
-4-

OSTEOFLO®
NANOPUTTY®

Intelligently Engineered

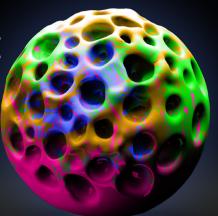
Quadphasic synthetic particles featuring nano-surface technology

PAIRED WITH

Controlled resorption and remodeling

Proprietary Quadphasic formula signals and encourages controlled bone remodeling throughout the osteogenesis cycle. 4 phases of resorption maximize bone growth potential throughout the healing process. Nano-surface technology delivers an optimal cellular attachment environment to stimulate osteoblastic activity¹.

Excellent handling characteristics


Flowable NanoPutty is ideal to fill tight spaces, resist migration and won't washout during irrigation.

Always Ready

Ready at your convenience. OsteoFlo has been engineered to be stored at room temperature and does not require any additional mixing or preparation prior to use.

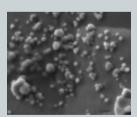
OSTEOFLO® NANOPUTTY®

Quadphasic ParticleResorption Profile

Bioglass α-TCP

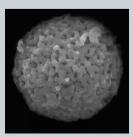
B-TCP

HA


OsteoFlo NanoPutty is a proprietary all-in-one combination of biomaterials with nano-surface technology to optimize and sustain bone growth.

- Each quadphasic particle is composed of HA (hydroxyapatite), Bioactive Glass, β-TCP (Beta-tricalcium phosphate) & α-TCP (Alpha-tricalcium phosphate).
- Nano-surface technology stimulates cellular activity and osseointegration¹.
- Quadphasic particles allow for the controlled resorption profile of each particle.
- GLP studies have demonstrated increased effectiveness over market leading bioglass putty².
- Flowable putty great for filling tight spaces/voids.
- Highly formable and moldable.
- No sticky residue.
- Comes in a syringe or preloaded cartridge.
- Does not require any mixing, additives or other treatments prior to use.
- Doesn't wash away under irrigation.
- Radiopaque under fluoroscopy.
 - 1. Ravichandran, Rajeswari et al. "Effects of nanotopography on stem cell phenotypes." World journal of stem cells vol. 1, 2009.
 - 2. Data on File
 - Cesarano, Joseph, et al. "Customization of Load-Bearing Hydroxyapatite Lattice Scaffolds." ACerS, John Wiley & Dos, Ltd, 2005.

Product Name	Catalog#
OsteoFlo Synthetic NanoPutty Cartridge - 5cc	ONP-T-500
OsteoFlo Synthetic NanoPutty Cartridge - 10cc	ONP-T-1000
OsteoFlo Synthetic NanoPutty Syringe - 1cc	ONP-S-01
OsteoFlo Synthetic NanoPutty Syringe - 2.5cc	ONP-S-02
OsteoFlo Synthetic NanoPutty Syringe - 5cc	ONP-S-05
OsteoFlo Synthetic NanoPutty Syringe - 10cc	ONP-S-10


Synthetic scaffold engineering features

Nano-surface technology

OsteoFlo NanoPutty uses nano-surface technology, which increases surface area and optimizes cell recognition.

Nanotopography is considered to have great effect on proliferation, differentiation and adhesion of osteoblastic cells¹.

Submicron porosity

Submicron porosity provides a network of pores necessary for vascularization and cellular attachment³. These particles also contribute to a quick healing response with rapid resorption time.

