

HHS Public Access

Author manuscript

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2025 October 28.

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Published in final edited form as:

Cancer Epidemiol Biomarkers Prev. 2025 November 03; 34(11): 1895–1906.
doi:10.1158/1055-9965.EPI-25-0133.

Potential Exposure to Environmental Toxic Emissions and Increased Cancer Risk in Puerto Rico

Nancy R. Cardona-Cordero¹, Ana P. Ortiz¹, Lenulisy Rosado-Estrada¹, Polaris N. Torres-Rodríguez¹, Carlos R. Torres-Cintrón², Noreen Michael⁴, Pablo Méndez-Lázaro³, Erick Suarez¹, Karen Ortiz-Ortiz², Marievelisse Soto-Salgado¹

¹Division of Cancer Control and Population Sciences, University of Puerto Rico, Comprehensive Cancer Center, San Juan, Puerto Rico

²Puerto Rico Central Cancer Registry, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico

³Department of Environmental Health, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico

⁴University of the Virgin Islands, St Thomas, Virgin Islands, United States

Abstract

Background: Toxic environmental pollutants are a risk factor for some cancers. We conducted an ecological study to assess the cancer risk in Puerto Rico after 15 years of exposure.

Methods: Cancer incidence data (2018–2022) were obtained from the Puerto Rico Central Cancer Registry. Contaminated areas were defined as municipalities with industrial facilities reporting on-site toxic chemical emissions to the Environmental Protection Agency's Toxic Release Inventory (TRI) from 2006 to 2020. We estimated cancer risk using the age-standardized incidence relative risk (RR) with 95% confidence intervals (95%CI) by cancer type and sex. This was repeated for the frequency of onsite TRI emissions (none, intermittent, and continuous). All were performed using SEER*Stat v8.4.4.

Results: Between 2018 and 2022, 80,179 invasive cancer cases were diagnosed in Puerto Rico. Residents of contaminated municipalities had a 7% higher risk of all cancer types (RR: 1.07, 95%CI: 1.05–1.09) than those in non-contaminated municipalities, similar to females (RR: 1.05, 95%CI: 1.02–1.07) and males (RR: 1.10, 95%CI: 1.07–1.12). Risk was higher in highly contaminated municipalities, with a 5% increase in females (RR=1.05, 95%CI: 1.03–1.08) and 12% in males (RR=1.12, 95%CI: 1.09–1.15).

Conclusions: The data suggest higher cancer rates in municipalities with TRI facilities, emphasizing the need for research, environmental interventions, and public health actions to mitigate toxic chemical exposure in Puerto Rico.

Corresponding Author: Nancy R. Cardona-Cordero, Division of Cancer Control and Population Sciences, University of Puerto Rico Comprehensive Cancer Center, PO Box, 363027, San Juan, PR, 00936-3027. ncardona@cccupr.org.

Disclosure of Potential Conflicts of Interest: The authors declare no potential conflict of interest.

Impact: This study contributes additional knowledge of Puerto Rico's cancer burden by identifying the relationship that may exist between living in municipalities with industries reporting the emission of toxic chemicals and cancer risk.

Keywords

Cancer risk; Environmental pollution; Industrial emissions; Toxic Release Inventory (TRI); Puerto Rico

INTRODUCTION

In the Caribbean, cancer accounts for a fifth of all deaths, and its incidence is increasing [1]. People diagnosed with cancer in this region face unique challenges in their prevention and control efforts [2]. Puerto Rico, a United States (US) territory in the Caribbean Sea, has a history of environmental and societal neglect and a disproportionate impact from climate-driven extreme weather events [3]. It is home to almost 3.2 million Hispanics/Latinos [4]. From 2000 to 2022, 320,076 cancer cases were diagnosed: for men the age adjusted incidence rate increased from 348.3 to 377.6 per 100,000; for women from 252.9 to 314.5 per 100,000 [5]. Although the overall cancer mortality in Puerto Rico decreased from 2016 to 2020, its incidence has increased annually [6]. Among females, significant increases in cancer incidence include breast (Annual Percentage Change [APC]=1.7%), corpus and uterus (APC=4.6%), thyroid (APC=9.0%), non-Hodgkin lymphoma (APC=2.1%), pancreas (APC=3.1%), leukemia (APC=2.7%), and ovary (APC=0.8%). Among men, significant increases were observed in the prostate (APC=1.7%), non-Hodgkin lymphoma (APC=1.8%), liver and bile duct (APC=1.9%), kidney and renal pelvis (APC=4.3%), leukemia (APC=2.2%), and pancreas (APC=2.2%). Municipalities in the southern, northern, and central regions of Puerto Rico have the highest cancer incidence rates [6]. Although cancer risk is influenced by multiple factors, including genetics, environment, medical history, and lifestyle [7], previous studies have highlighted a disproportionate environmental pollution burden on Black and Hispanic/Latino populations [8–12]. Therefore, identifying environmental risk factors in Puerto Rico is a public health priority, as they have been associated with genitourinary, digestive, gastrointestinal, gynecological, hematologic/blood, and breast cancers (Table S1) [13–18].

The presence of chemicals in the air, water, or soil occurs naturally. However, most carcinogen-related substances originate from anthropogenic activities, such as manufacturing and other industrial processes. Historical data (1987–2023) reported to the US Environmental Protection Agency's (EPA) Toxic Release Inventory (TRI) program include emissions from 27 industry sectors, with electric utilities, chemical and petroleum industries, hazardous waste facilities, and manufacturing as the top pollutant sources in Puerto Rico. However, exposure to pollution or healthier environments is not equally spread across space [19–21]. Exposure to carcinogens is uneven and often affects socially and economically disadvantaged populations [22–23, 10]. This unequal exposure highlights that communities and populations are vulnerable to systemic factors beyond their control, leading to differential and preventable health disparities [24]. While global studies have

linked proximity to industrial pollution with increased cancer risk, this association has not been fully studied in Puerto Rico.

Environmental pollution, including the presence of carcinogens and their mixtures, has been documented across the archipelago of Puerto Rico [25–26] with varying exposure by municipality [27]. For example, a 2009 ecological study found that residents of Vieques, an island municipality located 11 km off the east coast of Puerto Rico's main island, had a 26% higher risk of cancer than those on the main island [28]. Despite the differences found in the study between the municipality of Vieques and Puerto Rico, which may be attributed to higher concentrations of toxic metals in the soil and exposure to munition-specific carcinogens following US military exercises [29–30], no other epidemiological studies have been conducted to estimate cancer incidence in Puerto Rico. Meanwhile, communities in industrial zones across Puerto Rico's main island are exposed to a complex mixture of toxic emissions that pollute the environment and pose health risks, including an increased risk of cancer [31–33].

The TRI program regulates and monitors toxic emissions in the US and its territories for 799 individual chemicals and 33 chemical categories [34]. According to the TRI [35], 199 facilities in Puerto Rico with unique identification numbers (TRIFID) submitted report forms to the TRI between 2006 and 2020. Of these, 160 reported on-site emissions.

During this period, approximately 75.8 million pounds of emissions from 122 chemical substances were released across the archipelago. Of these, 60.6 million pounds of emissions from 114 chemical substances were reported to have been released on-site in 48 of the

78 municipalities of Puerto Rico. The Occupational Safety and Health Administration (OSHA) classifies 33 of the 114 chemicals emitted as carcinogens [36], representing 26% of the total releases in Puerto Rico for the historical data (1987–2023) reported.

These chemicals enter environmental compartments (soil, water, and air), affecting human health, especially as climate change is likely to increase human exposure to carcinogenic substances, posing risks to Caribbean populations [37, 2]. Although environmental health assessments suggest that prolonged exposure to chemical substances can lead to worse health outcomes, epidemiological studies have demonstrated associations between industrial emissions and cancer outcomes [38–40]. Our study aimed to examine the carcinogenic impact and disparities of living in municipalities with reported industrial pollution in Puerto Rico. Understanding these patterns will help prioritize further epidemiological and environmental research, as well as public health interventions, and inform policy changes to mitigate risks in high-risk populations.

MATERIALS AND METHODS

Study design, study population, and outcome data

An ecological study design was employed to analyze the association between TRI exposure and cancer rates in Puerto Rico using data from the Incidence Case File of the Puerto Rico Central Cancer Registry (PRCCR). PRCCR, a population-based registry, is responsible for collecting, analyzing, and publishing information on all cancer cases diagnosed and/or treated in Puerto Rico, meeting the standards established by the National Program of Central Cancer Registries and the Centers for Disease Control and Prevention. The PRCCR data

includes individual-level characteristics, such as age, sex, and municipality of residence at the time of diagnosis. The study population consisted of all cancer patients diagnosed with invasive primary cancer between January 2018–December 2022, who were residents of Puerto Rico at the time of diagnosis. Cancer cases were coded according to the third edition of the International Classification of Diseases for Oncology (ICD-O-3) [41]. It is worth noting that both Hurricane María and the COVID-19 pandemic disrupted health services, causing delays and reductions in cancer detection, diagnosis, and reporting to PRCCR [42]. This may have contributed to the decrease in incidence rates for most municipalities in Puerto Rico in 2020 [6]. This study was approved by the Institutional Review Board of the Comprehensive Cancer Center of the University of Puerto Rico (#2024-06-142).

Exposure data

TRI data were gathered from the EPA's TRI Basic Data Files inventory, which is available online. The TRI was introduced in 1986 under the Emergency Planning and Community Right-to-Know Act (EPCRA) and requires many industry sectors to report on the storage, use, and release of specific chemicals into the environment [43]. An industrial facility is required to report to the TRI if it is included in a TRI-covered North American Industry Classification System code, has ten or more full-time employees equivalents, and either uses or manufactures more than a threshold level of a listed substance that cause cancer, chronic human health effects, significant adverse acute human health effects and/or significant adverse environmental effects [34]. Smaller facilities and those that manufacture or use amounts of a chemical below threshold levels annually are not required to report [43]. These reports are based on measurements conducted by facilities and submitted voluntarily [34]. These TRI data were used to identify exposed municipalities in Puerto Rico, defined as municipalities with facilities that reported on-site emissions over 0 pounds to the TRI at least once during the 15 years from 2006 to 2020. By including only facilities that reported at least one year of on-site emissions, we reduced the bias of including facilities that reported zero emissions or blank data during the 15 years, as the reasons are unclear and may include non-applicable release pathways or pre-mandatory reporting practices [34]. We analyzed data from industries reporting on-site because we wanted to consider chemicals released directly to air, surface water, and land within the municipality where cancer cases were diagnosed. We did not use total reported emissions because they include both on-site and off-site releases, which could misrepresent exposure at the municipal level [34]. We identified two initial categories of municipalities: (1) contaminated, defined as having at least one on-site release over the period; and (2) non-contaminated, defined as having no reports over the period. An additional classification was created based on the frequency of reported emissions, where municipalities were divided into three categories: [1] no on-site TRI reporting for the study period, (2) intermittent on-site emissions over 0 pounds reported from 1 to 14 years of the 15 years, and (3) continuous on-site emissions over 0 pounds reported for all years of the study period (15 years).

Statistical analysis

To estimate the cancer risk between non-exposed and exposed municipalities, we calculated the age-standardized incidence (ASI) with 95% confidence intervals using the direct method and the 2000 PR standard population (19 age groups) for 2018–2022. We then estimated

the age-standardized incidence relative risk (RR=ASI of contaminated areas/ASI of non-contaminated areas) with 95% confidence intervals (95%CI) from 2018 to 2022. These RRs were calculated for the total cancer (all cases) and specific cancer types included in the PRCCR. Analyses were performed overall (total population) and stratified by sex. This analysis was repeated for the exposure variable with three categories to estimate the cancer risk between municipalities with no on-site emissions reported during the study period, intermittent on-site emissions (contaminated), and continuous on-site emissions (highly contaminated). All analyses were conducted using SEER*Stat v8.4.4.

RESULTS

Risk of cancer in contaminated areas

A total of 160 facilities with unique identification numbers (TRIFD) released more than 0 pounds onsite during the study period (Figure 1). Between 2018–2022, 80,179 invasive cancer cases were diagnosed in Puerto Rico: 38,201 (47.6%) among females and 41,978 (52.4%) among males. Of these, 61,446 (77%) resided in municipalities classified as contaminated based on the presence of at least one TRI facility that reported on-site emissions at least once between 2006–2020. Figure 2 shows the age-adjusted cancer rate for all the cancers from 2018 to 2022. For all cancer types, we observed a significant 7% excess risk among residents of contaminated municipalities compared with those in non-contaminated municipalities (RR=1.07, 95%CI:1.05–1.09, $p<0.0001$). When stratified by sex, the risk remained elevated in both females and males. Specifically, females had a 5% increased risk (RR=1.05, 95%CI:1.02–1.07, $p=0.0004$), while males residing in contaminated municipalities exhibited a 10% increased risk (RR=1.10, 95%CI:1.07–1.12, $p<0.0001$). The results are presented in Table 1 and Table 2.

Overall, specific cancer types showed an increased risk (Table 1). Those living in contaminated municipalities had a statistically significant increased risk of breast, kidney, and renal pelvis, lung and bronchus, non-Hodgkin lymphoma, and pancreatic cancers, compared to those living in non-contaminated municipalities.

Among females living in contaminated municipalities, significant differences were observed for the three types of cancers (Table 2). An increased risk of breast cancer and non-Hodgkin lymphoma and a lower risk of stomach cancer were observed. In contrast, seven different cancer types were statistically significant for males residing in contaminated municipalities compared to those residing in non-contaminated municipalities (Table 2). Increased risk for kidney and renal pelvis cancer, liver and intrahepatic bile duct cancer, lung and bronchus cancer, non-Hodgkin lymphoma, pancreas and prostate cancer, and lower risk for acute myeloid leukemia were observed for males living in contaminated municipalities, compared to those living in non-contaminated municipalities.

Risk of cancer based on the frequency of on-site reported emissions

Of the 77% of cancer patients (n=61,446) who lived in municipalities with a TRI facility between 2006 and 2020, 15% (12,037) lived in municipalities with reported intermittent on-site emissions (contaminated), and 62% (49,409) in municipalities with reported continuous

on-site emissions (highly contaminated). When stratifying by the frequency of emissions and comparing with non-contaminated municipalities, notable patterns were observed, with a significant excess risk observed particularly in contaminated municipalities (Table 3).

The results showed an 8% increased risk for all cancer sites among residents in areas with continuous on-site toxic emissions ($RR=1.08$, 95%CI:1.06–1.10, $p<0.0001$) compared with those in non-contaminated municipalities. When stratified by sex, the risk remained elevated in both females and males. Females residing in areas with reported intermittent on-site toxic releases exhibited a 2% increased risk ($RR=1.02$, 95%CI: 0.99–1.06, $p=0.25$), while females residing in municipalities with reported continuous on-site releases had a 5% increased risk ($RR=1.05$, 95%CI:1.03–1.08, $p<0.0001$) for all cancer sites, compared with females residing in non-contaminated municipalities. Males residing in municipalities with reported intermittent on-site releases showed a 1% increased risk ($RR=1.01$, 95%CI:0.98–1.05, $p=0.50$), while those residing in municipalities with continuous reports had a 12% increased risk ($RR=1.12$, 95%CI:1.09–1.15, $p<0.0001$) for all cancer sites, compared with males residing in non-contaminated municipalities.

Significant differences in cancer occurrence by the frequency of TRI-reported emissions were also observed by sex (Table 4). In females, a significantly increased risk for breast cancer, lung and bronchus cancer, and non-Hodgkin lymphoma was observed in those residing in municipalities with continuous on-site toxic emissions, compared to those residing in municipalities without on-site emissions. Females who resided in municipalities with reported intermittent on-site releases had a significantly increased risk for cancer in the esophagus and a decreased risk of stomach cancer compared to with those residing in non-contaminated municipalities. Several specific cancer types among females showed a higher risk with an increased frequency of on-site reported emissions, although none were statistically significant (Table 4). These included cervix uteri, chronic lymphocytic leukemia, chronic myeloid leukemia, corpus and uterus, myeloma, oral cavity and pharynx, ovary, vagina, and vulva.

Among males, several cancers were also associated with living in contaminated and highly contaminated municipalities (Table 4). The analysis revealed a significant increase in cancer risk for the anus, anal canal and anorectum, kidney and renal pelvis, liver and intrahepatic bile duct, lung and bronchus, prostate, and non-Hodgkin lymphoma, among men who resided in municipalities with continuous onsite emissions compared to those living in non-contaminated municipalities. Similarly, males had a significant 23% increased risk of pancreatic cancer ($RR=1.23$, 95%CI: 1.00–1.51, $p=0.049$) in municipalities with intermittent on-site emissions, and an 18% increased risk of pancreatic cancer ($RR=1.18$, 95%CI: 1.01–1.38, $p=0.04$) in municipalities with reported continuous on-site emissions, compared to those residing in non-contaminated municipalities. A decreased risk of acute myeloid leukemia was observed among males living in municipalities with continuous toxic on-site releases, compared to those residing in non-contaminated municipalities.

DISCUSSION

To our knowledge, this is the first ecological study in Puerto Rico to examine how contaminated and non-contaminated municipalities relate to cancer risk by evaluating

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

two exposure types: the presence of industries and the frequency of pollutants released into the environment. Our findings suggest a positive trend with frequently contaminated municipalities having the highest increased risk of cancer. In our primary analysis, we found that residing in municipalities with a TRI facility reporting on-site toxic releases was linked to an increased risk for all sites and several specific cancer types when stratifying by sex (i.e., breast, kidney and renal pelvis, lung and bronchus, non-Hodgkin lymphoma, and pancreas) compared to municipalities without a TRI facility between 2006–2020.

Breast and prostate cancers, in females and males, respectively, are the most incident in Puerto Rico [6], the US [44], and among the top three cancer types worldwide [45]. Our study identified several important findings for these cancer types, where people who live in municipalities with a TRI facility had a significantly increased risk of breast and prostate cancers in females and males, respectively. These findings are consistent with previous scientific literature reporting associations between industrial pollutants and breast cancer [46–47] as well as prostate cancer [48–49]. A prior study in Canada found an increased risk of breast cancer among residents living in proximity to industrial plants [50], while a prospective cohort study in the US found that breast cancer incidence was associated with certain industrial carcinogens [51]. Recent studies have associated toxic environmental pollutants, particularly endocrine-disrupting chemicals (EDC) such as dioxins and phthalates, with breast cancer [52]. According to the TRI, industries in Puerto Rico have emitted multiple known or suspected EDCs throughout the archipelago, including dioxin, dioxin-like compounds, polycyclic aromatic compounds, benzene, formaldehyde, lead, and ethylene oxide. When considering the frequency of emissions, we identified that the risk for both breast and prostate cancers was significantly higher when on-site emissions were reported for 15 consecutive years compared with intermittent releases from 1 to 14 years. This suggests that longer exposure can lead to greater risk.

Our findings also contribute to the existing literature by highlighting the positive association between lung cancer and environmental pollution. Lung cancer is the most common cancer worldwide [53], and in the US, it is the leading cause of cancer-related death in both sexes [44]. While smoking is the primary risk factor, living in polluted areas also increases this risk [54]. Our study found that residents of contaminated or highly contaminated municipalities have an increased risk of lung and bronchus cancer. Specifically, we found a significantly increased risk of lung and bronchus cancer in males based on the presence of a TRI; females showed an increase, but this was not statistically significant. However, when analyzing the frequency of released emissions between 2006–2020, a significantly higher risk of lung cancer was observed with continuous emissions than with intermittent emissions. This finding emphasizes the importance of studying exposure patterns. For instance, 11 chemicals classified as carcinogenic by the OSHA in the TRI database were continuously released between 2006–2020 in Puerto Rico.

Interestingly, our study showed a reduced risk of two cancer types, acute myeloid leukemia and stomach cancer, in both analyses of contaminated areas, with a lower risk in males living in municipalities with TRI facilities and in municipalities with continuous on-site emissions. These results differ from the American Cancer Society data [55], where acute myeloid leukemia is more common in men than in women. In contrast, females had a

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

less significant risk of stomach cancer in municipalities with toxic emissions and those with continuous toxic releases. While further research is needed to elucidate these findings, treatment with certain chemotherapy drugs and infections with *Helicobacter pylori* are important risk factors for acute myeloid leukemia and stomach cancer, respectively [56–59]. Previous studies have reported that *H. pylori* infection is common among Hispanics living in Puerto Rico, with a seroprevalence of 33% [57], which should be considered in future studies. In addition, long-term chemical exposure, such as benzene, reported in seven municipalities (Aguadilla, Bayamón, Carolina, Guayama, Guaynabo, Peñuelas, and Yabucoa) may explain some of the findings. However, the exposure duration requires further study, as there may be confounding effects that were not considered in this study. Furthermore, smoking remains the sole confirmed lifestyle-related risk factor for acute myeloid leukemia [56].

Previous research has shown that cancer is not distributed equally and that the burden of environmental pollution disproportionately affects Hispanic/Latino populations [8]. In the US, individuals with limited education or living in poverty have a higher risk of exposure to carcinogenic air emissions from industrial facilities [10]. According to the US Census Bureau (2022: ACS 5-Year Estimates), 28.3% of people in Puerto Rico have a bachelor's degree or higher educational level and a median household income (US dollars) of \$24,002, with 42.2% of people living below the poverty level, which is higher than in the US. Moreover, Puerto Rico has experienced a significant increase in more frequent and/or intense extreme weather events in recent decades [60–62], which likely exacerbates the degree of human exposure to both industrial and non-industrial pollution [63], resulting in higher morbidity and mortality [64]. Events such as Hurricane María in 2017 mobilized emerging and anthropogenic pollutants in the environment, damaging the water infrastructure and increasing contaminant levels, including pesticides and metals such as copper, strontium, and vanadium, with significant differences in both chemical and toxicity levels [65]. Other non-TRI-related pollution sources, such as Superfund sites [32], landfills and waste management [66], traffic-related contamination [67], and poor drinking water quality [68], may also contribute to the cancer risk in Puerto Rico. Therefore, further research is necessary to comprehend the effects of social and environmental determinants of health on cancer incidence and environmental exposure within this population, including the intersection of extreme weather events and exposure to pollutants tracked and not tracked by TRI on cancer risk.

Estimating the health impact of contaminated sites, particularly those resulting from industrial emissions, is complex. This study had several limitations, mainly due to its ecological design. We lacked individual environmental exposure data, and the exposures likely varied among individuals and even within municipalities. Additionally, we were unable to adjust for individual cancer risk factors or potential confounding variables, which may have biased the results. Despite the completeness of the data collected by the PRCCR database, we only had access to cancer incidence data at the municipal level; therefore, we were unable to assess the correlations of proximity to TRI-reporting facilities. This led to a simplified assumption that all people in a municipality had equal exposure during the 15-year exposure period. An important consideration when interpreting the results of this analysis is the potential for an ecological fallacy. This assumption

overlooks the interconnected nature of pollutant transport in ecosystems [69–70]. Thus, studies incorporating location-specific data and spatial analysis methods could contribute to a better understanding of environmental effects on cancer risk. Further studies should also consider varying latency periods for each cancer type.

The limitations of the TRI data were previously described in the Methods section. In brief, (1) smaller facilities and smaller chemical uses are not reported but may still release substantial levels of pollutants [71]; (2) there is evidence that some facilities underreport TRI emissions, resulting in systematic measurement errors in the database [72]; and (3) the TRI covers many but not all industry sectors; therefore, substances that may be relevant to cancer development may not be included. To address bias related to exposure misclassification concerning residential mobility, we consulted the US Census ACS 5-Year Estimates for 2018 (RRID: SCR_011587), which showed that 91% of the population lived in the same household as the previous year, 4% moved within the same municipality, 2% moved to a different municipality, and 3% moved to the US. This trend persisted in the ACS 5-Year Estimates for 2022. This suggests that the misclassification bias is likely to be minimal. Despite these limitations, our findings provide a basis for future epidemiological and environmental research.

This study contributes to the discussion that the presence of polluting industries may increase the risk of cancer, highlighting a significant association between living in municipalities with industrial pollution and increased risk of cancer. Continued surveillance and environmental health assessments are necessary to address the long-term health impact of industrial pollution. Additionally, cancer screening programs can be reinforced in municipalities with TRI-reporting facilities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

This study was supported by the National Cancer Institute (Caribbean Cancer Research Center on Environmental and Natural Hazards (CARIB-CARES), grant number 1P20CA294096-01 [NR Cardona-Cordero, AP. Ortiz, L. Rosado-Estrada, P. Torres-Rodríguez, PA. Méndez-Lázaro, N. Michael, E. Suárez, M. Soto-Salgado]). This project was partially supported by the Puerto Rico Central Cancer Registry (grant NU58DP007164) [CR. Torres-Cintrón, K. Ortiz-Ortiz].

Data availability

The TRI data used in this study are publicly available on the EPA's public website: Toxics Release Inventory (TRI) Program | US EPA. The data generated in this study are not publicly available because of information that could compromise patient privacy but are available upon reasonable request from the corresponding author.

REFERENCES

- Spence D, Dyer R, Andall-Brereton G, Barton M, Stanway S, Argentieri MA, et al. Cancer control in the Caribbean island countries and territories: some progress but the journey continues. *Lancet Oncol* 2019;20:e503–e521. [PubMed: 31395473]
- Ortiz AP, Hospedales CJ, Méndez-Lázaro PA, Hamilton WM, Rolle LSD, Shepherd JM, et al. Protecting Caribbean patients diagnosed with cancer from compounding disasters. *Lancet Oncol* 2024;25:e217–e224. [PubMed: 38697167]
- Rodríguez-Díaz CE. After Harvey, Irma, and María, an opportunity for better health-Rebuilding our communities as we want them. *Am J Public Health* 2018;108:32–33. 10.2105/AJPH.2017.304194 [PubMed: 29211532]
- US Census Bureau. [cited 2025 May 15] Available from: https://data.census.gov/profile/Puerto_Rico?g=040XX00US72.
- Torres-Cintrón CR, Suárez-Ramos T, Pagán-Santana Y, Román-Ruiz Y, Gierbolini-Bermúdez A, Ortiz-Ortiz KJ. Cancer in Puerto Rico, 2018–2022. San Juan, PR; 2025. p 16. [cited 2025 May 12]. Available from: <https://rcpr.org/Portals/0/informe%202018-2022%20-%20Ingles.pdf?ver=It1zSSVgNpM1zvxFfG1zw%3d%3d>
- Torres-Cintrón C, Suárez-Ramos T, Román-Ruiz Y, Ortiz-Ortiz K, De Jesús-Monge V, Gierbolini-Bermúdez A, et al. Cancer in Puerto Rico 2016–2020. San Juan, PR; 2023. p. 8–18. [cited 2025 Jan 15]. Available from: <https://estadisticas.pr/files/Inventario/publicaciones/informe%202016-2020%20-%20Espanol%20%282023Dic14%29.pdf>
- PDQ® Cancer Genetics Editorial Board. Cancer Genetics Overview (PDQ®): Health Professional Version. 2025 [cited 2025 June 5]. Available from: <https://www.cancer.gov/publications/pdq/information-summaries/genetics/overview-hp-pdq>
- Alvarez CH, Calasanti A, Evans CR, Ard K. Intersectional inequalities in industrial air toxics exposure in the United States. *Health Place* 2022;77:102886. 10.1016/j.healthplace.2022.102886 [PubMed: 36001937]
- Lee EK, Donley G, Ciesielski TH, Gill I, Yamoah O, Roche A, et al. Health outcomes in redlined versus non-redlined neighborhoods: A systematic review and meta-analysis. *Soc Sci Med* 2022;294,114696. 10.1016/j.socscimed.2021.114696 [PubMed: 34995988]
- Madrigal JM, Flory A, Fisher JA, Sharp E, Graubard BI, Ward MH, et al. Sociodemographic inequities in the burden of carcinogenic industrial air emissions in the United States. *J Natl Cancer Inst* 2024;116,737–744. 10.1093/jnci/djae001 [PubMed: 38180898]
- Pruitt CN, Fisher JA, Flory AR, Graubard BI, Ward MH, Jones RR, et al. Nationwide sociodemographic patterns in airborne exposure to probable carcinogens from industrial sources. *Sci Total Environ* 2025;986,179674. 10.1016/j.scitotenv.2025.179674 [PubMed: 40449360]
- Tang SJT, Cardona NR, Ortiz AP. Superfund sites and cancer risk: Cluster analysis in Puerto Rican municipalities between 2010 and 2020. Poster session presented at: 17th AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2024 Sep 21–24; Los Angeles, CA.
- Calaf GM, Ponce-Cusi R, Aguayo F, Muñoz JP, Bleak TC. Endocrine disruptors from the environment affecting breast cancer. *Oncol Lett* 2020;20,19–32. 10.3892/OL.2020.11566
- Crn i TB, Tomaš MI, Girotto N, Ivankovi SG. Risk Factors for Thyroid Cancer: What Do We Know So Far? *Acta Clin Croat* 2020;59(Suppl 1),66–72. 10.20471/ACC.2020.59.S1.08 [PubMed: 34219886]
- Huang Y, Zhu M, Ji M, Fan J, Xie J, Wei X, et al. Air pollution, genetic factors, and the risk of lung cancer. A prospective study in the UK biobank. *Am J Respir Crit Care Med* 2021;204,817–825. 10.1164/RCCM.202011-4063OC, [PubMed: 34252012]
- National Toxicology Program. Report on Carcinogens, Fifteenth Edition. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service; 2021. 10.22427/NTP-OTHER-1003
- Shah D, Bentrem D. Environmental and genetic risk factors for gastric cancer. *J Surg Oncol* 2022;125,1096–1103. 10.1002/JSO.26869 [PubMed: 35481919]

18. Zare Sakhvidi MJ, Lequy E, Goldberg M, Jacquemin B. Air pollution exposure and bladder, kidney and urinary tract cancer risk: A systematic review. *Environ Pollut* 2020;267. 10.1016/j.envpol.2020.115328

19. García-Pérez J, Lope V, López-Abente G, González-Sánchez M, Fernández-Navarro P. Ovarian cancer mortality and industrial pollution. *Environ Pollut* 2015;205,103–110. 10.1016/j.envpol.2015.05.024 [PubMed: 26046426]

20. García-Pérez J, Pérez-Abad N, Lope V, Castelló A, Pollán M, González-Sánchez M, et al. Breast and prostate cancer mortality and industrial pollution. *Environ Pollut* 2016;214,394–399. 10.1016/j.envpol.2016.04.027 [PubMed: 27108043]

21. López-Abente G, García-Pérez J, Fernández-Navarro P, Boldo E, Ramis R. Colorectal cancer mortality and industrial pollution in Spain. *BMC Public Health* 2012;12. 10.1186/1471-2458-12-589

22. Erhunmwunsee L, Wing SE, Zou X, Coogan P, Palmer JR, Wong FL. Neighborhood disadvantage and lung cancer risk in a national cohort of never smoking Black women. *J Lung Cancer* 2022;173,21–27. 10.1016/j.lungcan.2022.08.022

23. Larsen K, Rydz E, Peters CE. Inequalities in Environmental Cancer Risk and Carcinogen Exposures: A Scoping Review. *Int J Environ Res Public Health* 2023;20,5718. 10.3390/IJERPH20095718 [PubMed: 37174236]

24. Garrett CM, Altman R. Vulnerabilized: Revisiting the Language of the Vulnerable Populations Framework. *Am J Public Health* 2024;114,177–179. 10.2105/AJPH.2023.307532 [PubMed: 38335479]

25. Padilla I, Irizarry C, Steele K. Historical Contamination of Groundwater Resources in the North Coast Karst Aquifers of Puerto Rico. *Revista Dimensión* 2011;3,7–12. <https://pmc.ncbi.nlm.nih.gov/articles/PMC3999440/> [PubMed: 24772197]

26. Pantoja-Agreda F, Torres NI, Padilla IY, Macchiavelli RE. Spatiotemporal variability of nitrate contamination in karst groundwater systems. *AGU Fall Meeting Abstracts* 2019;H41I-1807.

27. Rodríguez-Carmona Y, Ashrap P, Calafat AM, Ye X, Rosario Z, Bedrosian LD, et al. Determinants and characterization of exposure to phthalates, DEHTP and DINCH among pregnant women in the PROTECT birth cohort in Puerto Rico. *J Expo Sci Environ Epidemiol* 2019;30,56–69. 10.1038/s41370-019-0168-8 [PubMed: 31481681]

28. Figueroa NR, Suárez E, De La Torre T, Torres M, Pérez J. Incidencia y mortalidad de cáncer en Vieques: 1990–2004. 2009.

29. Sanderson H, Fauser P, Stauber RS, Christensen J, Løfstrøm P, Becker T. Civilian exposure to munitions-specific carcinogens and resulting cancer risks for civilians on the Puerto Rican island of Vieques following military exercises from 1947 to 1998. *Glob Secur Health Sci Policy* 2017;2,40–61. 10.1080/23779497.2017.1369358

30. Contaminants in Marine Resources of Vieques, Puerto Rico.[22 Jan. 2025] Available from: coastalscience.noaa.gov/data_reports/contaminants-in-marine-resources-of-vieques-puerto-rico/

31. EPA. EPA Proposes to Find that Two Areas in Puerto Rico Do Not Meet Air Quality Standards for Sulfur Dioxide and Proposes to Approve Elements of Puerto Rico's Plan to Improve Air Quality. 2024 [cited 2025 May 10]. Available from: <https://www.epa.gov/newsreleases/epa-proposes-find-two-areas-puerto-rico-do-not-meet-air-quality-standards-sulfur-0>

32. Kumar N, Ramirez-Ortiz D, Solo-Gabriele HM, Treaster JB, Carrasquillo O, Toborek M, et al. Environmental PCBs in Guánica Bay, Puerto Rico: implications for community health. *Environ Sci Pollut R* 2016;23,2003–2013. 10.1007/s11356-015-4913-9

33. Santiago R. Imminent and Substantial Endangerment to Human Health and The Environment from Use of Coal Ash as fill Material at Construction Sites in Puerto Rico: A Case Study. *Procedia Soc Behav Sci* 2012;37,389–396. 10.1016/j.sbspro.2012.03.304

34. EPA. What is the Toxics Release Inventory? 2025 [cited 2025 April 25]. Available from: <https://www.epa.gov/toxics-release-inventory-tri-program/what-toxics-release-inventory>

35. EPA. TRI Basic Data Files: Calendar Years 1987-Present. 2024 [cited 2025 May 30]. Available from: <https://www.epa.gov/toxics-release-inventory-tri-program/tri-basic-data-files-calendar-years-1987-present>

36. EPA. Toxics Release Inventory (TRI) Basic Data Files Documentation. 2024. p 10. [cited 2025 May 30]. Available from: https://www.epa.gov/system/files/documents/2024-08/basic_data_files_documentation_august_2024.pdf

37. Hiatt RA, Beyeler N. Cancer and climate change. *Lancet Oncol* 2020;21,e519–e527. [PubMed: 33152311]

38. Hanchette C, Zhang CH, Schwartz GG. Ovarian Cancer Incidence in the U.S. and Toxic Emissions from Pulp and Paper Plants: A Geospatial Analysis. *Int J Environ Res Public Health* 2018;15,1619. 10.3390/IJERPH15081619 [PubMed: 30065203]

39. VoPham T, Bertrand KA, Fisher JA, Ward MH, Laden F, Jones RR. Emissions of dioxins and dioxin-like compounds and incidence of hepatocellular carcinoma in the United States. *Environ Res* 2022;204(Part D),112386. 10.1016/J.ENVRES.2021.112386 [PubMed: 34800530]

40. Zhu AY, McWilliams TL, McKeon TP, Vachani A, Penning TM, Hwang WT. Association of multi-criteria derived air toxics hazard score with lung cancer incidence in a major metropolitan area. *Front Public Health* 2023;11,1002597. 10.3389/FPUBH.2023.1002597/BIBTEX [PubMed: 37435521]

41. Santiago-Pérez GG, Amaya-Ardila CP, Umpierre SA, Ortiz-Martinez AP. Effect of chronic comorbidities on quality of life of gynecologic cancer patients in Puerto Rico. *Pan Am J Public Health* 2022;46. 10.26633/RPSP.2022.29

42. Suárez-Ramos T, Verganza S, Pagán-Santana Y, Castañeda-Avila MA, Torres-Cintrón CR, Santiago-Rodríguez EJ, et al. Evaluating the impact of hurricanes and the COVID-19 pandemic on colorectal cancer incidence in Puerto Rico: An interrupted time-series analysis. *Cancer* 2025;131,e35793. 10.1002/cncr.35793 [PubMed: 40223414]

43. EPA. What is EPCRA? Emergency Planning and Community Right-to-Know Act (EPCRA). 2025 [cited 2025 May 30]. Available from: <https://www.epa.gov/epcra/what-epcra>

44. National Cancer Institute. Cancer Stat Facts: Common Cancer Sites. 2025 [cited 2025 May 25]. Available from: <https://seer.cancer.gov/statfacts/html/common.html>

45. WHO. Global cancer burden growing, amidst mounting need for services. 2024 [cited 2025 May 25]. Available from: <https://www.who.int/news-room/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services>

46. Heck JE, He D, Wing SE, Ritz B, Carey CD, Yang J, et al. Exposure to outdoor ambient air toxics and risk of breast cancer: The multiethnic cohort. *Int J Hyg Environ Health*, 2024;259,114362. 10.1016/J.IJHEH.2024.114362 [PubMed: 38574449]

47. Rodgers KM, Udesky JO, Rudel RA, Brody JG. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. *Environ Res* 2018;160,152–182. 10.1016/J.ENVRES.2017.08.045 [PubMed: 28987728]

48. Buñay J, Kossai M, Damon-Soubeyrant C, De Haze A, Saru JP, Trousson A, et al. Persistent organic pollutants promote aggressiveness in prostate cancer. *Oncogene* 2023;42,2854–2867. 10.1038/s41388-023-02788-2 [PubMed: 37587334]

49. García-Pérez J, Fernández de Larrea-Baz N, Lope V, Domínguez-Castillo A, Espinosa A, Dierssen-Sotos T, et al. Risk of prostate cancer in the proximity of industrial installations: A multicase-control study in Spain (MCC-Spain). *Sci Total Environ* 2024;946,174347. 10.1016/J.SCITOTENV.2024.174347 [PubMed: 38944307]

50. Pan SY, Morrison H, Gibbons L, Zhou J, Wen SW, Desmeules M, et al. Breast Cancer Risk Associated with Residential Proximity to Industrial Plants in Canada. *J Occup Environ Med* 2011;53,522–529. 10.1097/JOM.0B013E318216D0B3 [PubMed: 21494158]

51. Ish JL, Madrigal JM, Pearce JL, Keil AP, Fisher JA, Jones RR. Industrial Air Emissions and Breast Cancer Incidence in a United States-wide Prospective Cohort. *Epidemiology* 2025;36,391–400. 10.1097/EDE.0000000000001837 [PubMed: 39855262]

52. Fiore M, Palella M, Ferroni E, Miligi L, Portaluri M, Marchese CA, et al. Air Pollution and Breast Cancer Risk: An Umbrella Review. *Environments* 2025;12,153. 10.3390/environments12050153

53. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2024;74,229–263. 10.3322/caac.21834 [PubMed: 38572751]

54. CDC. Lung Cancer Risk Factors. 2025 [cited 2025 June 1]. Available from: <https://www.cdc.gov/lung-cancer/risk-factors/index.html>

55. American Cancer Society. Key Statistics for Acute Myeloid Leukemia (AML). 2025 [2025 May 5]. Available from: <https://www.cancer.org/cancer/types/acute-myeloid-leukemia/about/key-statistics.html>

56. American Cancer Society. Risk Factors for Acute Myeloid Leukemia (AML). 2025 [cited 2025 May 5]. Available from: <https://www.cancer.org/cancer/types/acute-myeloid-leukemia/causes-risks-prevention/risk-factors.html>

57. González-Pons M, Soto-Salgado M, Sevilla J, Márquez-Lespier JM, Morgan D, Pérez CM, et al. Seroprevalence of *Helicobacter pylori* in Hispanics living in Puerto Rico: A population-based study. *Helicobacter*, 2017;23,e12453. 10.1111/HEL.12453 [PubMed: 29210527]

58. Matta JL, Rodriguez G, Villa J, Ruiz A. The role of DNA repair capacity in melanoma skin cancer risk in a population chronically exposed to high levels of sunlight. *Ochsner J* 2010;10,75–82. <https://pubmed.ncbi.nlm.nih.gov/21603361/> [PubMed: 21603361]

59. Ortiz AP, Soto-Salgado M, Calo WA, Tortolero-Luna G, Pérez CM, Romero CJ, et al. Incidence and mortality rates of selected infection-related cancers in Puerto Rico and in the United States. *Infect Agents Cancer* 2010;5,10. 10.1186/1750-9378-5-10

60. EPA. What Climate Change Means for Puerto Rico. 2016 [cited 2025 April 29]. Available from: <https://www.epa.gov/sites/default/files/2016-09/documents/climate-change-pr.pdf>

61. Hernández Ayala JJ, Méndez Tejeda R, Silvagnoli Santos FL, Villaña Rolón NA, Martis Cruz N. Trends in Annual, Seasonal, and Daily Temperature and Its Relation to Climate Change in Puerto Rico. *Atmosphere* 2025;16,737. 10.3390/ATMOS16060737

62. Méndez-Lázaro PA, Nieves-Santiago A, Miranda-Bermúdez J. Trends in total rainfall, heavy rain events, and number of dry days in San Juan, Puerto Rico, 1955–2009. *Ecol Soc*, 2014;19,50. <https://www.jstor.org/stable/26269555?seq=1>

63. Arshad K, Hussain N, Ashraf MH, Saleem MZ. Air pollution and climate change as grand challenges to sustainability. *Sci Total Environ* 2024;928,172370. 10.1016/J.SCITOTENV.2024.172370 [PubMed: 38604367]

64. Yu P, Xu R, Yang Z, Ye T, Liu Y, Li S, et al. Cancer and Ongoing Climate Change: Who Are the Most Affected? *ACS Environ Au*, 2023;3,5–11. 10.1021/ACSENVIRONAU.2C00012/ASSET/IMAGES/MEDIUM/VG2C00012_0003.GIF [PubMed: 36691655]

65. Lin Y, Li G, Sevillano Rivera M, Jiang T, Cotto I, Carpenter CM, et al. Long-term impact of Hurricane Maria on point-of-use drinking water quality in Puerto Rico and associated potential adverse health effects. *Water Res*, 2024;265,122213. 10.1016/J.WATRES.2024.122213 [PubMed: 39173351]

66. Robey NM, Liu Y, Crespo-Medina M, Bowden JA, Solo-Gabriele HM, Townsend TG, et al. Characterization of per- and polyfluoroalkyl substances (PFAS) and other constituents in MSW landfill leachate from Puerto Rico. *Chemosphere*, 2024;358,142141. 10.1016/J.CHEMOSPHERE.2024.142141 [PubMed: 38677605]

67. Jirau-Colón H, Toro-Heredia J, Layuno J, Calderón ED, Gioda A, Jiménez-Vélez BD. Distribution of toxic metals and relative toxicity of airborne PM_{2.5} in Puerto Rico. *Environ Sci Pollut Res*, 2021;28,16504–16516. 10.1007/S11356-020-11673-4/TABLES/1

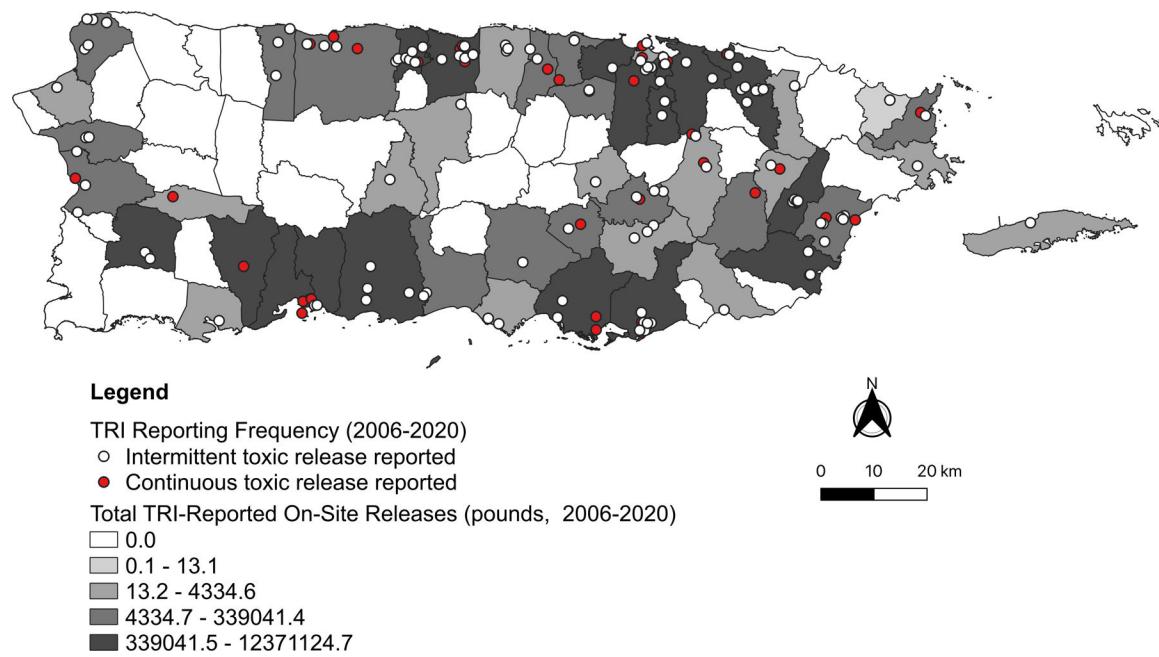
68. Jones Y, Wilburn W, Guha S, Beni R. Puerto Rico's Water Supply: An Investigation of the Levels of Trihalomethanes and Other Contaminants. *Journal of Geoscience and Environment Protection* 2023;11,1–21. 10.4236/GEP.2023.118001

69. Rae A. Ecological Fallacy. *Encyclopedia of Quality of Life and Well-Being Research* 2024;1966–1967. 10.1007/978-3-031-17299-1_809

70. Roumeliotis S, Abd ElHafeez S, Jager KJ, Dekker FW, Stel VS, Pitino A, Zoccali C, Tripepi G. Be careful with ecological associations. *Nephrology (Carlton)*. 2021 Jun;26(6):501–505. doi: 10.1111/nep.13861. [PubMed: 33570780]

71. Luo J, Hendryx M, Ducatman A. Association between Six Environmental Chemicals and Lung Cancer Incidence in the United States. *J Environ Public Health* 2011;463701. 10.1155/2011/463701 [PubMed: 21776439]

72. Koehler DA, Spengler JD. The toxic release inventory: Fact or fiction? A case study of the primary aluminum industry. *J Environ Manag* 2007;85. 10.1016/j.jenvman.2006.09.025



Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

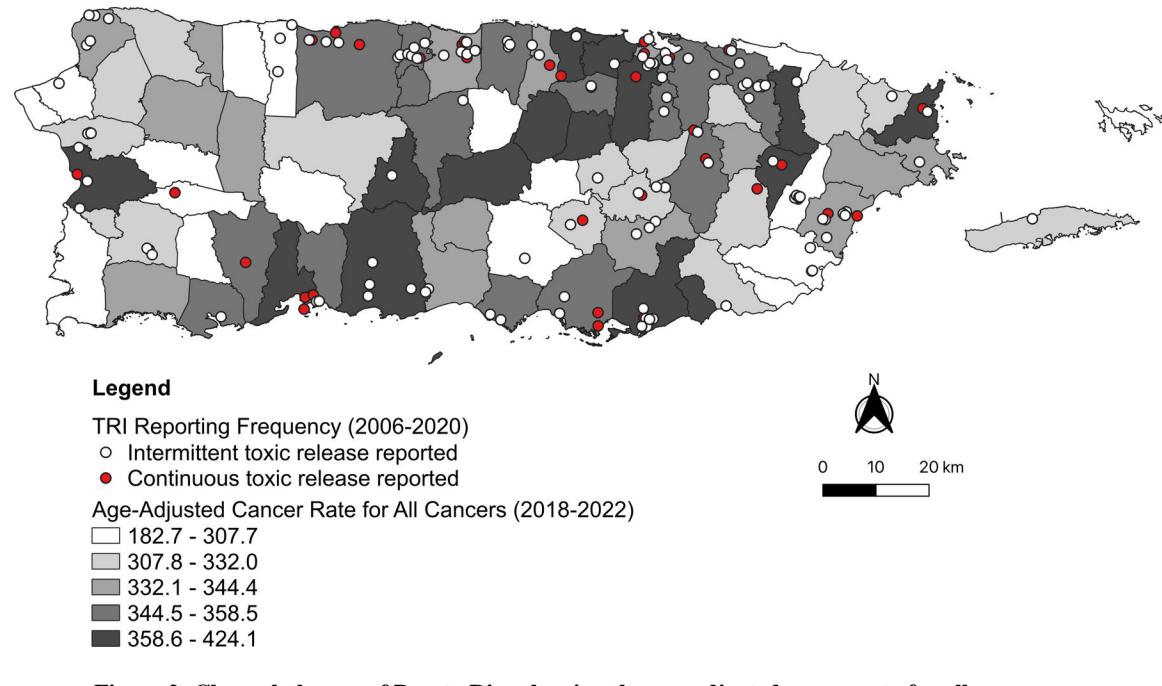


Figure 1: Choropleth map of Puerto Rico showing the total on-site releases reported to the TRI (in pounds) by municipality from 2006 to 2020.

The overlaid points represent the geocoded locations of TRI-reporting facilities from 2006 to 2020. White circles indicate facilities with reported intermittent toxic releases, and red circles indicate facilities with continuous toxic releases reported.

Abbreviations: TRI = Toxic Release Inventory

Note. Total TRI-reported on-site releases were classified using the Equal Count (quantile) method.

Figure 2: Choropleth map of Puerto Rico showing the age-adjusted cancer rate for all cancers from 2018 to 2022.

The overlaid points represent the geocoded locations of TRI-reporting facilities from 2006 to 2020. White circles indicate facilities with reported intermittent toxic releases, and red circles indicate facilities with continuous toxic releases reported.

Abbreviations: TRI = Toxic Release Inventory

Note. Age-adjusted cancer rates were classified using the equal count (quantile) method.

Table 1

Cancer risk among both sexes in Puerto Rico, based on age-standardized incidence rates (2018–2022) and TRI-reported industrial emissions (2006–2020), categorized as contaminated (reported on-site emissions) and non-contaminated (without reported on-site emissions) municipalities

Cancer Type	Age-Standardized Incidence Rate [*]		RR (95%CI) ^{**}	p-value
	Contaminated	Non-Contaminated		
All Sites	323.0	302.8	1.07 (1.05 – 1.09)	<0.0001
Acute Lymphocytic Leukemia	1.5	1.4	1.10 (0.77 – 1.61)	0.66
Acute Myeloid Leukemia	2.3	2.7	0.85 (0.69 – 1.04)	0.12
Anus, Anal Canal and Anorectum	1.6	1.3	1.28 (0.98 – 1.68)	0.08
Brain and Other Nervous System	4.0	3.7	1.08 (0.90 – 1.30)	0.43
Breast	50.9	47.4	1.07 (1.03 – 1.12)	0.002
Chronic Lymphocytic Leukemia	2.2	2.1	1.06 (0.87 – 1.30)	0.62
Chronic Myeloid Leukemia	1.6	1.5	1.13 (0.87 – 1.49)	0.40
Colon and Rectum	33.8	32.8	1.03 (0.98 – 1.09)	0.24
Esophagus	2.6	2.4	1.08 (0.90 – 1.30)	0.43
Hodgkin Lymphoma	2.4	2.2	1.09 (0.85 – 1.40)	0.55
Kidney and Renal Pelvis	8.6	7.7	1.13 (1.01 – 1.26)	0.04
Leukemia	9.1	8.8	1.04 (0.93 – 1.16)	0.57
Liver and Intrahepatic Bile Duct	7.4	6.8	1.09 (0.98 – 1.22)	0.12
Lung and Bronchus	13.5	12.1	1.12 (1.03 – 1.21)	0.01
Melanoma of the Skin	2.9	3.3	0.85 (0.72 – 1.02)	0.09
Myeloma	5.7	5.3	1.06 (0.94 – 1.20)	0.38
Non-Hodgkin Lymphoma	12.6	10.7	1.18 (1.07 – 1.29)	0.0004
Oral Cavity and Pharynx	7.9	7.4	1.08 (0.97 – 1.21)	0.18
Pancreas	7.6	6.8	1.13 (1.01 – 1.26)	0.03
Stomach	5.6	6.1	0.92 (0.82 – 1.04)	0.18
Thyroid	20.8	21.2	0.98 (0.91 – 1.06)	0.59
Urinary Bladder	8.6	8.3	1.03 (0.94 – 1.14)	0.55

Note.

^{*} Rates are per 100,000 and age-standardized to the 2000 PR Std Population;

^{**} Confidence intervals (Tiwari mod) are 95% for rates and ratios.

Table 2

Cancer risk by sex in Puerto Rico, based on age-standardized incidence rates (2018–2022) and TRI-reported industrial emissions (2006–2020), categorized as contaminated (reported on-site emissions) and non-contaminated (without reported on-site emissions) municipalities

Cancer Type	Female			Male				
	Age-Standardized Incidence Rate [*] TRI reported	Age-Standardized Incidence Rate [*] No TRI reported	RR (95%CI) ^{**}	p-value	Age-Standardized Incidence Rate [*] TRI reported	Age-Standardized Incidence Rate [*] No TRI reported	RR (95%CI) ^{**}	p-value
All Sites	295.6	282.4	1.05 (1.02 – 1.07)	0.0004	362.1	330.2	1.10 (1.07 – 1.12)	<0.0001
Acute Lymphocytic Leukemia	1.7	1.4	1.25 (0.75 – 2.17)	0.44	1.3	1.4	0.95 (0.57 – 1.66)	0.92
Acute Myeloid Leukemia	2.3	2.1	1.05 (0.76 – 1.48)	0.84	2.4	3.4	0.71 (0.54 – 0.93)	0.01
Anus, Anal Canal and Anorectum	1.8	1.6	1.14 (0.81 – 1.61)	0.54	1.4	0.9	1.53 (0.96 – 2.49)	0.08
Brain and Other Nervous System	3.6	3.1	1.18 (0.88 – 1.58)	0.29	4.5	4.5	1.00 (0.79 – 1.28)	1.00
Breast	92.2	88.0	1.05 (1.00 – 1.10)	0.04	0.9	0.8	1.16 (0.70 – 1.95)	0.71
Cervix Uteri	10.2	10.0	1.02 (0.87 – 1.19)	0.88	–	–	–	–
Chronic Lymphocytic Leukemia	1.5	1.4	1.03 (0.74 – 1.45)	0.99	3.1	2.8	1.10 (0.85 – 1.44)	0.51
Chronic Myeloid Leukemia	1.2	1.1	1.11 (0.71 – 1.76)	0.76	2.2	1.9	1.16 (0.83 – 1.66)	0.44
Colon and Rectum	28.4	27.1	1.05 (0.97 – 1.13)	0.27	40.6	39.3	1.03 (0.96 – 1.11)	0.40
Corpus and Uterus, NOS	30.1	30.4	0.99 (0.92 – 1.07)	0.85	–	–	–	–
Esophagus	0.9	0.6	1.67 (1.00 – 2.77)	0.052	4.6	4.6	1.02 (0.83 – 1.25)	0.93
Hodgkin Lymphoma	2.0	1.5	1.33 (0.89 – 2.06)	0.18	2.8	2.9	0.96 (0.70 – 1.33)	0.84
Kidney and Renal Pelvis	5.3	5.5	0.95 (0.79 – 1.16)	0.65	12.8	10.3	1.25 (1.09 – 1.43)	0.001
Leukemia	7.8	7.0	1.10 (0.92 – 1.33)	0.30	10.9	10.9	1.00 (0.86 – 1.16)	1.00
Liver and Intrahepatic Bile Duct	3.7	3.6	1.02 (0.82 – 1.27)	0.95	12.0	10.5	1.14 (1.00 – 1.30)	0.04
Lung and Bronchus	10.1	9.1	1.11 (0.97 – 1.26)	0.12	17.8	15.6	1.14 (1.03 – 1.27)	0.01
Melanoma of the Skin	2.2	2.8	0.79 (0.60 – 1.05)	0.11	3.7	4.0	0.92 (0.73 – 1.16)	0.48
Myeloma	4.9	4.6	1.07 (0.88 – 1.29)	0.56	6.6	6.2	1.07 (0.90 – 1.27)	0.49
Non-Hodgkin Lymphoma	10.7	9.0	1.18 (1.03 – 1.36)	0.02	15.0	12.8	1.18 (1.04 – 1.33)	0.01
Oral Cavity and Pharynx	4.3	4.3	1.02 (0.83 – 1.26)	0.93	12.5	11.0	1.14 (1.00 – 1.30)	0.06
Ovary	7.5	6.6	1.14 (0.96 – 1.37)	0.14	–	–	–	–
Pancreas	6.5	6.0	1.07 (0.91 – 1.26)	0.42	9.1	7.6	1.19 (1.02 – 1.39)	0.02
Penis	–	–	–	–	1.9	2.2	0.88 (0.65 – 1.19)	0.43
Prostate	–	–	–	–	137.1	119.7	1.15 (1.10 – 1.19)	<0.0001

Cancer Type	Female				Male			
	Age-Standardized Incidence Rate TRI reported	Age-Standardized Incidence Rate No TRI reported	RR (95%CI) **	p-value	Age-Standardized Incidence Rate TRI reported	Age-Standardized Incidence Rate No TRI reported	RR (95%CI) **	p-value
Stomach	4.6	5.6	0.83 (0.69 – 0.99)	0.04	6.8	6.7	1.02 (0.87 – 1.21)	0.86
Testis	-	-	-	-	5.3	6.5	0.82 (0.65 – 1.02)	0.08
Thyroid	31.4	32.8	0.96 (0.88 – 1.04)	0.32	9.0	8.8	1.02 (0.87 – 1.21)	0.84
Urinary Bladder	3.8	3.8	0.99 (0.81 – 1.21)	0.99	14.8	13.8	1.07 (0.96 – 1.19)	0.25
Vagina	1.0	0.9	1.11 (0.69 – 1.81)	0.79	-	-	-	-
Vulva	1.3	1.1	1.11 (0.76 – 1.63)	0.71	-	-	-	-

Note.

* Rates are per 100,000 and age-standardized to the 2000 PR Std Population;

** Confidence intervals (Tiwari mod) are 95% for rates and ratios.

Table 3

Cancer risk among both sexes in Puerto Rico, based on age-standardized incidence rates (2018–2022) and the frequency of TRI-reported industrial emissions (2006–2020), categorized as: non-contaminated (no on-site emissions), contaminated (intermittent on-site emissions), and highly contaminated (continuous on-site emissions) municipalities

Cancer Type	TRI Reporting	Age-Standardized Incidence Rate [*]	RR (95%CI) ^{**}	P-value
All Sites	None	302.8	-	-
	Intermittent	308.4	1.02 (0.99–1.04)	0.14
	Continuous	326.9	1.08 (1.06–1.10)	<0.0001
Acute Lymphocytic Leukemia	None	1.4	-	-
	Intermittent	1.8	1.30 (0.78–2.13)	0.33
	Continuous	1.4	1.04 (0.72–1.55)	0.88
Acute Myeloid Leukemia	None	2.7	-	-
	Intermittent	2.5	0.93 (0.69–1.25)	0.69
	Continuous	2.2	0.82 (0.66–1.02)	0.08
Anus, Anal Canal and Anorectum	None	1.3	-	-
	Intermittent	1.5	1.16 (0.80–1.69)	0.48
	Continuous	1.7	1.31 (0.99–1.73)	0.06
Brain and Other Nervous System	None	3.7	-	-
	Intermittent	4.4	1.18 (0.91–1.51)	0.23
	Continuous	3.9	1.06 (0.88–1.28)	0.60
Breast	None	47.4	-	-
	Intermittent	47.5	1.00 (0.94–1.06)	1.00
	Continuous	51.7	1.09 (1.04–1.14)	0.0002
Chronic Lymphocytic Leukemia	None	2.1	-	-
	Intermittent	1.9	0.93 (0.69–1.25)	0.72
	Continuous	2.3	1.10 (0.89–1.36)	0.41
Chronic Myeloid Leukemia	None	1.5	-	-
	Intermittent	1.3	0.87 (0.57–1.30)	0.56

Cancer Type	TRI Reporting	Age-Standardized Incidence Rate [*]	RR (95%CI) ^{**}	P-value
	Continuous	1.7	1.20 (0.91 – 1.59)	0.21
Colon and Rectum	None	32.8	-	-
	Intermittent	34.6	1.06 (0.98 – 1.13)	0.15
	Continuous	33.6	1.03 (0.97 – 1.08)	0.37
Esophagus	None	2.4	-	-
	Intermittent	2.6	1.11 (0.86 – 1.43)	0.46
	Continuous	2.6	1.08 (0.89 – 1.30)	0.49
Hodgkin Lymphoma	None	2.2	-	-
	Intermittent	2.6	1.20 (0.85 – 1.68)	0.31
	Continuous	2.3	1.06 (0.82 – 1.38)	0.71
Kidney and Renal Pelvis	None	7.7	-	-
	Intermittent	8.4	1.10 (0.94 – 1.28)	0.24
	Continuous	8.7	1.13 (1.01 – 1.27)	0.03
Leukemia	None	8.8	-	-
	Intermittent	9.1	1.03 (0.88 – 1.21)	0.74
	Continuous	9.1	1.04 (0.92 – 1.17)	0.55
Liver and Intrahepatic Bile Duct	None	6.8	-	-
	Intermittent	7.2	1.07 (0.92 – 1.25)	0.40
	Continuous	7.4	1.10 (0.98 – 1.23)	0.11
Lung and Bronchus	None	12.1	-	-
	Intermittent	11.8	0.98 (0.87 – 1.10)	0.77
	Continuous	13.9	1.15 (1.06 – 1.25)	0.0006
Melanoma of the Skin	None	3.3	-	-
	Intermittent	2.8	0.85 (0.65 – 1.10)	0.22
	Continuous	2.9	0.86 (0.71 – 1.03)	0.10
Myeloma	None	5.3	-	-
	Intermittent	5.3	0.99 (0.82 – 1.18)	0.93

Cancer Type	TRI Reporting	Age-Standardized Incidence Rate [*]	RR (95%CI) ^{**}	P-value
	Continuous	5.8	1.08 (0.95 – 1.23)	0.26
Non-Hodgkin Lymphoma	None	10.7	-	-
	Intermittent	11.8	1.10 (0.97 – 1.25)	0.15
	Continuous	12.8	1.20 (1.09 – 1.31)	<0.0001
Oral Cavity and Pharynx	None	7.4	-	-
	Intermittent	7.8	1.06 (0.91 – 1.24)	0.46
	Continuous	8.0	1.08 (0.97 – 1.22)	0.17
Pancreas	None	6.8	-	-
	Intermittent	7.9	1.17 (1.01 – 1.36)	0.04
	Continuous	7.6	1.11 (1.00 – 1.25)	0.06
Stomach	None	6.1	-	-
	Intermittent	5.8	0.95 (0.81 – 1.13)	0.63
	Continuous	5.5	0.91 (0.81 – 1.03)	0.16
Thyroid	None	21.2	-	-
	Intermittent	20.5	0.97 (0.87 – 1.08)	0.56
	Continuous	20.8	0.98 (0.91 – 1.06)	0.65
Urinary Bladder	None	8.3	-	-
	Intermittent	8.2	0.99 (0.86 – 1.13)	0.88
	Continuous	8.7	1.04 (0.94 – 1.15)	0.44

Note.

^{*} Rates are per 100,000 and age-standardized to the 2000 PR Std Population;

^{**} Confidence intervals (Tiwari mod) are 95% for rates and ratios.

Table 4

Cancer risk by sex in Puerto Rico, based on age-standardized incidence rates (2018–2022) and the frequency of TRI-reported industrial emissions (2006–2020), categorized as: non-contaminated (no on-site emissions), contaminated (intermittent on-site emissions), and highly contaminated (continuous on-site emissions) municipalities.

Cancer Type	TRI Reporting	Female			Male		
		Age-Standardized Incidence Rate *	RR (95%CI) **	P-value	Age-Standardized Incidence Rate *	RR (95%CI) **	P-value
All Sites	None	282.4	-	-	330.2	-	-
	Intermittent	288.3	1.02 (0.99 – 1.06)	0.25	334.0	1.01 (0.98 – 1.05)	0.50
	Continuous	297.5	1.05 (1.03 – 1.08)	<0.0001	370.0	1.12 (1.09 – 1.15)	<0.0001
	None	1.4	-	-	1.4	-	-
	Intermittent	2.1	1.52 (0.73 – 3.05)	0.28	1.5	1.09 (0.51 – 2.26)	0.91
	Continuous	1.6	1.18 (0.69 – 2.08)	0.61	1.3	0.91 (0.53 – 1.65)	0.81
	None	2.1	-	-	3.4	-	-
	Intermittent	2.6	1.19 (0.75 – 1.88)	0.50	2.5	0.74 (0.49 – 1.11)	0.16
	Continuous	2.2	1.02 (0.72 – 1.44)	1.00	2.4	0.70 (0.53 – 0.93)	0.01
Acute Myeloid Leukemia	None	1.6	-	-	0.9	-	-
	Intermittent	1.8	1.11 (0.69 – 1.79)	0.76	1.1	1.24 (0.63 – 2.41)	0.62
	Continuous	1.8	1.14 (0.80 – 1.63)	0.54	1.4	1.61 (1.00 – 2.64)	0.049
	None	3.1	-	-	4.5	-	-
Anus, Anal Canal and Anorectum	Intermittent	4.5	1.46 (1.00 – 2.12)	0.051	4.2	0.94 (0.65 – 1.35)	0.81
	Continuous	3.4	1.11 (0.82 – 1.51)	0.55	4.6	1.02 (0.80 – 1.31)	0.94
	None	88.0	-	-	0.8	-	-
Breast	Intermittent	88.4	1.00 (0.94 – 1.07)	0.90	0.7	0.90 (0.40 – 1.96)	0.98

Cancer Type	TRI Reporting	Female				Male			
		Age-Standardized Incidence Rate *	RR (95%CI) **	P-value	Age-Standardized Incidence Rate *	RR (95%CI) **	P-value		
Continuous	93.2	1.06 (1.01 – 1.11)	0.01		1.0			1.22 (0.73 – 2.09)	0.55
None	10.0	-	-		-	-		-	-
Cervix Uteri	Intermittent	8.5	0.85 (0.68 – 1.06)	0.16	-	-		-	-
Continuous	10.6	1.06 (0.91 – 1.25)	0.47		-	-		-	-
None	1.4	-	-		2.8			-	-
Chronic Lymphocytic Leukemia	Intermittent	1.4	0.95 (0.57 – 1.57)	1.00	2.6			0.93 (0.64 – 1.36)	0.82
Continuous	1.5	1.05 (0.74 – 1.49)	0.90		3.3			1.15 (0.88 – 1.51)	0.33
None	1.1	-	-		1.9			-	-
Chronic Myeloid Leukemia	Intermittent	0.6	0.54 (0.24 – 1.19)	0.15	2.0			1.07 (0.65 – 1.76)	0.87
Continuous	1.4	1.26 (0.80 – 2.00)	0.37		2.2			1.18 (0.83 – 1.70)	0.40
None	27.1	-	-		39.3			-	-
Colon and Rectum	Intermittent	29.7	1.09 (0.98 – 1.22)	0.11	40.2			1.02 (0.93 – 1.13)	0.66
Continuous	28.1	1.03 (0.95 – 1.12)	0.43		40.6			1.03 (0.96 – 1.11)	0.39
None	30.4	-	-		-			-	-
Corpus and Uterus, NOS	Intermittent	28.9	0.95 (0.85 – 1.06)	0.37	-	-		-	-
Continuous	30.5	1.00 (0.93 – 1.09)	0.96		-	-		-	-
None	0.6	-	-		4.6			-	-
Esophagus	Intermittent	1.1	1.99 (1.02 – 3.80)	0.04	4.4			0.97 (0.72 – 1.28)	0.90
Continuous	0.9	1.59 (0.93 – 2.67)	0.10		4.7			1.03 (0.84 – 1.27)	0.84

Cancer Type	TRI Reporting	Female				Male				P-value
		Age-Standardized Incidence Rate *	RR (95%CI) **	P-value	Age-Standardized Incidence Rate *	RR (95%CI) **	P-value	Age-Standardized Incidence Rate *	RR (95%CI) **	
Hodgkin Lymphoma	None	1.5	-	-	2.9	-	-	-	-	-
	Intermittent	2.1	1.42 (0.81 – 2.48)	0.24	3.1	-	-	1.08 (0.69 – 1.66)	0.80	-
	Continuous	2.0	1.31 (0.86 – 2.05)	0.23	2.7	-	-	0.93 (0.67 – 1.30)	0.70	-
	None	5.5	-	-	10.3	-	-	-	-	-
	Intermittent	5.6	1.02 (0.78 – 1.33)	0.95	11.7	-	-	1.14 (0.94 – 1.38)	0.19	-
	Continuous	5.2	0.94 (0.77 – 1.14)	0.53	13.1	-	-	1.28 (1.11 – 1.47)	0.0005	-
Kidney and Renal Pelvis	None	7.0	-	-	10.9	-	-	-	-	-
	Intermittent	7.9	1.13 (0.87 – 1.46)	0.39	10.5	-	-	0.97 (0.78 – 1.19)	0.79	-
	Continuous	7.7	1.10 (0.91 – 1.33)	0.33	11.0	-	-	1.01 (0.87 – 1.17)	0.95	-
	None	3.6	-	-	10.5	-	-	-	-	-
	Intermittent	4.1	1.12 (0.84 – 1.51)	0.48	11.0	-	-	1.05 (0.87 – 1.25)	0.65	-
	Continuous	3.6	0.99 (0.79 – 1.25)	1.00	12.3	-	-	1.17 (1.03 – 1.34)	0.02	-
Leukemia	None	9.1	-	-	15.6	-	-	-	-	-
	Intermittent	8.6	0.94 (0.78 – 1.14)	0.59	15.7	-	-	1.00 (0.86 – 1.16)	1.00	-
	Continuous	10.5	1.15 (1.01 – 1.32)	0.03	18.4	-	-	1.18 (1.06 – 1.31)	0.002	-
	None	2.8	-	-	4.0	-	-	-	-	-
	Intermittent	2.6	0.92 (0.61 – 1.37)	0.77	3.1	-	-	0.77 (0.54 – 1.10)	0.17	-
	Continuous	2.2	0.76 (0.56 – 1.02)	0.07	3.8	-	-	0.95 (0.75 – 1.21)	0.74	-
Melanoma of the Skin	None	4.6	-	-	6.2	-	-	-	-	-
	Intermittent	4.6	0.98 (0.75 – 1.29)	0.99	6.1	-	-	0.99 (0.77 – 1.27)	1.00	-
Myeloma	None	-	-	-	-	-	-	-	-	-
	Intermittent	-	-	-	-	-	-	-	-	-

Cancer Type	TRI Reporting	Female				Male				P-value
		Age-Standardized Incidence Rate *	RR (95%CI) **	P-value	Age-Standardized Incidence Rate *	RR (95%CI) **	P-value			
Non-Hodgkin Lymphoma	Continuous	5.0	1.09 (0.90 – 1.32)	0.44	6.7	1.09 (0.91 – 1.31)	0.37	-	-	
	None	9.0	-	-	12.8	-	-	-	-	
	Intermittent	10.4	1.15 (0.95 – 1.39)	0.17	13.5	1.06 (0.89 – 1.26)	0.54	-	-	
	Continuous	10.8	1.19 (1.03 – 1.37)	0.02	15.4	1.21 (1.07 – 1.37)	0.003	-	-	
	None	4.3	-	-	11.0	-	-	-	-	
	Intermittent	4.1	0.95 (0.70 – 1.29)	0.83	12.3	1.12 (0.93 – 1.34)	0.23	-	-	
Oral Cavity and Pharynx	Continuous	4.4	1.04 (0.84 – 1.28)	0.82	12.5	1.14 (1.00 – 1.31)	0.054	-	-	
	None	6.6	-	-	-	-	-	-	-	
	Intermittent	6.8	1.03 (0.81 – 1.32)	0.84	-	-	-	-	-	
	Continuous	7.7	1.17 (0.98 – 1.41)	0.09	-	-	-	-	-	
	None	6.0	-	-	7.6	-	-	-	-	
	Intermittent	6.6	1.10 (0.88 – 1.38)	0.43	9.4	1.23 (1.00 – 1.51)	0.049	-	-	
Ovary	Continuous	6.4	1.06 (0.90 – 1.26)	0.50	9.0	1.18 (1.01 – 1.38)	0.04	-	-	
	None	-	-	-	2.2	-	-	-	-	
	Intermittent	-	-	-	-	-	-	-	-	
	Continuous	-	-	-	2.0	0.89 (0.58 – 1.38)	0.71	-	-	
	None	-	-	-	119.7	-	-	-	-	
	Intermittent	-	-	-	119.4	1.00 (0.95 – 1.05)	0.96	-	-	
Prostate	Continuous	-	-	-	142.0	1.19 (1.14 – 1.23)	<0.0001	-	-	
	Intermittent	-	-	-	-	-	-	-	-	

Cancer Type	TRI Reporting	Female				Male				P-value
		Age-Standardized Incidence Rate *	RR (95%CI) **	P-value	Age-Standardized Incidence Rate *	RR (95%CI) **	P-value	Age-Standardized Incidence Rate *	RR (95%CI) **	
Stomach	None	5.6	-	-	6.7	-	-	-	-	0.76
	Intermittent	5.3	0.95 (0.74 – 1.22)	0.79	6.4	0.95 (0.75 – 1.21)	0.79	-	-	
	Continuous	4.4	0.80 (0.66 – 0.96)	0.01	7.0	1.04 (0.88 – 1.24)	0.68	-	-	
	None	-	-	-	6.5	-	-	-	-	
	Intermittent	-	-	-	5.5	0.85 (0.61 – 1.16)	0.32	-	-	
	Continuous	-	-	-	5.2	0.81 (0.64 – 1.02)	0.07	-	-	
Testis	None	32.8	-	-	8.8	-	-	-	-	0.32
	Intermittent	30.5	0.93 (0.82 – 1.05)	0.25	9.6	1.10 (0.87 – 1.38)	0.44	-	-	
	Continuous	31.6	0.96 (0.88 – 1.05)	0.43	8.8	1.00 (0.84 – 1.19)	1.00	-	-	
	None	3.8	-	-	13.8	-	-	-	-	
	Intermittent	3.9	1.01 (0.76 – 1.34)	1.00	13.3	0.96 (0.82 – 1.13)	0.69	-	-	
	Continuous	3.8	0.99 (0.80 – 1.21)	0.95	15.2	1.09 (0.98 – 1.23)	0.12	-	-	
Thyroid	None	0.9	-	-	-	-	-	-	-	0.07
	Intermittent	0.6	0.71 (0.33 – 1.52)	0.49	-	-	-	-	-	
	Continuous	1.1	1.21 (0.75 – 1.99)	0.52	-	-	-	-	-	
	None	1.1	-	-	-	-	-	-	-	
	Intermittent	1.1	0.99 (0.56 – 1.73)	1.00	-	-	-	-	-	
	Continuous	1.3	1.14 (0.77 – 1.68)	0.62	-	-	-	-	-	
Note.										

* Rates are per 100,000 and age-standardized to the 2000 PR Std Population;

