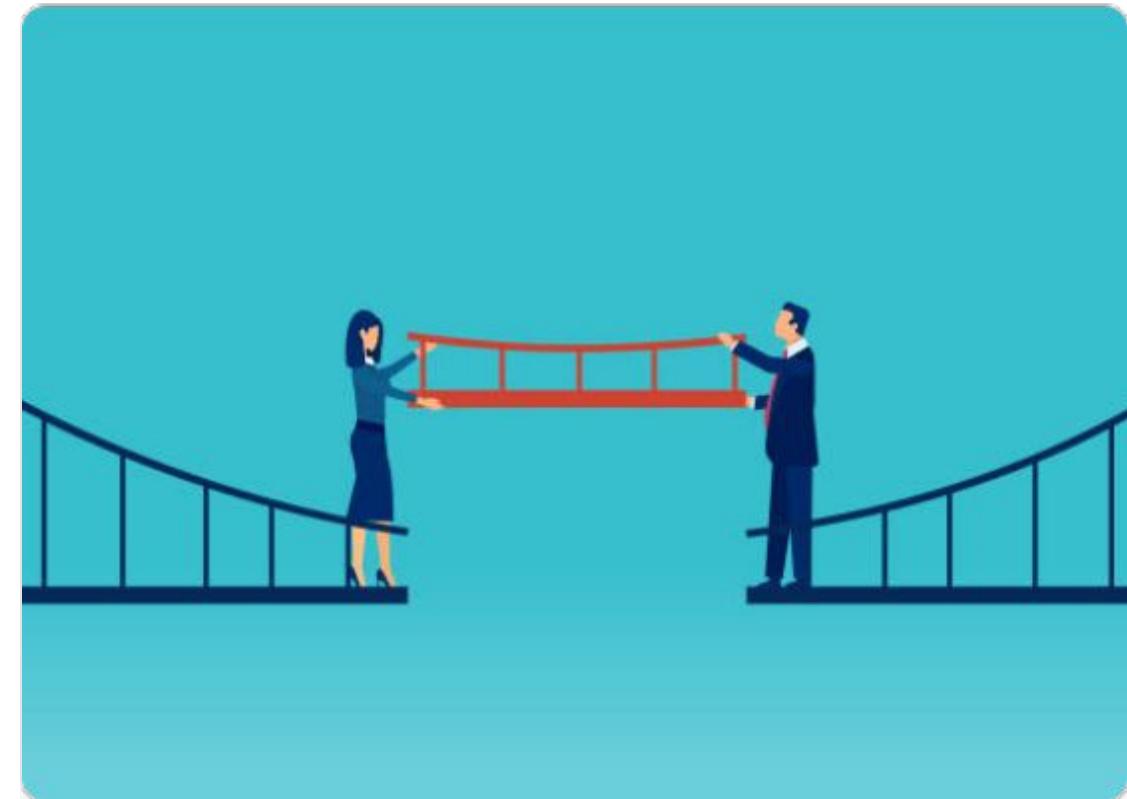


EXECUTIVE BRIEFING | January 2026

Beyond the Algorithm: Ensuring Clinical Validity at Scale

Why Continuous Evidence is the New Standard of Care.

The Execution Gap


The Current State

Clinical AI governance has reached conceptual maturity. Regulators (FDA), standards bodies (NIST), and clinical associations (AMA) broadly agree on the requirements: **Transparency, Oversight, and Equity.**

The Problem

However, frameworks define *intent*, not *execution*. Most health systems lack the technical infrastructure to generate continuous evidence of AI performance. Instead, they rely on episodic, manual validation that fails to capture real-world shifts in data.

"Only 61% of hospitals validated AI tools on local data prior to deployment, and fewer than half tested for bias."

Source: American Heart Association (AHA), "Science Advisory on Predictive AI in Cardiovascular Care," November 2025.

A Unified Standard of Care

A consensus has emerged across clinical, technical, and federal bodies. It is no longer sufficient to validate a model once; systems must demonstrate **Continuous Evidence** of safety and efficacy.

Clinical & Ethical

AMA CHAI

Focus: Patient Safety & Equity

Physicians must remain the "Human-in-the-loop." Governance must use "Assurance Labs" to validate fairness on local populations before and during deployment.

Technical Standards

NIST ISO 42001

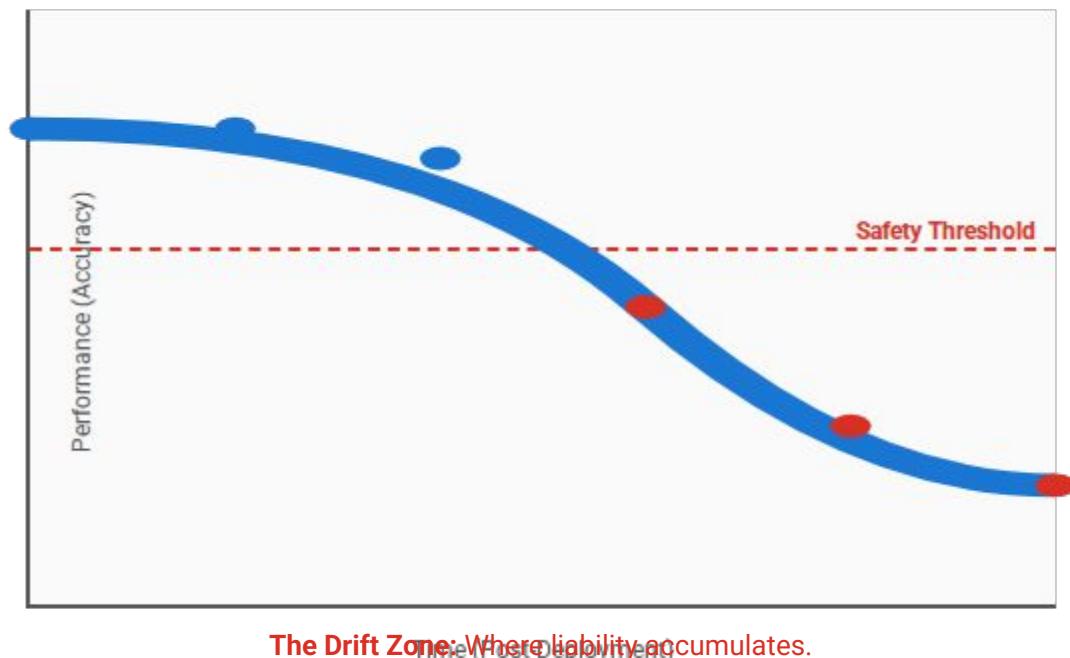
Focus: Reliability & Measurement

Reliability is a statistical requirement. Systems must demonstrate "continuous monitoring" of validity, ensuring models do not degrade over time.

Federal Regulation

FDA ONC

Focus: Surveillance & Transparency


Pre-market clearance is not enough. "Total Product Lifecycle" (TPLC) rules mandate post-market surveillance for data drift.

The Risk: Silent Failure (Model Drift)

Why Continuous Monitoring Matters

Unlike traditional software, AI models are probabilistic. They degrade over time as patient populations, scanner protocols, and operational workflows shift.

- **Silent Failure:** Models don't crash; they simply start issuing incorrect predictions with high confidence.
- **The Liability:** A model validated last year may be unsafe today. Without monitoring, this risk accumulates invisibly.

Source: JAMA Health Forum, "Accountability and Governance Challenges in Clinical AI," 2025; West Monroe, "Applications of AI in Healthcare".

The Missing Infrastructure

Bridging Policy and Practice

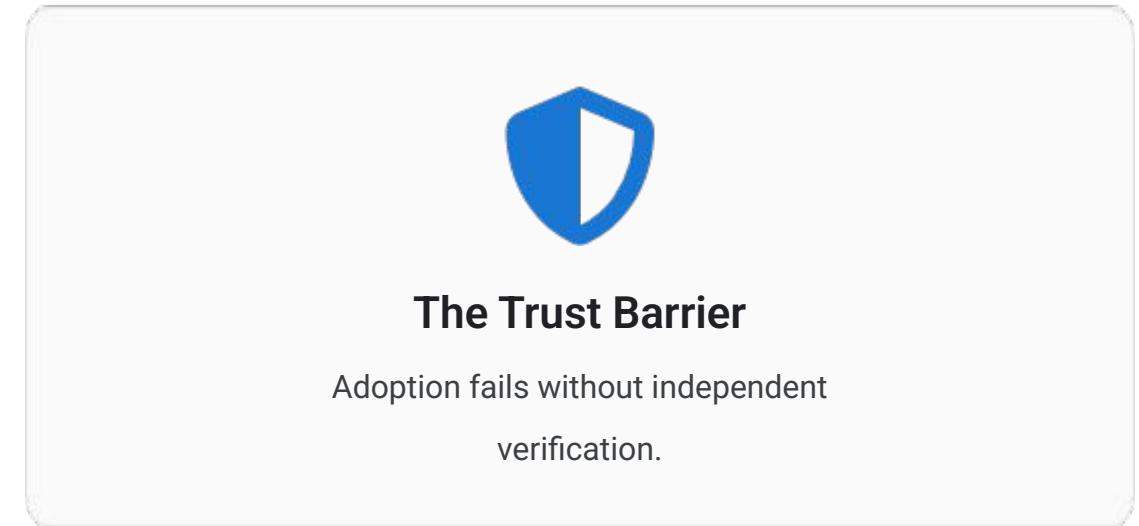
The gap described by Harvard and the AMA is not a lack of rules; it is a lack of tooling. You cannot manage 21st-century AI with 20th-century spreadsheets.

We require an **Execution Infrastructure**—a translation layer that sits between the AI models and clinical care. This layer automatically translates high-level regulatory mandates into hard, daily evidence without burdening clinical staff.

The Observability Lens Delivers Automated Ground Truth

How do we technically satisfy the mandates for surveillance, fairness, and oversight? By reconciling the **AI Prediction** with the **Clinical Outcome** in a continuous loop.

 1. Capture Intercept raw AI model outputs in real-time across all vendors. <small>Meets FDA TPLC</small>	 2. Extract Use Clinical LLM & NLP to parse unstructured reports for the "True" diagnosis. <small>Meets AMA Oversight</small>	 3. Match Reconcile prediction vs. ground truth at the patient level to validate accuracy. <small>Meets NIST Validity</small>	 4. Evidence Generate continuous Sensitivity & Specificity metrics for audit. <small>Meets ISO Audit</small>
--	---	--	---


The Strategic Imperative

Why Infrastructure is Critical

Legacy systems (PACS/EHR) were designed for storage, not surveillance. As AI scales, the friction of manual validation becomes a safety risk.

We built Observability Lens because **Vendor Neutrality** is essential for trust. You cannot ask a model to grade its own homework.

"You cannot govern what you cannot measure. A neutral verification layer is the only way to ensure clinical validity at scale."

Meeting the Standard

Execution Infrastructure directly satisfies the core requirements of the modern regulatory stack, moving compliance from "episodic" to "continuous."

FDA TPLC (Surveillance)

Longitudinal drift monitoring alerts immediately on performance degradation, satisfying post-market rules.

NIST (Fairness)

Subgroup stratification detects hidden bias across demographics, ensuring equitable performance.

AMA (Oversight)

Outcome-linked verification keeps humans in the loop by validating AI against physician consensus.

ISO 42001 (Audit)

Automated logging creates a defensible audit trail for every prediction, timestamp, and outcome.

Sources: FDA TPLC Guidance; NIST AI RMF; AMA Principles for Augmented Intelligence; Joint Commission Sentinel Event Alert.

From Liability to Asset

The Liability Trap

"Hoping it works"

- ✗ Episodic Validation
- ✗ Unknown Performance
- ✗ Silent Risk Accumulation

The Strategic Asset

"Proving it works"

- ✓ Continuous Monitoring
- ✓ Defensible Evidence
- ✓ Trust & Adoption

Recommended Path Forward

Moving from intent to execution requires a phased operational roadmap. We recommend starting with a baseline audit to understand current exposure.

1

Retrospective Audit (Gap Analysis)

Goal: Baseline Exposure

Retrospectively audit the top 3 deployed algorithms on local historical data to identify hidden drift and demographic bias.

2

Automate (Governance)

Goal: Enable Surveillance

Deploy the execution infrastructure to automate FDA TPLC monitoring and create real-time dashboards for leadership.

3

Scale (Trust)

Goal: Enterprise Adoption

Expand to the full enterprise portfolio. Use validated performance data to negotiate value-based contracts with AI vendors.

References

- **FDA:** *Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device: Lifecycle Management.*
- **Joint Commission:** *Sentinel Event Alert: Guidance on Responsible AI in Healthcare.*
- **American Heart Association:** *Science Advisory on Predictive AI in Cardiovascular Care.*
- **AMA (H-480.939):** *Principles for Augmented Intelligence in Health Care.*
- **NIST:** *AI Risk Management Framework (AI RMF 1.0).*
- **ISO/IEC 42001:** *Artificial Intelligence Management System Standard.*
- **JAMA Health Forum:** *Accountability and Governance Challenges in Clinical AI.*
- **Harvard Gazette:** *AI is speeding into healthcare. Who should regulate it?*
- **West Monroe:** *Applications of AI in Healthcare and Governance Implications.*