
Our Eigen Philosophy

ℹ️ TL;DR:
Robotics today suffers from fragmentation — separate codebases for 
simulation, testing, and real robots slow progress. Eigen fixes this with 
a unified, Python-first framework that lets the same code run across 
simulators and hardware. It’s modular, ML-native, and easy to 
configure, turning robotic development into a single, seamless 
workflow — the PyTorch moment for robotics.

Introduction
Over the past decade, machine learning has transformed entire fields — from 
biology and healthcare to computer vision and natural language processing. 
This progress was not only driven by advances in optimization, specialized 
hardware, and deep architectures, but also by the rise of software 
frameworks that made innovation repeatable. Libraries 
like PyTorch and TensorFlow standardized experimentation, abstracted away 
low-level engineering, and made scaling up research accessible to everyone. 
Around them, complementary ecosystems such as OpenAI Gym, OpenCV, 
and Hugging Face Transformers provided reusable building blocks that fueled 
rapid iteration and reproducibility.

In robotics, however, progress has been slower. Frameworks 
like ROS and Drake are immensely powerful but notoriously complex. They 
require steep learning curves, platform-specific builds, and significant systems 
expertise — barriers that push most teams to reinvent the wheel. In practice, 
every lab and startup ends up building its own patchwork of scripts and 
services: one codebase for simulation, another for testing in a different 
simulator, and yet another for the real robot. This “three-codebases problem” 
fragments development, slows iteration, and introduces failure points at every 
transition.

Our Eigen Philosophy 1



To sidestep this, many modern robots now ship with Python APIs — from 
Franka and Unitree to Kinova and Luxonis — letting researchers prototype 
directly in Python without touching ROS or C++. These APIs lowered the barrier 
dramatically, enabling control loops, visualization, and machine-learning 
integration in familiar environments like Jupyter and PyTorch.

Yet accessibility brought new fragmentation. Each API lives in isolation, 
unaware of simulators, clocks, or sensors. Switching hardware or adding a new 
device means rewriting large sections of code, and simulation-to-real transfer 
remains brittle. Python made robotics easier to start, but not easier to scale.

What robotics needs today is what machine learning had a decade ago: 
a unified, lightweight, and research-friendly framework — one that bridges 
experimentation and deployment, simulation and reality, without friction or 
duplication.

We introduce Eigen, a Python-first robotics framework built to unify robot 
learning and experimentation. Eigen provides a consistent interface across 
simulation and hardware, enabling teams to move from idea to deployment 
without rebuilding infrastructure or rewriting code.

The Landscape of Robotics Frameworks
Existing robotics frameworks each solve part of the problem — but none 
address the full workflow.

ROS remains the industry standard for middleware. It provides powerful tools, a 
vast library ecosystem, and an active community. But its C++-centric 
design, build complexity, and dependency sprawl make it ill-suited for rapid 
research iteration or ML-native workflows.

Simulators such as Gazebo and Webots have long supported robotic 
prototyping but are tightly coupled to ROS and often lack flexible Python 
interfaces or modular design. They are excellent testbeds but poor platforms 
for experimentation that spans learning, simulation, and deployment.

More recently, projects like LeRobot by Hugging Face have brought much-
needed standardization in data representation and collection for robotics. Yet 
their scope remains narrow — focused on datasets, not full-stack integration 
across simulators, sensors, and hardware.

The result is an ecosystem that’s rich in tools but poor in cohesion. Robotics 
today lacks an end-to-end, ML-native framework that makes experimentation 

Our Eigen Philosophy 2



fluid, composable, and accessible.

The Painful Robotics Journey
The journey from an initial idea to a deployed robot mirrors the early days of 
machine learning — full of potential, but fragmented and inefficient. Each phase 
demands its own tools, interfaces, and workarounds. Progress feels tangible, 
yet fragile.

The problem is not a lack of creativity or capability; it’s a lack of cohesion. 
Every team faces the same roadblocks, repeats the same integrations, and 
rebuilds the same systems. What could be an elegant cycle of experimentation 
and iteration becomes a slow march through incompatible ecosystems.

1. Simulation and Prototyping
Most robotics projects begin in simulation. Tools like PyBullet, MuJoCo, 
and Isaac Gym provide virtual environments to prototype behaviors, collect 
data, and train policies. They are powerful, fast, and safe — ideal for early 
experimentation.

But each simulator speaks its own language. APIs differ, coordinate frames 
vary, and physics models rarely align. Researchers spend days — sometimes 
weeks — writing wrappers just to make basic control loops work. Debugging 
consumes as much time as discovery, and progress becomes tied to the quirks 
of a single simulator.

Instead of focusing on ideas, teams find themselves building infrastructure that 
already exists elsewhere — only slightly different.

2. Cross-Simulator Validation
Once a policy performs well in one environment, validation begins in another — 
a simulator with more accurate contact dynamics, better lighting, or more 
realistic sensors. This transition is never straightforward.

Every element of the experiment — assets, reward functions, observation 
spaces, and reset logic — must be reimplemented from scratch. Small 
discrepancies in timing or physics can cause large deviations in behavior. The 
same task, when ported across simulators, rarely feels identical.

Our Eigen Philosophy 3



What should be a test of generalisation becomes a test of patience. Code 
diverges, assumptions drift, and results lose comparability.

3. Real-World Deployment
Then comes the hardest step: deployment on the physical robot. Everything 
changes again.

Simulated clocks give way to real hardware timing. Sensor data now includes 
noise, latency, and calibration offsets. Safety layers must be added, drivers 
recompiled, and control interfaces rewritten to match manufacturer SDKs. The 
elegant simulation pipeline becomes a patchwork of scripts and monitors.

What once worked flawlessly in a virtual scene now fails in subtle, 
unpredictable ways. Bugs are harder to reproduce. Experiments become 
slower, riskier, and more expensive. Each robot feels like a unique, isolated 
system — familiar in concept but alien in practice.

4. The Fragmentation Gap
By this stage, most teams maintain three separate codebases: one for 
simulation, one for validation, and one for real-world deployment. Each evolves 
independently, accumulating small inconsistencies that compound over time.

This “three-codebases problem” drains productivity and obscures insight. 
Teams spend more time maintaining infrastructure than advancing research. 
Collaboration becomes harder, and reproducibility nearly impossible.

Machine learning once faced a similar challenge. Before frameworks 
like PyTorch and TensorFlow, every lab managed its own training scripts, data 
loaders, and evaluation loops. Progress was rapid but siloed. The unification of 
that ecosystem didn’t just accelerate research — it transformed it.

Robotics stands on the edge of the same transformation.

It just needs its framework moment.

Rethinking Robotics Software
Eigen exists to close that gap — to make robotics as iterative, modular, and 
expressive as modern ML research. Its goal is simple: standardize 
experimentation, unify environments, and remove the friction between 
simulation and reality.

Our Eigen Philosophy 4



Design Principles
Eigen is guided by five principles that together define its philosophy.

1. Effortless Installation
Complex build systems and dependency hell should not stand between a 
researcher and their robot. Eigen installs with a single command:

pip install eigen-robotics

No CMake. No containers. No platform lock-in. It integrates naturally into 
existing Python environments on macOS or Linux.

2. Simplicity First
Robotics should feel as approachable as NumPy. Eigen exposes a clean, 
Pythonic API that minimizes boilerplate. Control, logging, teleoperation, and 
visualisation take only a few lines of code. The focus is on readability and 
experimentation — not middleware engineering.

3. Modularity and Composability
Every component in Eigen — robot, sensor, simulator — is a self-contained 
module defined via YAML configuration. These modules communicate through 
lightweight channels, allowing users to mix and match components effortlessly. 
Want to swap a camera, replace a simulator, or add a neural policy? Just 
update the config.

4. Unified Across Simulation and Reality
A single experiment should run everywhere. Eigen ensures that the same 
Python code operates in PyBullet, MuJoCo, Isaac Gym, or on a real robot. 
The sim–real gap is handled at the framework level, not by the user. Switching 
environments becomes a configuration change, not a code rewrite.

5. ML-Native by Design
Modern robotics is inseparable from learning. Eigen’s types and APIs integrate 
directly with PyTorch and JAX, making data collection, training, and inference 
part of one continuous flow. Reinforcement learning, imitation learning, or 
diffusion control — all plug in seamlessly.

Our Eigen Philosophy 5



These principles echo the ethos that made PyTorch transformative: low barrier, 
high ceiling — accessible to beginners, powerful for experts.

The Eigen Workflow
Today, robotics workflows are dominated by setup friction. Each new simulator, 
robot, or sensor means new integration work, new dependencies, new bugs. 
Eigen replaces that grind with a workflow that feels intuitive and fluid.

1. From Setup to Experiment — in Minutes
A researcher starts not by compiling code, but by writing a single YAML 
file that describes the system — the robot, simulator, and sensors. One 
command later:

eigen launch config.yaml

The system comes alive. The robot (real or simulated) is online, data is 
streaming, and control loops are ready to run. What once required days of 
integration now happens in minutes.

2. Designing, Not Debugging
In traditional robotics, changing one component often breaks everything else. 
Eigen’s modular design removes this fragility. Components are interchangeable; 
the framework adapts automatically. Users focus on designing experiments — 
testing algorithms, tuning behavior, creating ideas — not patching 
infrastructure.

3. Seeing the Whole System
Complex robot systems are hard to reason about because their data flows are 
invisible. Eigen brings transparency. It provides live visualisation tools — a 
graph of active nodes, real-time plots of sensor data, and instant camera feeds 
— turning the system into something you can see. Understanding replaces 
guesswork, and debugging becomes discovery.

4. Seamless Transition from Simulation to Reality

Our Eigen Philosophy 6



The step that once required rebuilding everything — moving from sim to real — 
is now trivial. Eigen keeps observation and action schemas identical across 
domains. Toggling a single flag switches from simulation to hardware:

sim: false

Same code, same experiment — just now on the real robot. This continuity 
collapses the “three-codebases problem” into one unified flow.

Architecture Overview
Under the hood, Eigen is designed for modularity, distribution, and simulator-
agnostic operation. Its architecture unifies simulation, control, and learning 
within one Python-first ecosystem.

The Eigen Network
At its core lies the Eigen Network — a distributed, node-based system where 
each process (robot driver, sensor, policy, visualization) runs independently but 
communicates through a shared messaging layer. This promotes fault 
isolation, reusability, and composability: complex systems are assembled 
from small, testable building blocks.

Messaging and Communication
Communication follows a publisher–subscriber model. Each node publishes 
structured data — joint states, transforms, images — to named channels. For 
tasks needing acknowledgments or commands, Eigen also supports request–
response services using the same schema.

A central registry maintains awareness of all active nodes, enabling live 
introspection, debugging, and visualization — a transparent view of the system 
at runtime.

Unified Configuration and Launch
Eigen’s YAML-based configuration defines the entire system topology — what 
runs, where it runs, and how components connect. A single launcher spins 
everything up from this configuration, no manual process management 
required.

Our Eigen Philosophy 7



Observation and Action Abstraction
Borrowing from OpenAI Gym, Eigen formalizes observation and action 
spaces that align with ML expectations. Observations include sensor data 
(images, joints, forces); actions correspond to control signals (torques, poses, 
velocities). This shared interface ensures that policies trained in simulation can 
run unmodified on hardware.

Sim–Real Consistency
A transparent sim–real switch guarantees consistent behavior between 
domains. Simulation backends like PyBullet and MuJoCo can be swapped 
without touching control logic, maintaining timing and message schemas 
across both virtual and physical systems.

Extensible Drivers and Backends
Eigen standardizes device integration through a ComponentDriver interface. 
Whether implemented in Python for rapid prototyping or C++ via  pybind11  for 
low-level access, every driver adheres to the same minimal API. This 
means any robot or sensor — industrial arms, mobile bases, depth cameras, 
LiDARs, tactile arrays — can be integrated without altering the core framework.

Through this abstraction, Eigen decouples communication, control, and data 
flow, letting new hardware plug in as easily as a library import.

Developer Tooling
Eigen comes with built-in developer tools:

Eigen Graph — live visualization of nodes and channels.

Eigen Viewer — real-time camera and depth stream inspection.

Eigen Plot — live plotting of numeric data streams.

Together they form the robotics equivalent of TensorBoard — giving visibility, 
context, and confidence as systems scale in complexity.

The Road to General Robotics
Robotics is moving toward a new era — one defined not by isolated machines, 
but by general systems that can learn, adapt, and act across domains. As 
simulators grow more realistic, as world models mature, and as learning-based 

Our Eigen Philosophy 8



policies become more capable, the distinction between experimentation and 
deployment begins to fade. The boundaries that once divided simulation from 
reality, or perception from control, are dissolving.

Eigen was built for this transition. Its architecture is not tied to any single 
simulator, robot, or control paradigm. Instead, it provides a common language 
— a shared infrastructure through which ideas can evolve, regardless of what 
technologies emerge next. When a new simulator appears, it can be integrated 
into Eigen through the same driver and messaging interfaces. When world 
models reach new levels of fidelity, they slot into the same communication 
layer. As reinforcement learning, imitation learning, and diffusion-based control 
advance, the policies can be trained and deployed without changing the 
underlying system.

This future-proof design ensures that progress in robotics never invalidates 
prior work. Code written in Eigen today will continue to run as simulators and 
environments improve tomorrow. What changes is not the workflow, but the 
fidelity of the world it operates in. The same configuration that once controlled 
a robot in PyBullet can, years later, be powered by a differentiable physics 
model or a learned world simulator — no rewrites, no migration effort.

As the simulation–reality gap narrows, Eigen’s one-codebase workflow 
becomes even more powerful. When the physics of simulation begin to reflect 
the nuances of the real world — friction, latency, visual noise — the boundary 
between virtual and physical experiments becomes seamless. Training, 
validation, and deployment collapse into a single unified loop. Researchers can 
prototype in simulation, test in high-fidelity digital twins, and deploy to 
hardware with confidence that the same logic will behave consistently. This is 
not just a productivity gain; it’s an architectural shift that enables robotics to 
scale as quickly as machine learning once did.

At the same time, advances in foundation models for control will make robotic 
intelligence increasingly data-driven. As these policies grow more general, the 
bottleneck shifts from model design to integration and evaluation — 
connecting models to real systems, testing them safely, and iterating at scale. 
Eigen directly addresses this challenge. By offering a consistent interface 
across both simulators and hardware, it turns the deployment of learned 
policies into a repeatable process. Every improvement in AI translates 
immediately into an improvement in robotics.

Finally, Eigen’s Python-first philosophy ensures that this future is accessible. 
The language of machine learning, data science, and modern research is now 

Our Eigen Philosophy 9



also the language of robotics. This opens the field to a new generation of 
builders — students, researchers, and startups — who can develop full robotic 
systems using the same workflows they already know. Small, lean teams gain 
the leverage to do what previously required specialized infrastructure and large 
engineering groups.

As the robotics ecosystem matures — with richer world models, higher-fidelity 
simulators, and increasingly capable AI — Eigen will evolve with it. Each step 
forward in one domain automatically strengthens the others. What began as a 
framework for unifying simulation and hardware becomes the foundation for a 
broader transformation — a path toward general robotics, where 
experimentation, learning, and deployment are part of one continuous system.

In this future, progress no longer fragments the field. It compounds.

And Eigen ensures that every breakthrough in simulation, learning, or control 
flows directly into practice — keeping robotics coherent, connected, and 
always moving forward.

Our Eigen Philosophy 10


