“ NetActuate

Architecting
for Cloud
Oopenness

A Guide for Avoiding
Hyperscaler Lock-in

Hyperscaler (cloud provider) lock-in is not always apparent.
Hyperscalers diminish portability through their comprehensive set of
pre-packaged and proprietary services for managing infrastructure
and building applications. These hyperscaler-native services are
typically only compatible in the provider's environment and make it
difficult to migrate workloads to other providers.

Hyperscalers often provide venture-backed start-ups with generous
free credits. Growing companies can certainly take advantage

of these credits in their early days while also future-proofing their
infrastructure OPEX by designing, building, and deploying applications
without locking themselves in. By designing in architectural portability,
once the credits run out, they can make informed decisions about
their infrastructure instead of being forced into their existing cloud
ecosystem for the long term.

The best way to increase cloud options down the road is to architect
your cloud environment using non-proprietary or open source
alternatives that can easily be run in other environments. This guide
describes portable alternatives to hyperscaler proprietary services
based on third-party and open-source tooling.

This guide will cover some of the most common infrastructure and
service setups used by cloud-native organizations, which include:

1. ldentity and Access Management

2. Cl/CD and DevOps Pipelines for Application Development

3. Programmable Infrastructure

4. Kubernetes-based Compute
5. VM-based Compute

6. NetworkingLayer

7. Datalayer (databases)

8. Storagelayer (obiect, block, file storuge)
9. Monitoring and Visibility

y“ NetActuate Architecting for Cloud Openness

How to Read
this Guide

As tempting as it may be (and as easy as the hyperscalers

make it) to build your application stack using hyperscaler-
proprietary services, a small investment in researching and using
third-party, open-source tooling today will pay huge dividends

in freedom tomorrow. Some of these open source tools are used
by the hyperscalers themselves, and most are available in the
hyperscalers’ marketplaces.

For each infrastructure component and service listed above, we will
define a hyperscaler-proprietary way (using AWS as an example)
of setting up the base infrastructure and associated services. These
will be labeled as less portable, since migrating them to a different
environment will require some degree of rearchitecting.

We will also present an alternative option based on open-source
solutions, labeled as portable. These open-source alternatives
are suitable to be used in a hyperscaler-native environment,
and then can also be more easily migrated to a non-hyperscaler
environment or even across hyperscalers.

y“ NetActuate Architecting for Cloud Openness 2

Infrastructure and
Service Setups

Identity and Access Management

Identity and Access Management (IAM) governs who can access which resources, under what conditions,
and with what level of permission. This includes user authentication, service-to-service authorization,
and policy enforcement mechanisms. In hyperscaler environments, IAM is typically deeply integrated

into the platform and optimized for convenience.

Less Portable Portable

WORKLOAD IDENTITY AND ROLE ASSIGNMENT

Identity and access management revolves
entirely around AWS IAM with deeply integrated,
provider-specific concepts. For instance, IAM
instance profiles for EC2 instances, ECS task
roles for containers, and execution roles for
Lambda functions.

Instead of AWS IAM, you can use open

source solutions like Keycloak or OpenlAM

that provide comparable identity management
capabilities.

For container workloads that need service
identity, you can implement:

e Vault by HashiCorp with its Kubernetes
auth method to provide dynamic secrets

e SPIFFE/SPIRE for workload identity across
distributed systems.

ACCESS POLICY DEFINITION AND ENFORCEMENT

Access policies are commonly written in AWS's
policy language with resource patterns using
AWS-specific ARN formats. These policies

might include AWS-specific condition keys like
aws : SourceVpc or aws : PxrincipalOxgID that
have no direct equivalents in other providers.
Resource-based policies attached to S3 buckets
or SQS queues would use AWS-specific principal
identifiers and condition operators.

You can minimize dependency on AWS’s policy
language and ARN format with the following:

e Open Policy Agent (OPA) for flexible,
declarative policy definitions across diverse
resources

e Casbin for fine-grained, model-based
access control with various storage
adapters

These systems use standardized expressions and
can be adapted to work with non-AWS resource
naming schemes.

0 NetActuate

Architecting for Cloud Openness 3

Less Portable Portable

USER AUTHENTICATION AND FEDERATION

User authentication would typically be Open source alternatives include:
implemented through Amazon Cognito with
AWS-specific user pools, identity pools, and
authentication flows. Applications would
be designed around Cognito’s specific JWT
format and claims, AWS-specific social identity
provider integration, and Cognito’s approach to e OpenlD Connect providers like Dex that
custom authentication challenges and triggers. work with existing identity systems;
The application’s security model would often
incorporate Cognito-specific concepts like
groups and custom attributes that may not
map cleanly to other identity providers These solutions provide standard OAuth2/0IDC
flows with JWT tokens using standardized claims
that aren't tied to a specific cloud provider.
They handle social identity provider integration
through standard protocols and support custom
authentication flows and user attributes in ways
that can be migrated between environments.

e Keycloak, a full-featured identity provider
with social login support, MFA, and user
federation, or Logto for developer-friendly
authentication platforms;

e Authentik for a modern approach to
identity management with flexible flows.

Note that custom flows and user attributes often
still require manual mapping and adjustments
between systems. The portability is protocol-level,
not implementation-level

Cl/CD and DevOps Pipelines for
Application Development

This is a toolset for integrating code changes, building artifacts, running tests, and deploying to staging
or production environments. While hyperscalers offer fully integrated CI/CD tools that streamline this
process within their platforms, this is an area full of widely used open source and third-party alternatives.

Less Portable Portable

PIPELINE DEFINITION AND EXECUTION ENGINE

A CI/CD architecture on AWS would revolve Open-first CI/CD implements pipeline definitions
around AWS developer tools like CodePipeline, as code using provider-agnostic tools like GitLab
CodeBuild, and CodeDeploy with numerous AWS- CI/CD, Jenkins, or GitHub Actions. Pipeline
specific integrations. Build pipelines would be definitions would be stored in the application
defined using AWS CodePipeline’s proprietary repository rather than in a provider-specific

y“ NetActuate Architecting for Cloud Openness 4

Less Portable Portable

JSON structure with stages and actions that are
tightly coupled to AWS services.

service, allowing them to be executed in any
environment.

BUILD ENVIRONMENT CONFIGURATION

Build environments would be configured using
CodeBuild’'s buildspec.yml format with AWS-
specific environment variables, phases, and
artifacts definitions. The pipeline would likely use
CodeBuild’s specific behavior around caching,

VPC connectivity, and privileged mode execution

that differs from other Cl systems.

Build environments can be defined as Docker
containers with explicit dependencies, ensuring
consistent behavior regardless of where the
pipeline runs. These containers would include
all necessary build tools, language runtimes,
and dependencies, allowing builds to execute
identically across different Cl systems.

DEPLOYMENT MECHANISM

Deployment using AWS CodeDeploy involves
AWS-specific elements such as AppSpec files,
deployment configurations, and deployment
groups that are tightly integrated with AWS
services like EC2, ECS, or Lambda. Pipelines built
with AWS CodePipeline may incorporate manual
approval actions and SNS-based notifications,
leveraging features that are native to AWS.

Deployment would use provider-agnostic
approaches like Helm or Kustomize for Kubernetes
resources or provider-neutral infrastructure as
code tools. Deployment scripts would externalize
environment-specific configuration through a
configuration management system like Ansible,
Chef, or Puppet, allowing the same deployment
process to target different environments.

SOURCE CODE AND ARTIFACT STORAGE

Source code would likely be stored in CodeCommit

with AWS-specific triggers and integration
patterns, or would use CodeStar connections
to other repositories with AWS-specific
authentication mechanisms. Artifact storage
would rely on S3 with CodePipeline’s specific
artifact format and encryption approach.

Artifact storage would use standard repositories
appropriate to the artifact type—container
images would be stored in OCIl-compliant
registries like Harbor, Docker Hub, or Quay.io,
while language-specific packages would use
standard repositories like npm, PyPl, or Maven
Central. These repositories can be self-hosted
or used as services, providing consistency
across environments.

Programmable Infrastructure

Programmable infrastructure enables teams to define, provision, and manage cloud infrastructure
using machine-readable configuration files. In a cloud-native environment, infrastructure-as-code
supports repeatability, scalability, and automation by treating infrastructure as software—version-
controlled, testable, and modular. While hyperscalers like AWS provide proprietary 1aC solutions such as
CloudFormation, these are tightly coupled with their platforms and often contain unique behaviors and
syntax. To avoid lock-in and maintain flexibility across cloud providers or hybrid environments, teams

Architecting for Cloud Openness 5

0 NetActuate

can adopt provider-agnostic tools like OpenTofu or Pulumi, which allow for reusable, modular, and

portable infrastructure configurations.

Less Portable Portable

INFRASTRUCTURE DEFINITION AND SYNTAX

Traditional infrastructure on AWS would be
defined using CloudFormation templates with
heavy use of intrinsic functions like !Ref, !GetAtt,
and !'Sub that only work in AWS. Templates

would use AWS-specific pseudo-parameters like
AWS: :Region and AWS: :AccountId and would
incorporate CloudFormation-specific concepts
like nested stacks and custom resources.

Open-first CI/CD implements pipeline definitions
as code using provider-agnostic tools like

GitLab C1/CD, Jenkins, or GitHub Actions. Pipeline
definitions would be stored in the application repo-
sitory rather than in a provider-specific service,
allowing them to be executed in any environment.

RESOURCE ABSTRACTIONS AND INPUTS

Resource definitions would use AWS-specific
properties and return values, often with subtle
differences from similar resources in other clouds.
For example, an AWS: :EC2: : Instance resource
has unique approaches to user data, network
interfaces, and IAM role attachment that don’t
directly map to other providers.

A “database” module would present consistent
inputs like engine_type, version, size, and
high_availability, while implementing

the appropriate resources for each provider
underneath. This approach allows application
teams to define infrastructure requirements in
provider-neutral terms while enabling actual
deployment to any supported provider.

STACK REFERENCES

The infrastructure would likely use
CloudFormation exports and imports for cross-
stack references, which creates dependencies
that are difficult to restructure. Change
management would rely on CloudFormation
change sets and stack policies that have AWS-
specific semantics and limitations.

Resource references would use consistent
variable and output naming conventions across
modules, creating a uniform interface regard-
less of the underlying provider. For instance,
database connection details would be exposed
with consistent output names like host, port,
and connection_string regardless of whether
the database is running on AWS RDS, Azure
Database, or a self-hosted option.

DEPLOYMENT AND CONFIGURATION INTEGRATION

The deployment process might incorporate
AWS-specific services like Systems Manager
Parameter Store for configuration and AWS
Service Catalog for template distribution, creating
additional coupling to the AWS ecosystem.

In contrast, portable infrastructure designs
focus on separating core functional require-
ments from provider-specific optimizations.
This allows infrastructure to be deployed across
different environments with consistent baseline
functionality, while enabling advanced

0 NetActuate

Architecting for Cloud Openness 6

Less Portable Portable

features—such as enhanced networking,
encryption, or monitoring—where supported.
Configuration systems are designed to
gracefully degrade when certain features
aren’t available, ensuring compatibility across
clouds and on-prem systems.

Kubernetes-Based Compute

Kubernetes-based compute is the foundation for deploying, managing, and scaling containerized
applications in cloud-native environments. It abstracts underlying infrastructure, automates orchestration
tasks, and provides consistent APIs for deployment, networking, and storage. In hyperscaler platforms like
AWS, managed Kubernetes offerings such as Amazon EKS simplify cluster operations but often integrate
deeply with proprietary services, making migration challenging. By contrast, open-first approaches focus
on running Kubernetes in a provider-neutral way, using certified distributions and portable interfaces
that allow workloads to be moved seamlessly between clouds or to on-premises environments.

Less Portable Portable

CLUSTER ACCESS AND IDENTITY MANAGEMENT

In a traditional AWS approach, Kubernetes Open-first Kubernetes deployments use
workloads would be deployed on Amazon EKS certified Kubernetes distributions that maintain
with numerous AWS-specific integrations. The compatibility with the standard Kubernetes
cluster would use AWS IAM authenticator for API. Applications would be deployed to vanilla
Kubernetes, requiring AWS credentials for all Kubernetes clusters without dependencies
cluster access. Pod identity would be managed on provider-specific extensions or controllers,
through IAM Roles for Service Accounts (IRSA), allowing them to run consistently across

an AWS-specific mechanism that injects AWS environments.

credentials into pods.

STORAGE
Storage would be provisioned using the EBS For storage, applications would use the Container
Csl driver with volume types like gp3 or io2. Storage Interface (CSI)The specific CSI driver
Persistent volume claims would result in Amazon would be selected based on the environment
EBS volumes with AWS-specific lifecycle and (e.g., AWS EBS CSI Driver in AWS, Azure Disk CSI
snapshot capabilities. Driver in Azure), but the application’s

PersistentVolumeClaim objects would remain
identical across environments.

y“ NetActuate Architecting for Cloud Openness 7

Less Portable Portable

NETWORKING
Networking would use the AWS VPC CNI plugin Networking would use the Container Network
with AWS-specific IP address management and Interface (CNI) with portable implementations
security group integration. Ingress controllers like Calico or Cilium that work across environments.
would be implemented using the AWS Load Network policies would be defined using standard
Balancer Controller, which creates AWS-specific Kubernetes NetworkPolicy resources rather than
annotations to control Application Load Balancers provider-specific annotations or extensions, en-
or Network Load Balancers. suring consistent security enforcement regardless

of the underlying infrastructure.

Layer 7 Service exposure for HTTP and other
application traffic would use standard Kubernetes
Ingress resources with portable controllers like
NGINX or Envoy, rather than provider-specific
ingress implementations. Layer 4 network load
balancing would use appliances such as MetallLB.

OBSERVABILITY

The Kubernetes cluster would be tightly integrated = Observability can be architected using open

with AWS services like CloudWatch for logging source technologies such as OpenSearch,

and monitoring and AWS X-Ray for tracing. Logstash, Garylog, Kibana, Prometheus,
OpenTelemetry and Grafana.

VM-based Compute

In cloud-native environments, VM-based compute is used for workloads that require long-running
processes, full OS-level control, or legacy systems that aren’t yet containerized. These virtual machines
are commonly used for stateful applications, bespoke system configurations, or environments where
compliance or performance tuning is critical. While hyperscalers like AWS offer tightly integrated
services around VMs through EC2 and its ecosystem, these implementations often involve provider-
specific formats, tools, and workflows that hinder portability. A portable approach leverages open tools
and standards to define and manage VM lifecycle, configuration, and scaling across multiple cloud and
on-premises environments.

Less Portable Portable

IMAGE BUILDING AND INITIALIZATION

A traditional VM-based architecture in AWS would Open-first VM architectures use tools like
use EC2 instances with AWS-specific Amazon HashiCorp Packer to build machine images

y“ NetActuate Architecting for Cloud Openness 8

Less Portable Portable

Machine Images (AMis) that contain AWS-specific
initialization code and tools. Instances would be
launched with EC2-specific user data scripts

that handle bootstrapping and configuration,
often relying on the particular format and timing
guarantees of EC2 user data execution.

from a single template that can target
multiple providers. Image definitions would
include provider-specific builders but share
common provisioning scripts, ensuring
consistent configuration regardless of the
target environment. For instance, a single
Packer template might include builders for
AWS AMI, Azure Image, Google Cloud Image,
and VMware OVA formats, but would use the
same shell scripts, Ansible playbooks, or other
provisioning tools for all targets. This approach
ensures consistent system configuration and
application deployment across environments.

VM SCALING AND ORCHESTRATION

The architecture would use EC2 Auto Scaling
Groups with AWS-specific launch templates,
scaling policies based on CloudWatch metrics,
and lifecycle hooks that integrate with other AWS
services. Applications would be designed around
EC2 instance types with specific performance
characteristics and AWS’s approach to
ephemeral storage.

VM orchestration would use provider-agnostic
tools like HashiCorp Nomad or Terraform to
manage VM lifecycle and scaling. Instance type
requirements would be expressed in terms of
CPU, memory, and storage, with mapping to
appropriate instance types for each provider
handled by the orchestration tool or through
configuration.

METADATA ACCESS AND INSTANCE CONFIGURATION

Instances would use EC2 instance metadata
service at the 169.254.169.254 endpoint for
configuration data, credentials, and user data.
Applications might directly query the EC2
metadata service for information about the
instance’s identity, network configuration, or
attached IAM role.

Configuration and bootstrapping would use
cloud-init with provider-agnostic syntax for
common operations like user creation, package
installation, and file writing. Cloud-init’s data
source abstraction allows it to obtain configu-
ration from different providers while presenting a
consistent interface to the initialization scripts.

MANAGEMENT, MONITORING, AND DEPLOYMENT

Instance management would rely on AWS
Systems Manager for patching, configuration,
and command execution, using the AWS-specific
S$SM Agent that must be installed on all instances.
Monitoring would use CloudWatch with the
CloudWatch agent for metrics and logs collection
in AWS-specific formats.

Application deployment to VMs would use standard
configuration management tools like Ansible, Chef,
or SaltStack that work consistently across environ-
ments. These tools would use inventory and
configuration that can be dynamically generated
based on the target environment, allowing the
same playbooks or recipes to be used anywhere.
Prometheus Node Exporter can be used for

0 NetActuate

Architecting for Cloud Openness 9

Less Portable Portable

monitoring, which collects detailed system
metrics including CPU, memory, disk, and network
utilization from each virtual machine. The Node
Exporter runs as a lightweight daemon on

each VM and exposes metrics in a format that
Prometheus can scrape.

Networking Layer

In a cloud-native environment, the networking layer provides the fundamental communication backbone
that connects services, workloads, and users. It handles traffic routing, isolation, firewalling, and secure
connectivity across distributed components and hybrid infrastructure. Hyperscaler platforms like AWS
abstract and manage this layer with deeply integrated, proprietary tools (e.g., VPC, security groups,

NAT gateways), which can make portability challenging. A portable approach replaces these vendor-
specific constructs with open-source networking tools and protocols, allowing organizations to design
and operate cloud-agnostic networks with consistent behavior across environments.

Less Portable Portable

VIRTUALIZED NETWORKING

Traditional AWS networking architecture revolves
around the Virtual Private Cloud (VPC) with numer-
ous AWS-specific constructs. The network would
be divided into subnets with AWS-specific routing
tables, network ACLs, and security groups that use
AWS's particular rule formats and behavior.

Replace AWS VPC with standard networking
concepts using tools like OpenStack Neutron

or open-source virtualization platforms. Create
network segments with standard VLANs or overlay
networks using technologies like VXLAN. Define
security using standard Linux iptables or nftables
for firewall rules, and implement standard network
access controls using tools like Linux namespaces
or containers with defined network policies.

CROSS-NETWORK CONNECTIVITY AND VPN

Connectivity between VPCs would use VPC
Peering or Transit Gateway, both AWS-specific
services with their own configuration models
and limitations. External connectivity would

use Internet Gateways, NAT Gateways, and VPN
Connections with AWS-specific configuration
and routing requirements.

For connectivity between network segments, use
standard routing protocols like BGP with tools such
as FRRouting or Bird. Direct peering can be esta-
blished through Internet Exchange Points (IXs) using
BGP sessions. For secure connections, deploy open-
source VPN solutions like WireGuard or OpenVPN,
or use IPsec with strongSwan or Libreswan to create
encrypted tunnels between networks. Cross-
network connectivity would use standard VPN

0 NetActuate

Architecting for Cloud Openness 10

Less Portable Portable

protocols like IPsec or WireGuard that can be
implemented anywhere, rather than provider-
specific constructs like VPC peering or Transit
Gateway.

LOAD BALANCING AND TRAFFIC ROUTING

Load balancing would use Elastic Load Balancing
with Application Load Balancers, Network Load
Balancers, or Gateway Load Balancers, each with
AWS-specific target groups, listener rules, and
integration with other AWS services.

Instead of AWS's Elastic Load Balancing service,
you can use NGINX or HAProxy as powerful open-
source load balancers. NGINX provides excellent
performance for HTTP/HTTPS traffic with features
like SSL termination, keepalive connections,
request routing, and health checks. HAProxy excels
at TCP and HTTP load balancing with detailed
metrics and high-availability configurations. Both
can be deployed on standard Linux servers and
configured for automatic scaling.

Data Layer (Databases)

In a cloud-native environment, the data layer—comprising databases and associated services—ensures

persistent, durable, and reliable storage of application data. Traditional cloud-native designs often tie
databases tightly to managed services from a specific cloud provider, but a portable approach uses open-
source databases and Kubernetes-native tooling to allow consistent operation across any environment.

Less Portable Portable

DATABASE ENGINES AND DEPLOYMENT MODELS

A traditional AWS database architecture would
use fully managed services like RDS, Aurora, or
DynamoDB with deep integration to AWS-specific
features. For relational workloads, applications
would typically use Amazon Aurora with
proprietary extensions for MySQL or PostgresSQL
that provide AWS-specific capabilities like

Global Database, serverless scaling, or zero-ETL
integration with Redshift.

Open-first database architectures use standard
database distributions deployed in a provider-
agnostic way. For example, PostgreSQL, MySQL, or
MongoDB would be deployed using Kubernetes
operators like the PostgreSQL Operator or the
MongoDB Community Kubernetes Operator,
providing consistent deployment and lifecycle
management across environments. These
operators handle provisioning, high availability,
backup, and scaling in a consistent manner
regardless of the underlying infrastructure. For
instance, the PostgreSQL Operator can create a
highly available PostgreSQL cluster with

0 NetActuate

Architecting for Cloud Openness 11

Less Portable Portable

streaming replication on any Kubernetes cluster,
whether running in AWS, Azure, or on-premises.

CONNECTION MANAGEMENT AND HIGH AVAILABILITY

Connection management would rely on AWS-
specific endpoints and DNS haming conventions,
often using the AWS-specific RDS Proxy for
connection pooling. High availability would use
Aurora'’s specific implementation of read replicas
and automatic failover that doesn’t directly map
to standard database clustering.

Connection management would use standard
connection pooling solutions like PgBouncer
Connection management would use standard
connection pooling solutions like PgBouncer for
PostgreSQL or ProxySQL for MySQL, deployed
alongside the application in any environment.
These provide consistent connection handling,
pooling, and failover behavior regardless of the
database deployment.

Storage Layer

In a cloud-native environment, the storage layer provides the foundational capabilities for storing and
retrieving data in various formats: object, block, and file. This layer supports diverse workloads—from
serving static assets to providing persistent volumes for stateful applications. A cloud-native approach
emphasizes decoupling storage from any single provider, enabling applications to remain portable and
infrastructure-agnostic while still meeting performance, scalability, and durability requirements.

Less Portable Portable

OBJECT STORAGE

Traditional storage architecture in AWS would use
S3 for object storage with numerous AWS-specific
features. Applications would use bucket policies
with AWS IAM principals and conditions, lifecycle
rules specific to S3's storage tiers, and event
notifications with AWS-specific targets like SNS,
$QS, or Lambda.

Open-first object storage implementations use
S3-compatible APIs that are widely supported
across providers and tools. Solutions like MinlO
provide S3-compatible object storage that
can be deployed anywhere, while libraries like
the AWS SDK with the S3-compatible endpoint
configuration allow applications to use any
S3-compatible storage without code changes.
Ceph RADOS Gateway offers another robust
S3-compatible solution that integrates with
Ceph'’s distributed storage cluster, providing
enterprise-grade features like multi-tenancy,
data replication, and erasure coding.

0 NetActuate

Architecting for Cloud Openness 12

Less Portable Portable

BLOCK STORAGE

For block storage, applications would use EBS
volumes with AWS-specific volume types, IOPS
provisioning models, and snapshot capabilities.
Attachment and detachment would follow EC2-
specific behavior and limitations, and data persis-
tence would rely on AWS's specific guarantees
around availability zones and regions.

For block storage in containerized
environments, applications use Kubernetes
PersistentVolumeClaims (PVC) with the
Container Storage Interface (CSI) to request
storage through a consistent API that works
across all environments. Open-source solutions
like Rook’s Ceph RBD integration and Longhorn
provide CSldrivers that can provision block
storage from distributed storage clusters, while
the same underlying storage can also serve VMs
and bare-metal workloads through Ceph’s RBD
daemon. This approach allows organizations to
use the same storage infrastructure and APIs
whether deploying on cloud platforms or self-
managed clusters.

SHARED FILE STORAGE

File storage would typically use EFS with AWS-
specific mount targets, access points, and

File storage would use standard protocols like NFS
or SMB that are supported across environments.

lifecycle management. Applications would be
designed around EFS'’s particular performance
characteristics, throughput modes, and
integration with other AWS services through file
system policies.

In Kubernetes, the Rook operator with Ceph
provides a consistent way to provision file storage
in any environment, with the same CephFS
PersistentVolumeClaim being usable regardless
of the underlying infrastructure.

DATA MANAGEMENT

Data transfer between storage services would
often use AWS Transfer Family or AWS DataSync
with AWS-specific configuration and behavior.
Access patterns would be optimized for AWS's
specific pricing models, such as using S3 Transfer
Acceleration or Direct Connect for cost-effective
data movement.

Data lifecycle management would be imple-
mented using standard policies and tools rather
than provider-specific features. For example,
object lifecycles could be managed by application
logic or by scheduled jobs that apply consistent
policies across any S3-compatible storage.

Monitoring and Visibility

In a cloud-native environment, monitoring and visibility encompass the collection of metrics, logs, and
traces; the analysis of system behavior; and the setup of alerts and dashboards for real-time observability.

0 NetActuate

Architecting for Cloud Openness 13

Less Portable Portable

METRICS AND LOG COLLECTION

Traditional AWS monitoring architecture would
center on CloudWatch with AWS-specific metrics,
logs, and alarms. Applications would publish
custom metrics using the CloudWatch API with
AWS's specific namespaces, dimensions, and
statistics. Log collection would use CloudWatch
Logs with AWS-specific log groups, log streams,
and retention policies.

Open-first observability implements the
OpenTelemetry framework for metrics, logs,
and traces that can be collected consistently
across environments. Applications would be
instrumented using the OpenTelemetry SDK,
producing telemetry data in standard formats
that can be processed by various backends. It
can forward data to Prometheus as a backend,
maintaining consistent labeling and naming
conventions so the same PromQL queries work
regardless of where the application is running.
Traces can be sent to backends like Jaeger or
Zipkin for distributed tracing analysis.

INFRASTRUCTURE AND DATABASE MONITORING

Infrastructure monitoring would often use AWS
Config with AWS-specific rules and remediation
actions. Performance insights for databases would
use the AWS-specific RDS Performance Insights
or similar service-specific monitoring tools.

Open-first environments monitor infrastructure
using standard tools such as Prometheus
exporters, OpenTelemetry collectors, or agents
that expose metrics in open formats. For
databases, standard exporters or OpenTelemetry
SDKs can collect performance metrics that work
across self-hosted or managed instances in

any environment, providing consistent visibility
without relying on provider-specific APIs.

DISTRIBUTED TRACING

For distributed tracing, applications would use AWS
X-Ray with the X-Ray SDK for instrumentation, pro-
ducing traces in AWS's specific format with X-Ray-
specific concepts like segments, subsegments, and
annotations. Sampling and trace collection would
follow X-Ray'’s specific behavior and limitations.

Distributed tracing would use OpenTelemetry
with consistent span naming and attribute
conventions. The same traces would be collected
regardless of the environment, allowing for
consistent visualization and analysis in backends
like Jaeger or Zipkin.

ALERTING AND DASHBOARDING

Alerting would use CloudWatch Alarms with
integration to SNS for notification or to other AWS
services for automated remediation. Dashboards
would be created in the CloudWatch console with
AWS-specific widgets and visualization options.

Dashboarding and alerting would use Grafana or
Icinga with dashboards defined as code, allowing
them to be version-controlled and deployed con-
sistently across environments. Alerts would be de-
fined using standard mechanisms like Prometheus
AlertManager rules, with notification through
standard channels like email, Slack, or PagerDuty.

0 NetActuate

Architecting for Cloud Openness 14

Migrating to
the Open
Network Edge

An open approach to infrastructure development allows fast-growing
companies to leverage best-in-class open source tooling while

also ensuring portability between environments. This provides the
critical flexibility to evolve and scale your technology stack and
optimize for performance, costs, and new revenue opportunities

as your company evolves.

NetActuate’s Open Network Edge (ONE) is a globally distributed
infrastructure-as-a-service (laas) built using open source
technologies. It provides out-of-the-box implementations of widely
deployed open source software, including operating system,
network operating systems, monitoring software, orchestration tools,
and everything else needed to scale your platform. Our team of
experts can help you re-architect your current cloud environment
and set up your infrastructure in such a way that it is easily
extensible to other environments.

Schedule a pressure-free 30-minute call with one of our engineers
to learn how NetActuate can help you build and deploy your solution

at scale.

y“ NetActuate Architecting for Cloud Openness 15

https://www.netactuate.com/schedule-a-call

http://linkedin.com/company/netactuate-inc
http://github.com/netactuate
http://youtube.com/@NetActuate
http://netactuate.com

