A
Our Eigen Philosophy

Ll TLDR:

Robotics today suffers from fragmentation — separate codebases for
simulation, testing, and real robots slow progress. Eigen fixes this with
a unified, Python-first framework that lets the same code run across
simulators and hardware. It's modular, ML-native, and easy to
configure, turning robotic development into a single, seamless
workflow — the PyTorch moment for robotics.

Introduction

Over the past decade, machine learning has transformed entire fields — from
biology and healthcare to computer vision and natural language processing.
This progress was not only driven by advances in optimization, specialized
hardware, and deep architectures, but also by the rise of software
frameworks that made innovation repeatable. Libraries

like PyTorch and TensorFlow standardized experimentation, abstracted away
low-level engineering, and made scaling up research accessible to everyone.
Around them, complementary ecosystems such as OpenAl Gym, OpenCV,
and Hugging Face Transformers provided reusable building blocks that fueled
rapid iteration and reproducibility.

In robotics, however, progress has been slower. Frameworks

like ROS and Drake are immensely powerful but notoriously complex. They
require steep learning curves, platform-specific builds, and significant systems
expertise — barriers that push most teams to reinvent the wheel. In practice,
every lab and startup ends up building its own patchwork of scripts and
services: one codebase for simulation, another for testing in a different
simulator, and yet another for the real robot. This “three-codebases problem”
fragments development, slows iteration, and introduces failure points at every
transition.

Our Eigen Philosophy



To sidestep this, many modern robots now ship with Python APIs — from
Franka and Unitree to Kinova and Luxonis — letting researchers prototype
directly in Python without touching ROS or C++. These APIs lowered the barrier
dramatically, enabling control loops, visualization, and machine-learning
integration in familiar environments like Jupyter and PyTorch.

Yet accessibility brought new fragmentation. Each API lives in isolation,
unaware of simulators, clocks, or sensors. Switching hardware or adding a new
device means rewriting large sections of code, and simulation-to-real transfer
remains brittle. Python made robotics easier to start, but not easier to scale.

What robotics needs today is what machine learning had a decade ago:

a unified, lightweight, and research-friendly framework — one that bridges
experimentation and deployment, simulation and reality, without friction or
duplication.

We introduce Eigen, a Python-first robotics framework built to unify robot
learning and experimentation. Eigen provides a consistent interface across
simulation and hardware, enabling teams to move from idea to deployment
without rebuilding infrastructure or rewriting code.

The Landscape of Robotics Frameworks

Existing robotics frameworks each solve part of the problem — but none
address the full workflow.

ROS remains the industry standard for middleware. It provides powerful tools, a
vast library ecosystem, and an active community. But its C++-centric

design, build complexity, and dependency sprawl make it ill-suited for rapid
research iteration or ML-native workflows.

Simulators such as Gazebo and Webots have long supported robotic
prototyping but are tightly coupled to ROS and often lack flexible Python
interfaces or modular design. They are excellent testbeds but poor platforms
for experimentation that spans learning, simulation, and deployment.

More recently, projects like LeRobot by Hugging Face have brought much-
needed standardization in data representation and collection for robotics. Yet
their scope remains narrow — focused on datasets, not full-stack integration
across simulators, sensors, and hardware.

The result is an ecosystem that's rich in tools but poor in cohesion. Robotics
today lacks an end-to-end, ML-native framework that makes experimentation

Our Eigen Philosophy



fluid, composable, and accessible.

The Painful Robotics Journey

The journey from an initial idea to a deployed robot mirrors the early days of
machine learning — full of potential, but fragmented and inefficient. Each phase
demands its own tools, interfaces, and workarounds. Progress feels tangible,
yet fragile.

The problem is not a lack of creativity or capability; it's a lack of cohesion.
Every team faces the same roadblocks, repeats the same integrations, and
rebuilds the same systems. What could be an elegant cycle of experimentation
and iteration becomes a slow march through incompatible ecosystems.

1. Simulation and Prototyping

Most robotics projects begin in simulation. Tools like PyBullet, MuJoCo,
and Isaac Gym provide virtual environments to prototype behaviors, collect
data, and train policies. They are powerful, fast, and safe — ideal for early
experimentation.

But each simulator speaks its own language. APIs differ, coordinate frames
vary, and physics models rarely align. Researchers spend days — sometimes
weeks — writing wrappers just to make basic control loops work. Debugging
consumes as much time as discovery, and progress becomes tied to the quirks
of a single simulator.

Instead of focusing on ideas, teams find themselves building infrastructure that
already exists elsewhere — only slightly different.

2. Cross-Simulator Validation

Once a policy performs well in one environment, validation begins in another —
a simulator with more accurate contact dynamics, better lighting, or more
realistic sensors. This transition is never straightforward.

Every element of the experiment — assets, reward functions, observation
spaces, and reset logic — must be reimplemented from scratch. Small
discrepancies in timing or physics can cause large deviations in behavior. The
same task, when ported across simulators, rarely feels identical.

Our Eigen Philosophy



What should be a test of generalisation becomes a test of patience. Code
diverges, assumptions drift, and results lose comparability.

3. Real-World Deployment

Then comes the hardest step: deployment on the physical robot. Everything
changes again.

Simulated clocks give way to real hardware timing. Sensor data now includes
noise, latency, and calibration offsets. Safety layers must be added, drivers
recompiled, and control interfaces rewritten to match manufacturer SDKs. The
elegant simulation pipeline becomes a patchwork of scripts and monitors.

What once worked flawlessly in a virtual scene now fails in subtle,
unpredictable ways. Bugs are harder to reproduce. Experiments become
slower, riskier, and more expensive. Each robot feels like a unique, isolated
system — familiar in concept but alien in practice.

4. The Fragmentation Gap

By this stage, most teams maintain three separate codebases: one for
simulation, one for validation, and one for real-world deployment. Each evolves
independently, accumulating small inconsistencies that compound over time.

This “three-codebases problem" drains productivity and obscures insight.
Teams spend more time maintaining infrastructure than advancing research.
Collaboration becomes harder, and reproducibility nearly impossible.

Machine learning once faced a similar challenge. Before frameworks

like PyTorch and TensorFlow, every lab managed its own training scripts, data
loaders, and evaluation loops. Progress was rapid but siloed. The unification of
that ecosystem didn't just accelerate research — it transformed it.

Robotics stands on the edge of the same transformation.

It just needs its framework moment.

Rethinking Robotics Software

Eigen exists to close that gap — to make robotics as iterative, modular, and
expressive as modern ML research. Its goal is simple: standardize
experimentation, unify environments, and remove the friction between
simulation and reality.

Our Eigen Philosophy



Design Principles
Eigen is guided by five principles that together define its philosophy.

1. Effortless Installation

Complex build systems and dependency hell should not stand between a
researcher and their robot. Eigen installs with a single command:

pip install eigen-robotics

No CMake. No containers. No platform lock-in. It integrates naturally into
existing Python environments on macQOS or Linux.

2. Simplicity First

Robotics should feel as approachable as NumPy. Eigen exposes a clean,
Pythonic API that minimizes boilerplate. Control, logging, teleoperation, and
visualisation take only a few lines of code. The focus is on readability and
experimentation — not middleware engineering.

3. Modularity and Composability

Every component in Eigen — robot, sensor, simulator — is a self-contained
module defined via YAML configuration. These modules communicate through
lightweight channels, allowing users to mix and match components effortlessly.
Want to swap a camera, replace a simulator, or add a neural policy? Just
update the config.

4. Unified Across Simulation and Reality

A single experiment should run everywhere. Eigen ensures that the same
Python code operates in PyBullet, MuJoCo, Isaac Gym, or on a real robot.

The sim-real gap is handled at the framework level, not by the user. Switching
environments becomes a configuration change, not a code rewrite.

5. ML-Native by Design

Modern robotics is inseparable from learning. Eigen's types and APlIs integrate
directly with PyTorch and JAX, making data collection, training, and inference
part of one continuous flow. Reinforcement learning, imitation learning, or
diffusion control — all plug in seamlessly.

Our Eigen Philosophy



These principles echo the ethos that made PyTorch transformative: low barrier,
high ceiling — accessible to beginners, powerful for experts.

The Eigen Workflow

Today, robotics workflows are dominated by setup friction. Each new simulator,
robot, or sensor means new integration work, new dependencies, hew bugs.
Eigen replaces that grind with a workflow that feels intuitive and fluid.

1. From Setup to Experiment — in Minutes

A researcher starts not by compiling code, but by writing a single YAML
file that describes the system — the robot, simulator, and sensors. One
command later:

eigen launch config.yaml

The system comes alive. The robot (real or simulated) is online, data is
streaming, and control loops are ready to run. What once required days of
integration now happens in minutes.

2. Designing, Not Debugging

In traditional robotics, changing one component often breaks everything else.
Eigen’s modular design removes this fragility. Components are interchangeable;
the framework adapts automatically. Users focus on designing experiments —
testing algorithms, tuning behavior, creating ideas — not patching
infrastructure.

3. Seeing the Whole System

Complex robot systems are hard to reason about because their data flows are
invisible. Eigen brings transparency. It provides live visualisation tools — a
graph of active nodes, real-time plots of sensor data, and instant camera feeds
— turning the system into something you can see. Understanding replaces
guesswork, and debugging becomes discovery.

4. Seamless Transition from Simulation to Reality

Our Eigen Philosophy



The step that once required rebuilding everything — moving from sim to real —
is now trivial. Eigen keeps observation and action schemas identical across
domains. Toggling a single flag switches from simulation to hardware:

sim: false

Same code, same experiment — just now on the real robot. This continuity
collapses the “three-codebases problem” into one unified flow.

Architecture Overview

Under the hood, Eigen is designed for modularity, distribution, and simulator-
agnostic operation. Its architecture unifies simulation, control, and learning
within one Python-first ecosystem.

The Eigen Network

At its core lies the Eigen Network — a distributed, node-based system where
each process (robot driver, sensor, policy, visualization) runs independently but
communicates through a shared messaging layer. This promotes fault
isolation, reusability, and composability: complex systems are assembled
from small, testable building blocks.

Messaging and Communication

Communication follows a publisher-subscriber model. Each node publishes
structured data — joint states, transforms, images — to named channels. For
tasks needing acknowledgments or commands, Eigen also supports request-
response services using the same schema.

A central registry maintains awareness of all active nodes, enabling live
introspection, debugging, and visualization — a transparent view of the system
at runtime.

Unified Configuration and Launch

Eigen's YAML-based configuration defines the entire system topology — what
runs, where it runs, and how components connect. A single launcher spins
everything up from this configuration, no manual process management
required.

Our Eigen Philosophy



Observation and Action Abstraction

Borrowing from OpenAl Gym, Eigen formalizes observation and action
spaces that align with ML expectations. Observations include sensor data
(images, joints, forces); actions correspond to control signals (torques, poses,
velocities). This shared interface ensures that policies trained in simulation can
run unmodified on hardware.

Sim-Real Consistency

A transparent sim-real switch guarantees consistent behavior between
domains. Simulation backends like PyBullet and MuJoCo can be swapped
without touching control logic, maintaining timing and message schemas
across both virtual and physical systems.

Extensible Drivers and Backends

Eigen standardizes device integration through a ComponentDriver interface.
Whether implemented in Python for rapid prototyping or C++ via pybinann for
low-level access, every driver adheres to the same minimal API. This

means any robot or sensor — industrial arms, mobile bases, depth cameras,
LiDARs, tactile arrays — can be integrated without altering the core framework.

Through this abstraction, Eigen decouples communication, control, and data
flow, letting new hardware plug in as easily as a library import.

Developer Tooling

Eigen comes with built-in developer tools:
» Eigen Graph — live visualization of nodes and channels.
o Eigen Viewer — real-time camera and depth stream inspection.
» Eigen Plot — live plotting of numeric data streams.

Together they form the robotics equivalent of TensorBoard — giving visibility,
context, and confidence as systems scale in complexity.

The Road to General Robotics

Robotics is moving toward a new era — one defined not by isolated machines,
but by general systems that can learn, adapt, and act across domains. As
simulators grow more realistic, as world models mature, and as learning-based

Our Eigen Philosophy



policies become more capable, the distinction between experimentation and
deployment begins to fade. The boundaries that once divided simulation from
reality, or perception from control, are dissolving.

Eigen was built for this transition. Its architecture is not tied to any single
simulator, robot, or control paradigm. Instead, it provides a common language
— a shared infrastructure through which ideas can evolve, regardless of what
technologies emerge next. When a new simulator appears, it can be integrated
into Eigen through the same driver and messaging interfaces. When world
models reach new levels of fidelity, they slot into the same communication
layer. As reinforcement learning, imitation learning, and diffusion-based control
advance, the policies can be trained and deployed without changing the
underlying system.

This future-proof design ensures that progress in robotics never invalidates
prior work. Code written in Eigen today will continue to run as simulators and
environments improve tomorrow. What changes is not the workflow, but the
fidelity of the world it operates in. The same configuration that once controlled
a robot in PyBullet can, years later, be powered by a differentiable physics
model or a learned world simulator — no rewrites, no migration effort.

As the simulation-reality gap narrows, Eigen’s one-codebase workflow
becomes even more powerful. When the physics of simulation begin to reflect
the nuances of the real world — friction, latency, visual noise — the boundary
between virtual and physical experiments becomes seamless. Training,
validation, and deployment collapse into a single unified loop. Researchers can
prototype in simulation, test in high-fidelity digital twins, and deploy to
hardware with confidence that the same logic will behave consistently. This is
not just a productivity gain; it's an architectural shift that enables robotics to
scale as quickly as machine learning once did.

At the same time, advances in foundation models for control will make robotic
intelligence increasingly data-driven. As these policies grow more general, the
bottleneck shifts from model design to integration and evaluation —
connecting models to real systems, testing them safely, and iterating at scale.
Eigen directly addresses this challenge. By offering a consistent interface
across both simulators and hardware, it turns the deployment of learned
policies into a repeatable process. Every improvement in Al translates
immediately into an improvement in robotics.

Finally, Eigen’s Python-first philosophy ensures that this future is accessible.
The language of machine learning, data science, and modern research is how

Our Eigen Philosophy



also the language of robotics. This opens the field to a new generation of
builders — students, researchers, and startups — who can develop full robotic
systems using the same workflows they already know. Small, lean teams gain
the leverage to do what previously required specialized infrastructure and large
engineering groups.

As the robotics ecosystem matures — with richer world models, higher-fidelity
simulators, and increasingly capable Al — Eigen will evolve with it. Each step
forward in one domain automatically strengthens the others. What began as a
framework for unifying simulation and hardware becomes the foundation for a
broader transformation — a path toward general robotics, where
experimentation, learning, and deployment are part of one continuous system.

In this future, progress no longer fragments the field. It compounds.

And Eigen ensures that every breakthrough in simulation, learning, or control
flows directly into practice — keeping robotics coherent, connected, and
always moving forward.

Our Eigen Philosophy



