝛽̂𝛽0 = −0.004930 with a p-value of 0.948. Hence, we 
may comfortably refit the logistic regression without an intercept, as it only results in a negligible 

https://github.com/jackson-lautier/nba_roi
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amount of bias. Because we may use Theorem 2.2 with 𝛽𝛽0 = 0, we feel allowing such small 
estimation bias is a negligible trade-off (further, the form of (12) will correct this bias per (6)). The 
final fitted model may be found in Table 1. For reference, the Supplemental Material contains 
additional details of the model fitting process, such as an expanded discussion on the modeling 
principles, definitions of each of the original 36 data fields, and the original fitted model with all 36 
data fields. 

 

Table 1: Logistic Regression Model Parameters. Based on team outcomes for the 2022-2023 
NBA regular season. Because player tracking data was not available for four games, 𝑛𝑛 =  2,452. 
Significant at 𝛼𝛼 =  0.001 (∗∗∗), 𝛼𝛼 =  0.01 (∗∗), and 𝛼𝛼 =  0.05 (∗). The McFadden 𝑅𝑅2 (McFadden, 
1974) is 0.6457. Variable importance computed using Kuhn (2008). 

The model of Table 1 suggests that missing shots (i.e., FG2X, FG3X, FTMX), committing fouls (PF) 
and turnovers (TOV), contesting three point shots (C3P), allowing baskets on defended shots 
(DFGO), and defensive distance traveled (DDIS) negatively impact win probability. Of these, the 
only surprise is C3P, though it may be highly related to opponents making three-point shots. On the 
winning side, it is beneficial to make baskets (i.e., FG2O, FG3O, FTMO), collect rebounds (AORB, 
ADRB), steals (STL), blocks (BLK), draw non-charge fouls (PFD), draw charges (CHGD), set screen 
assists (SAST), contest two-point shots (AC2P), box out on the defensive end (DBOX), have 
contested shots miss (DFGX), make passes not counted in assists (APM), and collect contested 
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rebounds (OCRB, DCRB). The most important statistical categories may be assessed by a standard 
variable importance analysis (Kuhn, 2008). It finds that making (FG3O) and missing (FG3X) three-
point field goals are the most important determinants of winning. This aligns closely with long-term 
trend analysis of the NBA (e.g., Goldsberry, 2019). 

The performance measurement model in Table 1 is just one possibility for ∆ in (5). Many choices 
exist, such as (7) and (8). Different choices for ∆ will impact the resulting wealth redistribution, 
which allows an analyst to tailor player credit by performance measurement preference. To 
illustrate this, we compare the resulting distributions of (12), (13), and (14) in Figure 2. We see that 
despite having the same mean and standard deviation of 1/𝑚𝑚� = 4.75%, the distributions differ. 
Specifically, the WRMS estimate is more symmetric, whereas both the Game Score and Win Score 
are skewed right. In a robustness analysis, we find (12) outperforms both (13) and (14) in terms of 
team win prediction and team rank for data from the 2022-2023 NBA regular season (for details, 
see the Supplemental Material). As such, the remainder of the manuscript will provide results for 
(12) only, and the Supplemental Material will provide greater discussion on performance 
measurement comparisons between (12), (13), and (14). We emphasize that it is the framework of 
Figure 1 we propose, of which the NBA analyst has flexibility to replace ∆ as they see fit. 

 

Figure 2: Wealth Redistribution Comparison. Frequency distributions of (12), (13), and (14) 
for all NBA players from the 2022-2023 NBA regular season. The sample of 𝑛𝑛 =  2,452 game 
outcomes results in 𝑚𝑚∗ =  25,804. 

We may also assess the cumulative total performance of a player over the investment period with a 
financial perspective. Denote 𝒫𝒫 = ⋃ ℳ𝑔𝑔�����𝑔𝑔  as the set of all players with the potential to contribute 
over the investment horizon. For a player 𝜋𝜋, 𝜋𝜋 ∈  𝒫𝒫, let 𝒢𝒢𝜋𝜋 represent the set of games for which 
player 𝜋𝜋’s team appeared (i.e., #{𝒢𝒢𝜋𝜋}  =  82 for a standard NBA regular season). Hence, define for 
any 𝑔𝑔 ∈ 𝒢𝒢𝜋𝜋, 𝜋𝜋 ∈ 𝒫𝒫, 

0 

3 

6 

9 

0 -10 % % 10 % 20 % 30 % 
Player Game Share 

Game Score 
Logistic Regression 
Win Score 



 12 

𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔∗ = �
𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔, 𝜋𝜋 ∈ ℳ𝑔𝑔

0, 𝜋𝜋 ∉ ℳ𝑔𝑔
, (15) 

Because ∑ ∑ 𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔 =𝑚𝑚∈ℳ𝑔𝑔
𝑁𝑁
𝑔𝑔=1 ∑ ∑ 𝒲𝒲(𝒮𝒮)∗𝑔𝑔𝑔𝑔 = 𝑁𝑁𝑚𝑚∈ℳ�𝑔𝑔

𝑁𝑁
𝑔𝑔=1  still holds trivially, the desirable 

unbiased property of (6) remains. In financial parlance, the form of (15) implies a missed game is a 
default. The season total of (15) for player 𝜋𝜋, 𝜋𝜋 ∈ 𝒫𝒫, is then 

PVW(⋅)𝜋𝜋 = � 𝒲𝒲(𝒮𝒮)𝑔𝑔𝑔𝑔∗
𝑔𝑔∈𝒢𝒢𝑚𝑚

. (16) 

We may consider (16) as a present value of a series of cash flows taking the value of (15) 
discounted at a zero interest rate. In other words, (16) assumes all single game values are unity. 
This allows for a pure performance measure that does not include salary. Notably, the game-by-
game approach including zeros used in (15) allows for an instant comparison of a high-performing 
player with frequent missed games against an average-performing player with consistent 
availability (i.e., Figure 3). This has been a source of perturbation in evaluating players among NBA 
pundits (e.g., Lowe, 2020), of which (16) may offer new insights. 

 

Figure 3: Quantifying Missed Games. The per-game approach of (16) allows for break-even 
calculations between high-performing players with frequent missed games (Kevin Durant, 47 
games played, top) against average-performing players with consistent availability (Tari Eason, 
82 games played, bottom). Data spans the 2022-2023 NBA regular season. 
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The placeholder (·) in (16) is generic notation that may be replaced to remind us which 
performance measurement underlies 𝒲𝒲. For example, we will use PVWL in the sequel to denote 
(16) that uses (12) for ∆. For reference, a summary of the distributions of PVWL by position may be 
found in Figure 4. We can see the model of Table 1 tends to prefer the center position. In addition, 
we also report the top performing players, of which Nikola Jokic is the top overall PVWL performer. 
Though outside the scope of our present analysis, we present a comparison of PVW(·) performance 
measures using (13) and (14) in the Supplemental Material. Because 1/𝑚𝑚� = 4.75%, an average 
player playing 82 games would obtain a PV total of 3.896 for the 2022-2023 NBA regular season, 
regardless of the performance measure used. For complete results, navigate to the public github 
repository at https://github.com/jackson-lautier/nba_roi. 

 

Figure 4: Top Performers: PVWL. A summary of the top performers using (16) with logistic 
regression as the performance measurement (i.e., Table 1) in the WRMS by position. Data spans 
the 2022-2023 NBA regular season. 

3. Return on Investment 
 
The purpose of the present section is to complete steps III, IV, and V of the ROI framework of Figure 
1. The section proceeds in two parts. First, Section 3.1 introduces a model for the SGV (step III) and 
an unbiased technique to create the cash flows (step IV). We ultimately reproduce (1) in the NBA 
context with (19). Section 3.2 then illustrates the ROI framework with data from the 2022-2023 
NBA regular season. Prior to this, we briefly review the related literature (the Supplemental 
Material provides a more detailed literature review). 

While no NBA studies consider both player salary and on court performance simultaneously, there 
is related work outside of basketball (e.g., Idson and Kahane, 2000; Tunaru et al., 2005). The field of 
sports economics within basketball considers competitive imbalances (Berri et al., 2005), shirking 

https://github.com/jackson-lautier/nba_roi
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(Berri and Krautmann, 2006), and salaries (Berri et al., 2007a; Simmons and Berri, 2011; Halevy et 
al., 2012; Kuehn, 2017). Our forthcoming analysis differs from all of these studies generally in that 
we do not attempt to explain salary decisions. Instead, we propose the first known framework to 
measure the realized return of a player’s contract in light of on court performance. 

3.1. Methods 
It remains to estimate the SGV (step III), derive the performance-based cash flows (step IV), and 
perform the ROI calculations (step V) to complete the ROI framework of Figure 1. Specifically, we 
first propose a method to model the SGV. Next, we use the SGV model and the results of Section 2.1 
to derive an unbiased estimate of a player’s performance-based cash flows. Finally, we produce 
(19) in the form of (1), which results in a player’s ROI estimate.  

Modeling a SGV is equivalent to answering the question: how does a regular season NBA game 
generate revenue? Variations of this question have attracted previous attention (e.g., Berri et al., 
2007b, Chapter 5). In working from the basic ideas of Berri et al. (2007b), we assume NBA revenue 
is generated from ticket sales and television rights. We add a third component, which is revenue 
from advertising. Specifically, for 𝑔𝑔 =  1, . . . ,𝑁𝑁, define the parametric random variable 

SGV𝑔𝑔(α) = α1GATE𝑔𝑔 + α2𝟏𝟏ESPN + α3𝟏𝟏TNT + α4(𝟏𝟏ESPN + 𝟏𝟏TNT + 𝟏𝟏NBATV), (17) 

where the parameter vector 𝛼𝛼 =  (𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4)𝑇𝑇 consists of 𝛼𝛼1, the average ticket price for an NBA 
regular season game, 𝛼𝛼2, the average TV contract revenue for a regular season NBA game on ESPN, 
𝛼𝛼3, the average TV contract revenue for a regular season game on TNT, and, 𝛼𝛼4, the average 
advertising revenue for a televised regular season game. Further, GATE𝑔𝑔 is a random variable that 
represents the attendance for game 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁. In proposing (17), we do not assume a game 
televised on NBATV generates television rights revenue for the NBA, but we do assume it generates 
advertising revenue. 

In words, we propose to model SGV𝑔𝑔 as the sum total of ticket sales, television revenue, and 
advertising revenue from game 𝑔𝑔,𝑔𝑔 =  1, . . . ,𝑁𝑁. The natural assumption is that games with higher 
attendance will be worth more, all else equal, and games that are nationally televised will be worth 
more, all else equal. This allows us to approximate the relative importance of a game, and it results 
in the intuitive outcome that players with more nationally televised games will generate a better 
ROI. This latter point connects with previous studies, as part of the value of signing star players is 
greater attention from fans and advertisers (e.g., Berri et al., 2007b, Chapter 5). 

With an approach to model the SGVs in hand, we may move to deriving the performance-based cash 
flows (i.e., step IV in Figure 1). In doing so, we will have recovered (1), which is the main objective 
of our analysis. We first assume the time zero cash flow (i.e., 𝐶𝐶𝐹𝐹0) is a player’s full salary over the 
investment time horizon and is paid in a single lump sum. For example, assuming an NBA regular 
season, 𝐶𝐶𝐹𝐹0 would represent a full season salary. From the perspective of the NBA team, it is a 
negative cash flow and represents the initial investment. To find the return cash flows, 𝐶𝐶𝐹𝐹𝑡𝑡 , 𝑡𝑡 =
 1, . . .𝐾𝐾, for any player, 𝜋𝜋,𝜋𝜋 ∈ 𝒫𝒫, it is left to multiply (17) with (15) for all 𝑔𝑔 ∈  𝒢𝒢𝜋𝜋. This product is 
player 𝜋𝜋’s, 𝜋𝜋 ∈ 𝒫𝒫, dollar share of SGV𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁, based on player 𝜋𝜋’s, 𝜋𝜋 ∈ 𝒫𝒫, on court 
performance. 

Formally, for any player, 𝜋𝜋,𝜋𝜋 ∈ 𝒫𝒫, let 𝐒𝐒𝐒𝐒𝐒𝐒𝑔𝑔∈𝒢𝒢𝜋𝜋 =  (SGV1, . . . , SGV𝐾𝐾)𝑇𝑇 be a vector of SGVs, via (17), 
and let 𝐖𝐖𝑔𝑔∈𝒢𝒢𝜋𝜋 = (𝒲𝒲1𝜋𝜋

∗ , … ,𝒲𝒲𝐾𝐾𝐾𝐾
∗ )𝑇𝑇 be a vector of WRMSs, via (15), for all games in which player 𝜋𝜋’s, 
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𝜋𝜋 ∈ 𝒫𝒫, team appeared over the investment time horizon, where #{𝒢𝒢𝜋𝜋} =  𝐾𝐾 ∈ ℕ. Then the vector of 
return cash flows over the investment time horizon for player 𝜋𝜋,𝜋𝜋 ∈ 𝒫𝒫, becomes 

𝐂𝐂𝐅𝐅π = �𝐒𝐒𝐒𝐒𝐒𝐒𝑔𝑔∈𝒢𝒢𝜋𝜋�
𝑻𝑻diag�𝐖𝐖𝑔𝑔∈𝒢𝒢𝜋𝜋� = (SGV1𝒲𝒲1𝜋𝜋

∗ , . . . , SGV𝐾𝐾𝒲𝒲𝐾𝐾𝐾𝐾
∗ )𝑇𝑇 , (18) 

where diag�𝐖𝐖𝑔𝑔∈𝒢𝒢𝜋𝜋� represents a diagonal 𝐾𝐾 × 𝐾𝐾 matrix with diagonal 𝐖𝐖𝑔𝑔∈𝒢𝒢𝜋𝜋. By the definition of 
(5), it is possible a particularly bad game may result in SGV𝑡𝑡𝒲𝒲𝑡𝑡𝑡𝑡

∗ < 0  0 for some 𝑡𝑡, 𝑡𝑡 =  1, . . . ,𝐾𝐾 and 
player 𝜋𝜋,𝜋𝜋 ∈ 𝒫𝒫. 

Before proceeding to complete the ROI methodology, we illustrate that the form (18) has a 
desirable conditional unbiasedness property. Specifically, recall that (5) may be thought of as a 
wealth redistribution model that reallocates the SGV based on a player’s on court performance. 
Hence, it is of interest to ensure the reallocated cash flows in (18), given a performance model in 
(5), are unbiased to the expected sum total of all SGVs, i.e., 𝐸𝐸(∑ SGV𝑔𝑔𝑔𝑔 ). In other words, we do not 
wish to inadvertently “create” or “eliminate” wealth due to a faulty estimator. This property holds if 
𝐸𝐸(SGV𝑔𝑔) = µ ∈ ℝ for all 𝑔𝑔 =  1, . . . ,𝑁𝑁. 

Theorem 3.1 Let SGV𝑔𝑔 be a single game value random variable for any game, 𝑔𝑔 =  1, . . . ,𝑁𝑁 such 
that 𝐸𝐸(SGV𝑔𝑔) = µ ∈ ℝ for all 𝑔𝑔 =  1, . . . ,𝑁𝑁. Then, conditional on 𝒲𝒲𝑔𝑔𝑔𝑔

∗  for all 𝜋𝜋,𝜋𝜋 ∈ 𝒫𝒫, 𝑔𝑔 =  1, . . . ,𝑁𝑁, 

E�� � SGV𝑔𝑔𝒲𝒲𝑔𝑔𝑔𝑔
∗

𝜋𝜋∈ℳ�𝑔𝑔

𝑁𝑁

𝑔𝑔=1

�𝒲𝒲𝑔𝑔𝑔𝑔
∗ � = 𝜇𝜇𝜇𝜇.  

That is, the WRMS estimator of (5), when viewed over all players and games in the investment time 
horizon, is unbiased to the expected total generated revenue. 

Proof. See Appendix A. 
◻ 

Finally, to retrieve the form of (1), let 𝝂𝝂𝜋𝜋 =  ((1 + 𝑟𝑟𝜋𝜋)−1, . . . , (1 +  𝑟𝑟𝜋𝜋)−𝐾𝐾)𝑇𝑇 be a vector of discount 
factors at the rate, 𝑟𝑟𝜋𝜋, where 𝜋𝜋 ∈ 𝒫𝒫. Then the contractual ROI for player 𝜋𝜋,𝜋𝜋 ∈ 𝒫𝒫, over the 
investment time horizon, is the rate, 𝑟𝑟𝜋𝜋, that equates the discounted present value of player 𝜋𝜋’s, 𝜋𝜋 ∈
𝒫𝒫, cash flows, (18), to player 𝜋𝜋’s, 𝜋𝜋 ∈ 𝒫𝒫, salary. That is, 

�rπ: CF0π = �𝐒𝐒𝐒𝐒𝐒𝐒𝑔𝑔∈𝒢𝒢𝜋𝜋�
𝑻𝑻diag�𝐖𝐖𝑔𝑔∈𝒢𝒢𝜋𝜋�𝝂𝝂𝜋𝜋 ≡�

SGV𝑡𝑡𝒲𝒲𝑡𝑡𝑡𝑡
∗

(1 +  𝑟𝑟𝜋𝜋)𝑡𝑡

𝐾𝐾

𝑡𝑡=1

�. (19) 

where CF0π is player 𝜋𝜋’s, 𝜋𝜋 ∈ 𝒫𝒫, full salary over the investment time horizon. We have thus 
recovered (1), which completes the ROI framework of Figure 1. We remark that (19) relies on a set 
of reasonable assumptions, which are discussed more fully in Section 4. 

3.2 Empirical Results 
We now employ the methods of Section 3.1 to estimate the ROI for player salaries for the 2022-
2023 NBA regular season. Player salary data for all players from the 2022-2023 NBA regular season 
are via HoopsHype (2023) (with one supplement for the player Chance Comanche (Spotrac, 2023)). 
The data to estimate the parameters of the SGV, denoted by (17), may be compiled from various 
publicly available sources. As we review the parameter estimates of (17), we will detail these 
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sources. To obtain the data and replication code, please navigate to the public github repository at 
https://github.com/jackson-lautier/nba_roi. 

Let us first estimate the parameters of (17) before proceeding to the ROI calculations. Attendance 
figures are readily available per game (e.g., National Basketball Association, 2023), which allows for 
a reliable estimate of 𝐺𝐺𝐺𝐺𝐺𝐺E𝑔𝑔,𝑔𝑔 =  1, . . . ,𝑁𝑁. To estimate 𝛼𝛼1, we may work backwards from total NBA 
revenue. Specifically, total gates for the 2022-2023 NBA regular season are known to be 21.57% of 
total NBA revenue (Statista, 2023a). Further, total NBA revenue for the 2022-2023 NBA regular 
season is known to be $10.58B (Statista, 2023c). Hence, we may estimate total gate revenue at 
$10.58 ×  21.57% =  $2.28B. With total attendance for the 2022-2023 NBA regular season at 
22,234,502 (National Basketball Association, 2023), we arrive at an estimate of the average per-
ticket price, 𝛼𝛼�1 =  $102.64. 

To estimate 𝛼𝛼2, 𝛼𝛼3, and 𝛼𝛼4, we may again work backwards from total NBA revenue. Specifically, it is 
known that total NBA television revenue for the 2022-2023 NBA regular season is $1.4B for games 
televised on ESPN (Lewis, 2023) and $1.2B for games televised on TNT (Lewis, 2023). With 101 
games televised on ESPN (National Basketball Association, 2023) and 65 games televised on TNT, 
we estimate 𝛼𝛼�1 = $13,861,386 and 𝛼𝛼�3 =  $18,461,538. Finally, total NBA advertising revenue for 
the 2022-2023 NBA regular season is known to be $1.66B (Statista, 2023b). As an approximation, 
we assume total ad revenue to be spread equally among the 273 nationally televised 2022-2023 
NBA regular season games (ESPN: 101; TNT: 65; NBATV: 107) (National Basketball Association, 
2023). Hence, we estimate 𝛼𝛼�4 = $6,080,586. A summary of coefficient estimates for (17) may be 
found in Table 2. For reference, the top five teams in terms of total SGV for the 2022-2023 NBA 
regular season are LAL ($908.3M), GSW ($885.4M), BOS ($831.1M), PHX ($766.3M), and PHI 
($708.5M). Each of these teams play in some of the largest television media markets (Sports Media 
Watch, 2024), which helps to validate these estimates. Players on these teams will generate higher 
ROIs because the games are more valuable, all else equal. 

 

Table 2: Component Estimates of 𝐒𝐒𝐒𝐒𝐕𝐕𝑔𝑔. Coefficient estimates of (17) based on available data for 
the 2022-2023 NBA regular season (National Basketball Association, 2023; Statista, 2023a,c; 
Lewis, 2023; Statista, 2023b). 

To estimate contractual ROI, it is necessary to select a performance measurement random variable 
for ∆. For consistency with Section 2.2, we will use (12) with the missed game adjustment (15). The 
only restriction is that a player’s salary is at or above the 2022-2023 league minimum, $1,017,781 
(RealGM, L.L.C., 2024). Because we treat missed games as defaults, the minimum game restriction is 
just one game played. Results for all players in the 2022-2023 NBA regular season may be found in 
Figure 5. Not surprisingly, players with higher salaries generally realize lower ROIs, all else equal. 
The display of Figure 5 may be used by NBA teams to target players that may represent a better 
relative value at various salary ranges. Similarly, Figure 5 may be used to evaluate the performance 
of NBA team player personnel decision-makers when signing players. Finally, Figure 5 may be used 

https://github.com/jackson-lautier/nba_roi
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by the players or player agents in negotiating a new contract that is more closely aligned with 
comparable players in the aggregate market. To our knowledge, Figure 5 is the first such attempt to 
evaluate the ROI for all players in the NBA. 

 

Figure 5: ROI by Salary: All Players. A scatter plot of ROI by log of salary for all players with a 
salary at the league minimum ($1,017,781 (RealGM, L.L.C., 2024)) or higher for the 2022-2023 
NBA regular season. The on court performance measurement is (12) with the missed game 
adjustment (15). Salary data (HoopsHype, 2023; Spotrac, 2023) and SGV parameter estimate 
data (National Basketball Association, 2023; Statista, 2023a,c; Lewis, 2023; Statista, 2023b; 
Sports Media Watch, 2024) detailed in Section 3.2. The ROI calculations may be performed using 
(19). 

As an additional illustration of the utility of the ROI estimates of Figure 5, we will use traditional 
financial calculations to compare the risk-reward by position. For example, the coefficient of 
variation (CV) (Klugman et al., 2012, Definition 3.2, pg. 20) takes a ratio of the standard deviation of 
an asset class to its mean. Hence, if we consider each position as an asset class, we may perform the 
same calculation. We do so in Table 3. 
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Table 3: Coefficient of Variation for ROI by Position. A ratio of sample standard deviation to 
sample mean of 2022-2023 NBA regular season empirical ROI estimates in Figure 5 by position. 

Table 3 suggests that the Center position offers the least risk per unit of return, whereas the Point 
Guard position is the relative riskiest per unit of return. Such results may be used to help NBA team 
player personnel decision-makers decide where to invest salary by position, a decision of obvious 
importance. Furthermore, we may calculate a replacement player ROI. Recall we have normalized 
(5) to 1/𝑚𝑚� , which is 4.75% for the 2022-2023 NBA regular season. With an average SGV of 
$5,318,785, the combination yields a replacement player game cash flow of $252,706. Finally, of the 
539 players appearing in a 2022-2023 regular season NBA game, we obtain an average salary of 
$8,274,410. Therefore, a replacement player appearing in all 82 regular season games yields a 
2.71% ROI. As an observation, the ROIs for various players will change with an alternative 
performance measurement model, such as (13) or (14). For details on this, see the Supplemental 
Material. For complete results, please navigate to the public github repository at 
https://github.com/jackson-lautier/nba_roi. 

4. Discussion 
 
A vital component of competently investing in capital markets is assessing the ex post financial 
performance of invested monies. While such assessments are a standard financial calculation 
generally, difficulties arise when the returns are non-financial, such as on court basketball activities 
like rebounding, passing, and scoring. This paper attempts to address these challenges by 
presenting the first known framework to assess the on court performance of NBA players 
simultaneously within the relative context of salary. Just as the return on a financial investment is 
relative to the purchase price, a complete evaluation of player performance is enhanced by 
considering a player’s salary. Such calculations are nontrivial, and the interdisciplinary framework 
we propose is a five-part process that combines theory from statistics, finance, and economics. With 
the value of NBA franchises reaching billions of US dollars (Wojnarowski, 2022), the need for such 
tools is now at an all-time high. 

Within the five-part ROI framework we propose in Figure 1, the WRMS of Theorem 2.1 is itself a 
novel, flexible estimator of player credit capable of considering various estimates of on court player 
performance. The heuristic derivation of the WRMS suggests a wealth redistribution starting from 
an assumption of complete naivete. Further, the per-game approach required by (19) yields a new 
dimension to the field of basketball statistics in the form of break-even calculations for missed 
games (e.g., Figure 3). Such a calculation is itself timely, as the NBA’s governing body has recently 
implemented strategies to encourage players to avoid missing games (Wimbish, 2023). Pleasingly, 
the WRMS is asymptotically unbiased to the natural share. To ensure the ROI framework we 

https://github.com/jackson-lautier/nba_roi
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propose in this manuscript and summarize in Figure 1 is reliable and complete, we use a logistic 
regression model of player performance. The plug and play design of the ROI framework of Figure 1 
allows for analysts to swap out player performance measures, estimators of the SGV, or even the 
WRMS altogether. It is our intention that this flexibility will be viewed as a positive attribute. 

Nonetheless, the infancy of research into methods to combine on court performance with player 
salaries in the NBA naturally suggests numerous areas ripe for further study. For example, while 
not necessary to utilize our ROI framework, we elect to constrain our empirical analysis to a single 
NBA regular season to ease exposition. Player contracts typically span multiple seasons, and so a 
more complete empirical analysis would increase the observation period. Further, our empirical 
estimates do not consider play-off games, which some NBA analysts consider to be a significant 
component of a player’s value (Mahoney, 2019). Hence, the empirical ROI estimates may be 
updated to include the playoffs. Our illustrative logistic regression model in (12) is calibrated to 
wins, and it is of interest to explore models calibrated to other performance goals, such as 
championships or revenue. Similarly, the SGV model we propose treats games with higher 
attendance and viewership as more important. An alternative approach might instead prefer to 
weight games with a significant impact on the standings as more important (though the two are 
likely correlated). As an example, Özmen (2016) analyzes the marginal contribution of game 
statistics across various levels of competitiveness in the Euroleague to win probability. Similarly, 
Teramoto and Cross (2010) is an example of how weighting schemes may differ for playoff games 
versus regular season games in the NBA. Something similar may be used to model a game’s 
importance. 

An important assumption not yet fully discussed is the implied independence in the sample, 𝒮𝒮. 
Though a thorough study is outside the scope of this analysis, discussion is merited. Can players on 
a basketball court be considered independent? The answer is complex (e.g., Horrace et al., 2022), 
and more study is needed. For our purposes, the asymptotic unbiasedness derived in Theorem 2.1 
will likely maintain if the dependence among the observations is weak enough to allow the Central 
Limit Theorem to work (Lautier et al., 2023). Hence, as a point estimate, we feel the WRMS concept 
is likely robust (though we notably do not present any type of variance analysis for this reason). 
Other approaches, such as mixed effects models or generalized estimating equations could be 
explored. 

The estimators would also benefit from higher precision. This may come through in the form of 
greater data detail. For example, considering Nielson television ratings, specific ticket prices, or a 
more refined approach to allocate television revenue. Individual players may get additional credit 
for off court revenue, such as from jersey sales. A difficulty of these potential enhancements is to 
obtain detailed data. Higher precision may also be obtained through enhanced calibration. For 
example, methods exist to refine the quality of a field-goal attempt (e.g., Shortridge et al., 2014; 
Daly-Grafstein and Bornn, 2019) or account for peer (i.e., teammate) and non-peer effects (e.g., 
Horrace et al., 2022). 

In addition to the statistical aspect, greater precision may be investigated in the financial aspects of 
the ROI framework of Figure 1 and the derivation of (19). For example, we assume an NBA player’s 
single season salary is paid in one lump sum at time zero. Generally, a player’s salary will be paid in 
installments throughout the regular season. Obtaining more detailed salary payment data will have 
an impact on the ROI calculations, which may be of interest. Further, we assume all games are 
played on equally spaced time intervals. This assumption may be explored using financial rate 
conversion techniques and more precise game dates. Further, an implicit assumption in (19) is that 
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games in the earlier part of the season are given more weight due to the basic conditions of the time 
value of money. Research into the implication of this assumption, such as randomizing the order of 
the games to calculate a distribution of realized ROI calculations may be prudent. Additionally, the 
NBA imposes a player salary cap (National Basketball Association, 2018), which includes a team 
salary floor. Hence, there is an implicit minimum invested, which suggests a type of risk-free rate. 
This may be explored further to offer Sharpe Ratio calculations (e.g., Berk and Demarzo, 2007, 
(11.17)). In addition to the replacement player adjustments employed herein, previous studies such 
as Niemi (2010) may be helpful for this analysis. 
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Appendix A 
 

Proof of Theorem 2.1. For the standardization of (i), recall (3), (4), and (5) to write 

 
Next, ignore the radical to similarly show 

 
For (ii), recall Δ𝑔𝑔𝑔𝑔 are i.i.d. for all 𝑚𝑚,𝑚𝑚 ∈  ℳ𝑔𝑔,𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁 and observe 

 
Further, given ℳ𝑔𝑔, 𝑚𝑚 ∈  ℳ𝑔𝑔,𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁, 

 
But Δ𝑔𝑔𝑔𝑔 are i.i.d. for all 𝒮𝒮, and so the distribution of 𝒩𝒩𝑔𝑔𝑔𝑔|ℳ𝑔𝑔is equivalent for all 𝑚𝑚 ∈ ℳ𝑔𝑔. Hence, 
assuming 𝐸𝐸(𝒩𝒩𝑔𝑔𝑔𝑔|ℳ𝑔𝑔) exists, 
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for all 𝑚𝑚 ∈ ℳ𝑔𝑔. Hence, 𝐸𝐸�𝒩𝒩𝑔𝑔𝑔𝑔�ℳ𝑔𝑔� = 1/#{ℳg}. The number of players appearing in any game, 
𝑔𝑔, 1 ≤  𝑔𝑔 ≤  𝑁𝑁, is a discrete random variable over the integers {10,...,30}, and so the expectation is 
finite and nonzero. Hence, by the Weak Law of Large Numbers (Lehmann and Casella, 1998, 
Theorem 8.2, pg. 54-55) and the continuous mapping theorem (Lehmann and Casella, 1998, 
Corollary 8.11, pg. 58), consistency follows. 
 
Finally, property (iii) is an immediate consequence of the invariance property of the MLE 
(Mukhopadhyay, 2000, Theorem 7.2.1, pg. 250). 

◻ 
 
 
 
 
 

Proof of Theorem 2.2. Observe, 

 
This proves (10). Next, recall (9) with 𝑥𝑥𝑖𝑖𝑇𝑇 = (𝑋𝑋𝑖𝑖1• − 𝑋𝑋�𝑖𝑖1•, … ,𝑋𝑋𝑖𝑖𝑖𝑖• − 𝑋𝑋�𝑖𝑖𝑖𝑖•)𝑇𝑇  to write via (10) 

 
◻ 
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Proof of Theorem 3.1. Observe, 

 
The proof is then complete by (6). 

◻ 
 
 
Appendix B 
 
This manuscript has an accompanying online Supplemental Material.  The Supplemental Material 
contains a brief review of discounting cash flows with interest, a detailed literature review, a 
glossary of standard statistical abbreviations used in the NBA, a result related to generating a 
Cauchy distribution, a reference of indexing variables, additional logistic regression model details, 
and simulation studies (including an extension to Theorem 3.1).  To locate the Supplemental 
Material, please navigate to nba_roi_0529.pdf (beginning on pg. 36). 
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