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1. Introduction	
	
Pressing	is	a	critical	tactical	component	in	modern	soccer,	enabling	teams	to	disrupt	their	
opponents’	build-up	play	and	create	advantageous	scoring	opportunities.	Its	prominence	has	grown	
in	recent	years,	exemplified	by	high-performing	teams	like	Liverpool	and	Manchester	City,	whose	
aggressive	pressing	systems	have	been	instrumental	in	their	success	[1,	2].	By	applying	coordinated	
pressure	on	the	ball	carrier	and	surrounding	players,	pressing	not	only	forces	errors	but	also	
facilitates	quick	transitions	to	offensive	plays.	

Consequently,	there	has	been	a	surge	in	academic	interest	in	analyzing	pressing.	Studies	have	
explored	various	dimensions,	including	counterpressing	[3],	pressing	actions'	effectiveness	[4]	and	
impact	on	game	outcomes	[5].	Notably,	frameworks	such	as	the	Valuing	Pressure	decisions	by	
Estimating	Probabilities	(VPEP)	[5]	and	subsequent	studies	[6]	have	been	developed	to	quantify	
pressing’s	value	through	advanced	metrics	and	machine	learning	approaches.		However,	despite	
these	advancements,	existing	research	primarily	evaluates	pressing	outcomes	based	on	event	data,	
often	neglecting	the	nuanced	role	of	player	positioning.		

The	influence	of	off-ball	player	positioning	during	pressing	scenarios	has	only	been	addressed	in	a	
few	studies	[7].	While	some	studies	assess	pressing	as	a	collective	effort,	only	[4]	have	
systematically	analyzed	whether	the	spatial	arrangement	of	individual	players	aligns	with	optimal	
tactical	expectations	using	a	rule-based	quantification	of	pressure.	Moreover,	most	existing	
methods	lack	the	granularity	needed	to	determine	the	appropriateness	of	player	positions	during	
pressing	sequences,	limiting	their	applicability	for	tactical	refinement.	

This	study	addresses	these	gaps	by	proposing	a	novel	evaluation	framework,	exPress	(Explainable	
&	Expected	Press),	which	centers	on	player	positioning	as	a	key	determinant	of	pressing	efficacy.	
Using	existing	methodologies,	exPress	uses	XGBoost	to	model	and	analyze	pressing	scenarios.	
exPress	incorporates	spatio-temporal	data	to	capture	the	complex	interactions	between	defenders	
and	attackers.	Through	interpretable	analysis,	exPress	elucidates	how	individual	player	positions	
and	movements	influence	the	outcomes	of	pressing	situations,	providing	actionable	insights	into	
tactical	decision-making	and	player	performance	evaluation.	
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Figure	1.	The	overall	framework	of	our	proposed	method.	exPress	evaluates	pressing	events	and	player	
positions	by	quantifying	the	effectiveness	of	pressing	based	on	player	positioning	and	interactions.	The	
framework	also	provides	actionable	insights	by	analyzing	counterfactual	position	adjustments,	
demonstrating	potential	increases	in	pressing	success.	

2. Related	Works	
	
In	recent	years,	advances	in	data	analysis	and	machine	learning	technologies	have	significantly	
leveraged	research	on	player	and	team	performance	in	soccer	[8,	9].	In	literature,	positional	data	
predominantly	focuses	on	analyzing	offensive	movements	and	strategies,	like	shooting	behavior	
[10,	11],	passing	patterns	[12,	13,	14,	15]	or	expected	possession	value	models	[16,	17,	18].	More	
recently,	off-ball	patterns	have	been	analyzed	in	the	context	of	set-pieces	[19,	20],	team	formations	
[21,	22,	23],	space	control	models	[24]	with	various	studies	also	exploring	different	aspects	of	
pressing	[3,	4,	8,	25,	26,	27,	28,	29].		

Andrienko	et	al.	[4]	introduced	a	model	for	quantifying	pressure	based	on	distances	and	angles	
between	players,	accompanied	by	a	formula	to	evaluate	pressing	intensity.	This	study	also	
employed	visualization	techniques	to	analyze	pressing	scenarios.	Fernandez-Navarro	et	al.	[26]	
categorized	defensive	actions	into	four	spatial	dimensions	and	investigated	the	strategic	
preferences	of	teams.	Similarly,	Low	et	al.	[27]	distinguished	between	high-pressing	and	deep-
defending	strategies,	utilizing	positional	data	to	evaluate	metrics	such	as	inter-player	distances,	
team	dispersion,	and	line	spacing.	Forcher	et	al.	[28]	advanced	the	field	by	identifying	optimal	
spatial	conditions	for	ball	recovery,	emphasizing	concentrated	pressure	on	ball	carriers	and	
proximate	areas	while	intensifying	pressure	as	defensive	sequences	progressed.	Nevertheless,	it	
was	limited	to	analyzing	possessions	lasting	at	least	five	seconds	and	involving	three	or	more	
passes,	thereby	omitting	the	analysis	of	counterpressing	scenarios,	typically	occurring	within	five	
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seconds	of	possession	loss.	Herold	et	al.	[30]	quantified	and	visualized	defensive	pressure	applied	
to	players	without	ball	possession,	confirming	the	hypothesis	that	reduced	pressure	on	receivers	
correlates	with	higher	passing	success	rates.	However,	the	study’s	focus	on	specific	behavioral	
concepts,	such	as	Deep	Runs	and	Change	of	Directions,	restricted	its	ability	to	examine	pressing	
effectiveness	across	broader	contexts.		

More	recently,	Forcher	et	al.	[31]	defined	four	defensive	principles	strongly	associated	with	
successful	ball	recovery	and	explored	tactical	variations	between	central	and	wide	areas,	
highlighting	effective	defensive	structures	employed	by	high-performing	teams.	Gu	et	al.	[32]	
introduced	a	method	for	quantifying	individual	player	pressure	using	3D	body	motion	parameters,	
creating	a	"Pressure	Matrix"	for	each	player.	These	matrices	were	then	synthesized	into	a	graph-
based	Player	Pressure	Map	for	evaluating	player	performance.	

The	aforementioned	studies	often	lack	a	comprehensive	explanation	of	the	structural	dynamics	
following	successful	or	unsuccessful	pressing.	To	address	these	limitations,	subsequent	research	
has	examined	the	interplay	between	pressing	and	subsequent	attacking	opportunities.	Robberechts	
[5]	evaluated	pressing	decisions	through	a	risk-reward	framework	and	introduced	the	VPEP	
framework	to	contextualize	pressing	within	quantitative	analyses.	Bauer	and	Anzer	[33]	suggested	
a	precise	definition	of	counterpressing,	as	a	team	or	group	tactical	behavior	aiming	to	regain	the	
ball	immediately	after	a	possession	change.	They	quantified	a	risk-reward	contemplation	of	
counterpressing;	however,	they	were	unable	to	compare	its	efficiency	with	alternative	tactics,	such	
as	fall-ball	behavior.	Merckx	et	al.	[6]	proposed	a	rule-based	method	for	automatically	detecting	
pressing	scenarios.	They	deconstructed	the	effects	of	pressing	on	ball	carriers	and	their	passing	
options,	modeling	outcomes	such	as	ball	recovery,	pass	selection,	and	goal-scoring	opportunities,	
thereby	extending	the	VPEP	framework.	

Despite	these	advancements,	prior	research	remains	predominantly	focused	on	quantitative	
performance	metrics,	often	neglecting	the	influence	of	player	positioning	within	pressing	scenarios.	
Our	approach	addresses	these	gaps	by	introducing	a	novel	framework	for	understanding	pressing	
dynamics	through	an	explainable	and	interpretable	approach,	bridging	theoretical	constructs	and	
practical	applications.	

3. Methods	
	

3.1. Data	
Both	event	and	StatsBomb-360	data	are	provided	by	Hudl	StatsBomb	[34].	Event	data	includes	
detailed	information	on	in-game	actions	such	as	passes,	shots,	tackles,	and	pressings—pressings	
being	defined	as	instances	when	a	player	moves	to	apply	pressure	on	an	opposing	player	in	
possession	of	the	ball—specifying	their	time,	location,	and	outcomes.	Complementing	this,	
StatsBomb-360	data	provides	positional	information	for	all	players	on	the	field	as	captured	using	
computer	vision,	offering	detailed	insights	into	player	positions	visible	within	the	camera’s	
coverage	and	enabling	a	more	comprehensive	analysis	of	spatial	and	tactical	dynamics.	
	
The	dataset	comprises	200	matches,	covering	various	competitive	levels	and	contexts.	Specifically,	
it	includes	34	matches	from	the	2023/24	season	of	Bayer	Leverkusen	in	the	1.	Bundesliga,	64	
matches	from	the	2022	FIFA	World	Cup,	51	matches	from	the	2024	UEFA	European	Championship,	
and	51	matches	from	UEFA	Euro	2020.	Including	these	datasets	ensures	diverse	scenarios	for	
pressing	situations,	facilitating	robust	model	training	and	evaluation	across	different	tactical	and	
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competitive	environments.	To	effectively	process	and	analyze	the	event	data	from	these	matches,	
we	utilized	the	Soccer	Player	Action	Description	Language	(SPADL)	[5]	during	the	preprocessing	
phase.	SPADL	is	a	framework	that	converts	event	data	provided	in	different	formats	by	various	
suppliers,	such	as	Hudl	StatsBomb,	Opta,	and	Wyscout,	into	a	unified	structure	that	facilitates	
analysis.	The	event	data	converted	through	SPADL	includes	nine	attributes:	action	type,	outcome,	
body	part	used,	start	and	end	locations,	start	and	end	times,	player	identity,	and	team	information.	
In	this	study,	we	combined	these	nine	attributes	with	the	StatsBomb-360	data	to	precisely	quantify	
pressing	situations. 
	
3.2. Implementation	Details	
We	constructed	a	comprehensive	feature	set	by	integrating	event	data	with	360-degree	data	to	
effectively	represent	pressing	actions.	While	event	data	does	only	contain	information	on-ball	
possessing	players,	360	data	contain	valuable	information	on	a	subset	of	the	surrounding	players.	
However,	there	is	one	key	consideration	when	using	this	data	source:	the	number	of	players	
captured	per	event	varies,	and	player	identifiers	are	not	provided.	For	instance,	to	compute	
positional	and	distance	information	for	the	three	closest	players,	at	least	three	players	from	each	
team	must	be	captured	in	the	data.	To	handle	this,	we	adopted	two	approaches:	one	that	directly	
incorporates	missing	values—leveraging	a	tree-based	model’s	mechanism	which	automatically	
learns	an	optimal	default	split	direction	for	missing	data	during	tree	splitting—and	another	that	
imputes	missing	values	with	zeros.		Further	details	on	the	feature	construction	process	are	
provided	in	Appendix	A.1.	

In	addition	to	spatial	information,	we	also	accounted	for	the	temporal	dynamics	between	actions.	
Typically,	the	action	at	time	𝑎!	precedes	the	pressing	action	𝑝!"	(𝑡 < 𝑡′);	however,	there	are	
instances	where	at	overlaps	with	the	start	of	𝑝!".	For	these	cases,	we	restricted	the	use	of	certain	
features	derived	from	𝑎!-	such	as	its	end	position,	outcome,	and	action	type	to	maintain	temporal	
consistency	within	the	feature	set.	

Building	on	this	process,	we	define	our	target	to	evaluate	pressing	effectiveness.	The	primary	
objective	of	pressing	is	generally	to	recover	possession.	However,	the	impact	of	pressing	extends	
beyond	immediate	possession	recovery.	For	example,	pressing	can	force	the	opposing	team	into	
disadvantageous	positions,	thereby	increasing	their	likelihood	of	losing	the	ball	in	subsequent	
plays,	which	is	also	highly	valued.	Based	on	this,	in	this	study,	we	aim	to	measure	the	effectiveness	
of	pressing	through	the	probability	of	regaining	possession	in	the	next	five	seconds,	which	we	
denote	as	𝑥𝑃:	

																																																																						𝑥𝑃	 = 	𝑃(𝐺 = 1|𝑆! , 𝑝!′)																																																																			(1) 
	
At	a	given	time	t,	an	action	in	SPADL	framework	is	denoted	as		𝑎! .	A	pressing	action	occurring	at	a	
subsequent	time	𝑡′	is	represented	separately	as	𝑝!",	where	𝑡 < 𝑡′.	To	capture	the	contextual	
information	surrounding	the	pressing	action	at	time	𝑡′,	we	define	the	game	state	𝑆!	as	a	sequence	of	
the	previous	three	actions:	𝑆!=	[𝑎!#$,𝑎!#%,𝑎!].		
	
To	assess	the	effectiveness	of	a	pressing	action,	we	examine	whether	possession	is	regained	within	
5	seconds	after	𝑡′.	A	binary	outcome	variable	𝐺	is	defined,	where	𝐺 = 1	(positive	label)	if	possession	
is	regained	within	5	seconds,	and	𝐺 = 0	(negative	label)	otherwise.	We	aim	to	assess	the	
effectiveness	of	pressing	through	the	probability	of	regaining	possession.	
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For	modeling	pressing	outcomes,	we	employed	Extreme	Gradient	Boosting	(XGBoost),	a	machine	
learning	algorithm	that	constructs	an	ensemble	of	decision	trees	to	model	complex	relationships.		
The	loss	function	was	tailored	to	evaluate	pressing	outcomes	effectively,	focusing	on	whether	the	
defending	team	successfully	recovers	the	ball.	Within	the	dataset,	the	2022	FIFA	World	Cup	data	
was	designated	as	the	test	set,	while	the	remaining	data	were	used	for	training.	This	split	resulted	
in	36,948	training	samples	and	14,504	test	samples,	including	10,339	training	samples	and	4,290	
test	samples	corresponding	to	instances	where	ball	possession	was	regained	within	5	seconds.	
Additionally,	20%	of	the	training	data	was	reserved	as	a	validation	set	to	prevent	overfitting.		
	
4. Results	
	
We	compared	the	performance	of	various	models	to	derive	pressing	value	based	on	player	positions	
and	 game	 states.	 The	 models	 included	 XGBoost,	 Logistic	 Regression,	 Naive	 Bayes,	 K-nearest	
neighbors	algorithm	(KNN),	MLP	Classifier,	and	a	CNN-based	deep	learning	approach	leveraging	the	
SoccerMap	 [35]	 structure.	 Each	 model	 was	 evaluated	 based	 on	 its	 ability	 to	 predict	 pressing	
outcomes,	focusing	on	ball	recovery	scenarios.	
	

	
ROC	AUC	 Log	Loss	

Logistic	Regression	 0.508	 0.691	

Naive	Bayes	 0.531	 0.809	

KNN	 0.517	 2.919	

Random	forest	 0.593	 0.597	

MLP	Classifier	 0.577	 0.721	

SoccerMap	 0.596	 0.721	

XGBoost	 0.607	 0.660	

Table	1.	Results	of	baseline	models	in	predicting	pressing	outcomes.	This	table	presents	the	ROC	AUC	
and	Log	Loss	scores	for	various	machine	learning	classifiers.	 

	
4.1 Comparison	to	baseline	models	
Table	1	compares	the	performance	of	various	machine	learning-based	classification	models.	Among	
these,	the	best	performance	was	achieved	by	the	XGBoost,	which	achieved	an	ROC	AUC	score	of	
0.607.	The	lower	performance	of	the	baseline	and	models	compared	to	previous	studies	is	due	to	
several	limitations.	Our	dataset	includes	a	relatively	small	number	of	games,	restricting	training	
data	diversity.	Additionally,	positional	data	is	limited	to	players	visible	within	the	camera	frame,	
excluding	off-ball	movements,	and	the	360	data	lacks	information	on	players	not	involved	in	direct	
actions.	These	factors	reduce	contextual	completeness,	suggesting	that	future	research	could	
improve	with	larger	datasets	and	more	comprehensive	player	tracking.	
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4.2 Prediction	results	for	different	pressure	success	conditions	
Next,	the	results	of	training	the	XGBoost	model	with	different	criteria	for	successful	pressing	are	
compared.	When	determining	the	success	criteria	for	pressing,	both	temporal	and	spatial	factors	
must	be	considered.	Temporal	factors	involve	evaluating	whether	ball	possession	is	regained	
within	a	certain	number	of	seconds	or	actions	after	the	pressing	begins.	Spatial	factors	involve	
comparing	the	distance	between	the	location	where	the	pressing	started	and	the	location	where	
possession	was	regained.	For	instance,	if	the	point	where	the	pressing	began	and	the	point	where	
possession	was	regained	are	far	apart,	it	may	be	difficult	to	attribute	the	outcome	to	the	pressing.	
	

 ROC	AUC Log	Loss 

3	seconds 0.588 0.521 

5	seconds 0.618 0.646 

7	seconds 0.582 0.661 

2	actions 0.712 0.221 

4	actions 0.573 0.701 

6	actions 0.586 0.669 

5	seconds	in	3	meters	radius 0.618 0.213 

5	seconds	in	5	meters	radius 0.618 0.316 

5	seconds	in	9	meters	radius	 0.621	 0.431	

Table	2.	Performance	comparison	based	on	different	pressing	success	criteria.	This	table	compares	the	
predictive	performance	of	the	XGBoost	model	when	different	success	criteria	for	pressing	are	applied.	
The	evaluation	includes	temporal	thresholds	as	well	as	spatial	constraints.	The	ROC	AUC	and	Log	Loss	
metrics	illustrate	how	the	incorporation	of	both	temporal	and	spatial	factors	affects	the	model’s	
assessment	of	pressing	effectiveness.	

5. Application	
	
5.1 Providing	positional	feedback	for	better	pressing	or	press-resistance	
In	the	following,	we	demonstrate	that	our	proposed	model,	exPress,	can	analyze	pressing	scenarios	
by	evaluating	the	impact	of	player	positioning	on	the	probability	of	successful	pressing	actions.	By	
simulating	positional	adjustments,	the	model	provides	insights	into	how	player	movements	
optimize	pressing	efficiency	and	limit	the	passing	options	available	to	opponents.	Iteratively	
modifying	player	locations	allowed	us	to	observe	changes	in	pressing	success	probabilities,	thereby	
identifying	which	positional	improvements	enhance	defensive	effectiveness	and	which	
configurations	leave	opponents	with	viable	passing	alternatives.	In	this	analysis,	the	simulations	of	
player	positioning	were	informed	by	video	data,	through	which	the	authors	discussed	and	
determined	the	positions	that	would	have	led	to	successful	pressing	or	allowed	the	pressing	to	be	
neutralized.	
	



 7 

	

Figure	2.	Application	example	of	positional	adjustment	on	a	pressing	scenario.	The	first	image	(left)	
depicts	the	actual	pressing	scenario,	and	the	second	image	shows	an	adjustment,	moving	player	6	
closer	to	player	7.	Lastly,	the	third	image	(right)	demonstrates	a	further	adjustment	with	player	4	
marking	player	5,	which	increases	the	pressing	success	probability	to	0.3388.	

Figure	2	illustrates	the	progression	of	a	pressing	scenario	and	the	effectiveness	of	positional	
adjustments	as	evaluated	by	the	proposed	model,	exPress.	In	the	first	image	(left),	the	actual	
pressing	scenario	is	depicted,	where	Home	team	(blue)	player	10	is	pressing	Away	team	(red)	
player	9.	However,	Home	team	player	6	is	positioned	too	far	from	Away	players	5	and	7,	leaving	
both	players	as	viable	passing	options.	As	a	result,	the	pressing	score	(𝑥𝑃:	0.2501)	is	low,	reflecting	
the	inefficiency	of	the	pressing	action.	This	inadequacy	is	further	highlighted	by	the	outcome	of	the	
play,	where	Home’s	pressing	fails,	and	Away	successfully	takes	a	shot.	To	adjust	this	situation,	in	
the	second	image	(center),	Home	team	player	6’s	position	is	adjusted	to	be	closer	to	Away	player	7.	
Despite	this	change,	the	predicted	xP	remains	unchanged	at	0.2501.	This	can	be	attributed	to	Away	
player	5	being	left	entirely	free,	and	the	positional	adjustment	inadvertently	increases	the	freedom	
of	player	5	to	receive	a	pass,	thereby	negating	any	potential	defensive	improvement.	Therefore,	as	
in	the	third	image	(right),	a	further	adjustment	is	made	by	repositioning	Home	team	player	4	closer	
to	Away	player	5.	This	adjustment	significantly	increases	the	predicted	pressing	score	(𝑥𝑃:	0.3388).	
By	marking	Away	player	5,	the	pressing	pressure	is	distributed	more	effectively,	restricting	the	
opponent’s	passing	options	and	increasing	the	likelihood	of	a	successful	pressing	outcome.	

	We	also	demonstrate	how	the	proposed	model	can	also	be	utilized	to	improve	press-resistance	for	
teams	under	pressure,	as	shown	in	Figure	3.	In	the	first	image	(left),	Home	team	(blue)	player	10	
effectively	presses	Away	team	player	12,	resulting	in	a	high	pressing	success	probability	of	0.4744.	
In	this	situation,	the	Away	team	faces	a	significant	challenge	in	breaking	the	press	due	to	limited	
passing	options	and	constrained	movement.	To	explore	a	potential	press-resistance	strategy,	Away	
team	player	5’s	position	was	adjusted	to	move	toward	the	left	side	of	the	pitch,	creating	an	
additional	passing	path	and	offering	a	potential	outlet	to	relieve	the	pressure.	This	positional	
adjustment	is	depicted	in	the	second	image	(right),	where	the	Away	team’s	player	5	provides	a	
more	viable	passing	option	to	escape	the	press.	Following	this	adjustment,	the	predicted	pressing	
success	probability	drops	to	0.4675,	indicating	a	reduced	likelihood	of	the	Home	team	successfully	
executing	their	pressing	action.	

Taken	together,	exPress	optimizes	both	pressing	effectiveness	and	press-resistance	by	simulating	
positional	adjustments	and	their	impact	on	play	dynamics.	By	providing	actionable	tactical	insights,	
it	enables	teams	to	enhance	defensive	pressure	or	strategically	evade	it,	supporting	real-time	
decision-making	in	pressing	scenarios.	
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Figure	3.	Application	example	of	positional	adjustment	on	pressing	success.	The	first	image	(left)	
depicts	the	actual	pressing	scenario,	where	Home	team	(blue)	player	3’s	position	allows	a	passing	
option	to	Away	(red)	team	player	5,	resulting	in	a	pressing	success	probability	of	0.4744.	The	second	
image	shows	a	positional	adjustment,	placing	player	3	closer	to	Away	player	5	and	between	players	1	
and	5,	effectively	restricting	passing	options	and	xP	decreased	(0.4675).	

5.2 Evaluation	of	pressing	effectiveness	of	teams	
We	analyzed	pressing	performance	at	the	2022	Qatar	World	Cup	using	the	proposed	model,	
focusing	on	teams’	ability	to	regain	possession	under	pressure.	To	evaluate	team-level	pressing	
performance,	we	aggregated	𝑥𝑃	values	across	all	pressing	situations	for	each	team.	Pressing	
efficiency	was	assessed	using	𝑥𝑃	and	𝑥𝑃	Difference,	which	measure	a	team’s	deviation	from	
expected	outcomes,	providing	insights	into	their	overall	pressing	effectiveness.	The	𝑥𝑃	Difference	is	
calculated	as	the	difference	between	a	team's	actual	pressing	success	result	and	their	expected	
pressing	success	rate	(𝑥𝑃).	A	positive	𝑥𝑃	Difference	indicates	that	a	team	successfully	regained	
possession	in	situations	where	pressing	was	statistically	less	likely	to	succeed.	In	contrast,	a	
negative	𝑥𝑃	Difference	suggests	ineffective	pressing	execution,	where	teams	struggled	to	capitalize	
on	favorable	pressing	opportunities.	
	
Figure	4	visualizes	pressing	efficiency	of	teams	at	the	2022	World	Cup.	Teams	located	in	the	top-right	
quadrant	(e.g.,	Uruguay,	Netherlands)	demonstrated	both	high	𝑥𝑃	per	90	and	𝑥𝑃	Difference	per	90,	
indicating	that	their	pressing	actions	were	both	frequent	and	effective.	In	contrast,	Japan	and	Iran	
recorded	 high	𝑥𝑃 	but	 a	 negative	𝑥𝑃 	Difference,	 suggesting	 that	 while	 they	 engaged	 in	 pressing	
frequently,	their	execution	was	not	as	effective	as	expected.	This	discrepancy	may	reflect	structural	
weaknesses	in	their	pressing	schemes	or	an	inability	to	convert	pressure	into	possession	recovery.			
	
It	is	important	to	note	that,	given	the	unique	structure	of	the	World	Cup,	teams	face	opponents	of	
varying	quality,	which	can	influence	xP	values.	The	strength	and	style	of	the	opposition	may	impact	
the	effectiveness	of	pressing	actions,	meaning	that	teams	playing	against	higher-caliber	opponents	
might	naturally	exhibit	different	xP	metrics	compared	to	those	facing	less	formidable	challengers.	
Therefore,	when	interpreting	these	results,	the	level	of	the	opposing	team	should	be	considered	as	it	
may	skew	the	pressing	efficiency	metrics.	
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Figure	4.	An	illustration	of	𝑥𝑃	and	𝑥𝑃	difference	for	the	countries	that	participated	in	the	2022	Qatar	
World	Cup.	This	visualization	quantifies	how	effectively	each	team	executed	their	pressing	actions	and	
how	their	performance	aligned	with	the	expected	outcomes.	
	
5.3 Pressing	/	Press-resistance	ability	of	individual	players	
Pressing	effectiveness	and	press	resistance	are	fundamental	aspects	of	modern	football.	A	player	
with	strong	pressing	ability	can	force	turnovers,	disrupt	the	opponent’s	build-up	play,	and	create	
scoring	opportunities.	Likewise,	a	player	with	strong	press	resistance	can	maintain	possession	
under	pressure,	exploit	defensive	gaps,	and	facilitate	counterattacks.	To	analyze	these	dynamics,	we	
applied	our	model	to	player	data	from	the	2022	Qatar	World	Cup,	and	quantified	both	pressing	and	
press	resistance	abilities.	
	
	

 
Figure	5	and	6.	An	illustration	of	pressings	per	game	and	𝑥𝑃	difference	per	pressing	for	the	player	who	
played	3	or	more	games	in	the	2022	Qatar	World	Cup.	Figure	5	(left)	Displays	pressings	per	game	and	
𝑥𝑃	Difference	per	pressing,	Figure	6	(right):	Uses	cumulative	pressings	and	cumulative	𝑥𝑃	Difference,	
the	size	and	color	intensity	of	each	point	further	underline	the	𝑥𝑃.	
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Figure	5	(left)	illustrates	pressing	frequency	per	game	and	𝑥𝑃	Difference	per	pressing	action.	
Players	in	the	top-right	quadrant	(e.g.,	David	Raum,	Enzo	Fernandez)	pressed	frequently	and	
effectively,	recovering	possession	in	key	moments.	Sofyan	Amrabat,	a	key	midfielder	for	Morocco,	
consistently	applied	defensive	pressure	with	high	success	rates.	In	contrast,	Daizen	Maeda	and	
Idrissa	Gana	Gueye	(bottom-right	quadrant)	frequently	engaged	in	pressing	but	with	lower	
efficiency,	suggesting	that	many	of	their	attempts	occurred	in	suboptimal	situations.		

Figure	6	(right)	provides	insights	into	cumulative	pressing	actions,	highlighting	differences	in	
player	roles.	Achraf	Hakimi	and	Hakim	Ziyech,	both	key	players	for	Morocco,	demonstrated	
contrasting	pressing	effectiveness.	Hakimi's	pressing	actions	consistently	exceeded	expectations,	
whereas	Ziyech,	despite	pressing	frequently,	showed	lower	𝑥𝑃	Difference,	indicating	that	his	
pressing	attempts	were	less	impactful.	This	distinction	underscores	how	pressing	volume	and	
efficiency	contribute	differently	to	a	team’s	defensive	strategy.	The	𝑥𝑃	Difference	metric	thus	
provides	a	deeper	understanding	of	individual	pressing	effectiveness,	distinguishing	between	high	
impact	pressing	and	mere	activity.	

 	

Figure	7	and	8.	An	illustration	of	press-resistance	ability	among	players	with	at	least	three	
appearances	in	the	2022	Qatar	World	Cup.	Figure	7	(left)	displays	pressured	actions	per	game	and	𝑥𝑃	
Difference	per	pressured	action,	while	Figure	8	(right)	shows	cumulative	pressured	actions	and	
cumulative	𝑥𝑃	Difference.	The	size	and	color	intensity	of	each	point	represent	𝑥𝑃,	highlighting	
variations	in	press	resistance	across	players.	

Players	frequently	targeted	by	pressing	often	play	pivotal	roles	in	build-up	play.	However,	their	
ability	to	resist	pressure	varies.	In	Figure	7,	Lionel	Messi,	positioned	in	the	top-right	quadrant	was	
frequently	pressed	yet	exhibited	exceptional	efficiency	in	evading	pressure,	significantly	
outperforming	model	expectations.	His	ability	to	retain	possession	under	pressure	made	him	a	
crucial	playmaker	for	Argentina.	In	contrast,	Jamal	Musiala,	also	frequently	targeted	by	pressing	
(top-left	quadrant),	struggled	to	navigate	such	situations	as	effectively.	His	lower	𝑥𝑃	Difference	
suggests	that	he	was	often	forced	into	less	favorable	decisions	or	turnovers	under	pressure.	A	
similar	pattern	is	observed	in	Figure	8.	Despite	facing	a	comparable	number	of	pressing	actions,	
central	midfielder	Alexis	Mac	Allister	and	Azzedine	Ounahi	displayed	contrasting	abilities	to	
withstand	pressure.	Mac	Allister	navigated	pressing	situations	with	composure,	frequently	
progressing	play.	Whereas	Ounahi	found	himself	struggling	under	defensive	pressure,	with	a	lower	
𝑥𝑃	Difference.		
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These	findings	underscore	the	varied	abilities	of	players	to	handle	pressing	and	highlight	potential	
tactical	adjustments	for	optimizing	pressing	efficiency	and	press	resistance.	By	quantifying	these	
aspects,	our	model	offers	valuable	insights	for	refining	team	strategies	and	individual	player	roles	
in	high-pressure	situations.	

6. Discussion	
While	our	model	effectively	quantifies	pressing	and	press-resistance	abilities,	certain	limitations	
must	be	acknowledged.		One	of	the	limitations	of	this	approach	is	that	pressing	efficiency	heavily	
depends	on	the	opponent's	team	strength.	When	facing	stronger	teams,	higher	levels	of	defensive	
pressure	are	required	to	regain	possession	compared	to	weaker	teams.	This	means	that	𝑥𝑃	
Difference	may	not	solely	reflect	a	team's	pressing	quality	but	also	the	difficulty	posed	by	their	
opponents	(e.g.,	individual	player	ability	and	tactical	adaptability).	Furthermore,	the	tournament	
format	limits	the	number	of	possible	team	matchups,	meaning	that	some	teams	may	face	
disproportionately	strong	or	weak	opponents.	As	a	result,	pressing	efficiency	measurements	may	
not	fully	generalize	across	different	levels	of	competition.			

Another	limitation	is	that	player	identities	are	not	explicitly	considered	in	the	model.	Currently,	
player	positions	(x/y	coordinates)	are	used	as	inputs	without	incorporating	individual	player	
characteristics	such	as	playing	style,	experience,	or	tactical	tendencies.	As	a	result,	pressing	and	
press-resistance	evaluations	rely	solely	on	spatial	positioning	rather	than	personalized	player	
attributes.		Additionally,	the	way	x/y	coordinates	are	fed	into	the	model	could	introduce	potential	
biases.	While	our	approach	incorporates	various	features	beyond	raw	coordinates—such	as	
distances	to	the	nearest	opponent	and	teammate,	angles	relative	to	the	goal,	and	other	contextual	
information—it	does	not	fully	capture	player	positioning	in	relation	to	the	ball	in	possession.			

Despite	integrating	multiple	spatial	features,	our	model	does	not	explicitly	structure	inputs	in	a	way	
that	directly	relates	player	positioning	to	the	ball.	Future	improvements	could	refine	this	by	
restructuring	input	data	to	incorporate	formation-based	positional	adjustments	or	considering	the	
spatial	distribution	of	opposing	players	within	potential	passing	lanes.			

Furthermore,	the	nature	of	StatsBomb-360	data	presents	inherent	limitations	due	to	missing	player	
information.	Since	the	dataset	is	derived	from	broadcast	camera	angles,	not	all	players	are	always	
visible.	As	a	result,	some	pressing	sequences	may	be	incomplete,	potentially	affecting	𝑥𝑃	
calculations.	Addressing	this	issue	would	require	additional	data	sources,	such	as	tracking	data,	to	
ensure	a	more	comprehensive	representation	of	all	players	involved	in	pressing	sequences.			
	
7. Conclusion	
	
In	this	study,	we	introduce	a	novel	framework,	exPress,	designed	to	evaluate	pressing	scenarios	in	
soccer	by	analyzing	spatial	interactions	between	the	player	in	possession	and	the	surrounding	
defender.	The	model	leverages	XGBoost	to	provide	an	explainable	and	interpretable	approach	for	
quantifying	pressing	success	probabilities	(𝑥𝑃).	Through	experimentation,	we	demonstrated	that	
exPress	effectively	identifies	optimal	player	positions	to	enhance	pressing	outcomes	while	also	
suggesting	positional	adjustments	to	improve	press-resistance	for	teams	under	pressure.	The	
application	of	exPress	revealed	its	capability	to	simulate	and	evaluate	positional	adjustments,	
providing	actionable	insights	for	both	pressing	and	resisting	pressure.	Our	results	highlight	the	



 12 

practical	utility	of	the	framework	in	informing	tactical	decisions,	optimizing	team	strategies,	and	
bridging	the	gap	between	academic	research	and	practical	soccer	analytics.	
Despite	its	promising	contributions,	the	model’s	performance	was	influenced	by	limitations	in	data	
volume	and	scope,	as	it	utilized	a	relatively	small	dataset	and	positional	information	restricted	to	
players	visible	within	the	camera	frame.	Future	research	could	address	these	challenges	by	
incorporating	larger	datasets	and	more	comprehensive	player	tracking	data,	further	enhancing	the	
model’s	accuracy	and	applicability.	
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Appendix	A	
	
A.1.	Description	of	features	used	for	model	training	
Table	3	describes	the	detailed	overview	of	features	used	for	model	training.	The	Hudl	Statsbomb	
data	catalog	provides	detailed	definitions	of	each	action	and	its	success	criteria.	
	

Category		 Description	

Action	Type	 The	type	of	each	action,	with	a	total	of	23	types	including	pass,	cross,	
throw-in,	crossed-freekick,	short-freekick,	crossed-corner,	short-corner,	
take-on,	foul,	tackle,	interception,	shot,	penalty-shot,	freekick-shot,	keeper	
save,	keeper	punch,	keeper	claim,	keeper	pick-up,	clearance,	bad	touch,	
dribble,	goal	kick,	pressing.	

Result	 The	outcome	of	each	action,	with	six	types	including	fail,	success,	offside,	
own	goal,	yellow	card,	and	red	card.	

Body	Part	 The	body	part	used	to	perform	each	action,	with	six	types	including	foot,	
left	foot,	right	foot,	head,	head/other,	and	other.	

Time	 The	time	when	each	action	was	performed,	measured	in	seconds.	

Location	 The	coordinates	where	each	action	started	and	ended.	The	coordinate	
system	is	defined	on	a	full-pitch	scale	of	105	x	68	meters,	following	FIFA’s	
recommended	field	of	play	dimension.	

Polar	 The	polar	coordinates	where	each	action	started	and	ended,	calculated	as	
the	angle	relative	to	the	center	of	the	opponent’s	goal.	

Movement	 The	distance	covered	by	each	action,	calculated	as	the	distance	between	the	
start	and	end	locations.	

Possession	Status	 Indicates	whether	the	team	performing	the	current	action	is	the	same	as	
the	team	from	the	previous	action.	(Boolean	variable)	

Time	Delta	 The	time	difference	(in	seconds)	between	the	current	and	previous	action.	

Space	Delta	 The	distance	covered	between	the	locations	of	the	current	and	previous	
actions.	

Goal	Score	 The	number	of	goals	scored	immediately	by	each	team	after	the	action.	

Relative	Distance	 The	distances	from	the	start	and	end	locations	to	the	sideline	and	goal	line.	

Angle	 The	angle	between	the	start	and	end	locations	of	the	action.	

Speed	 The	speed	of	the	ball	during	the	action,	calculated	as	the	distance	between	
the	start	location	of	the	current	action	and	the	end	location	of	the	previous	
action,	divided	by	the	time	difference	between	them.	
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Distance	to	
Opponent	

The	distance	to	the	nearest	opponent	player.	If	360	data	is	not	available,	
the	feature	is	not	used.	

Closest	Players	 The	locations	of	the	n	closest	teammates	and	opponents	relative	to	the	
action's	location.	If	360	data	is	not	available,	the	feature	is	not	used.	

Table	3.	Category	and	description	of	features	used	for	model	training.	This	table	lists	and	describes	the	
comprehensive	set	of	features	used	for	training	the	model,	as	defined	in	the	Hudl	StatsBomb	data	
catalog.	Each	feature	is	precisely	defined	to	capture	both	the	technical	execution	and	contextual	
dynamics	of	football	actions,	ensuring	robust	and	accurate	modeling	of	game	scenarios.	
	
A.2.	Implementation	of	SoccerMap	
SoccerMap	[35]	is	a	CNN-based	framework	that	predicts	probability	surfaces	of	potential	passes	by	
generating	low-level	inputs.	The	input	data	is	transformed	into	a	68	×	105	grid,	where	each	cell	
represents	spatial	information	about	players.	Player	positions	are	encoded	into	separate	channels	
for	the	presser,	teammates,	and	opponents,	along	with	additional	features	capturing	the	distance	
and	angle	between	each	cell	and	specific	reference	points	(e.g.,	the	presser	and	the	opponent’s	
goal).	The	final	input,	structured	as	number	of	channels	×	68	×	105,	is	processed	through	
convolutional	layers	to	extract	spatial	features	and	predict	the	probability	of	successful	pressing.		
The	CNN	architecture	consists	of	five	convolutional	layers	and	four	max-pooling	layers,	with	
replication	padding	applied	to	each	convolutional	layer.	The	output	of	the	final	convolutional	layer	
is	flattened	and	passed	through	a	linear	function.	Additionally,	historical	event	data	is	incorporated	
by	including	probability	maps	with	the	same	feature	structure	as	input,	ensuring	contextual	
information	is	captured.		Unlike	conventional	machine	learning	models,	SoccerMap	imposes	no	
constraints	on	the	order	of	input	features	or	the	number	of	players	for	interpolation,	making	it	
highly	adaptable	to	diverse	soccer	scenarios.	The	model	is	implemented	in	PyTorch	and	trained	
using	Cross	Entropy	loss	with	a	batch	size	of	16,	a	learning	rate	of	1e-3,	and	a	weight	decay	of	1e-8.	
The	step	learning	rate	scheduler	is	used	to	adjust	the	learning	rate,	and	early	stopping	is	applied	
with	a	patience	value	of	10.	
	
A.3.	Code	Availability 
All	code	and	associated	materials	used	in	this	study	are	publicly	available	in	a	GitHub	repository	at	
https://github.com/leemingo/sr-press.	The	repository	includes	scripts	for	data	preprocessing,	
model	training,	evaluation,	and	application,	along	with	configuration	files	and	a	comprehensive	
README	that	provides	detailed	instructions on setting up the environment and executing the 
experiments. 
	


