

A Novel Approach to Assess Patient Burden Using Data from a Digital Therapeutic for Type 2 Diabetes Predicts Glucose Outcomes

M. Dugas¹, W. Wang¹, K. Crowley¹, A. K. Iyer², M. Peeples², M. Shomali², and G. Gao¹

¹Center for Health Information and Decision Systems, University of Maryland, College Park

²WellDoc Inc., Columbia, MD

Background

- ❖ Maintaining glucose within specified targets is crucial to reducing risk of serious health complications of Type 2 diabetes and maintaining high quality of life¹
- ❖ But many patients feel burdened by their illness and treatment and struggle to meet self-management demands
- ❖ Increasingly, clinicians and researchers recognize that patient burden and its impact on patient wellbeing are critical to measure and address²
- ❖ Digital therapeutics, which help patients manage chronic conditions with digital tools, present opportunities to assess patient burden and, possibly, alleviate certain treatment burdens

Objectives

- ❖ In this study, we sought to answer the following research questions:
 - How can digital therapeutics be leveraged to assess patient burden?
 - What individual characteristics are associated with patient burden?
 - How is patient burden associated with diabetes outcomes?

Methods

Digital Therapeutic

- ❖ Retrospective data on users of BlueStar, an FDA-cleared digital therapeutic for Type 2 Diabetes
- ❖ BlueStar is a primarily mobile platform that facilitates self-monitoring of diabetes management and provides automated coaching^{3,4}
- ❖ Users can contextualize self-management entries with structured (e.g., 'I feel sad') or patient-generated free-text (e.g., 'feeling bad, groggy, can't focus on work') annotations

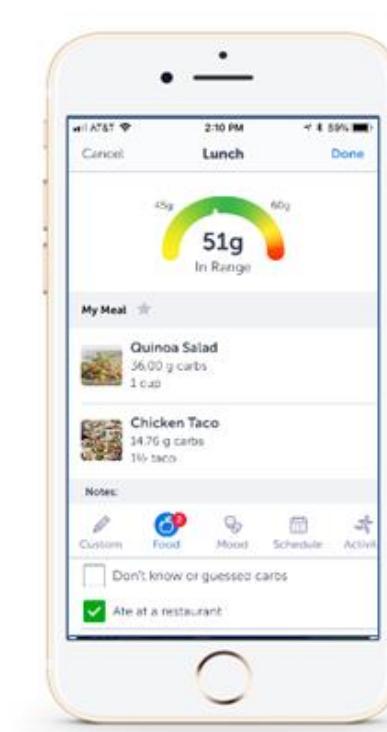


Figure 1. Screenshot of BlueStar app.

Participants

- ❖ We focused analyses on a subset of users who:
 - 1) made at least one structured or free-text contextual annotation within 14 days of their first engagement with the app
 - 2) reported demographic information
- ❖ Yielded sample of 811 users (50.1% women, 64.3% aged 44-63, 54.5% A1c > 8.0%)

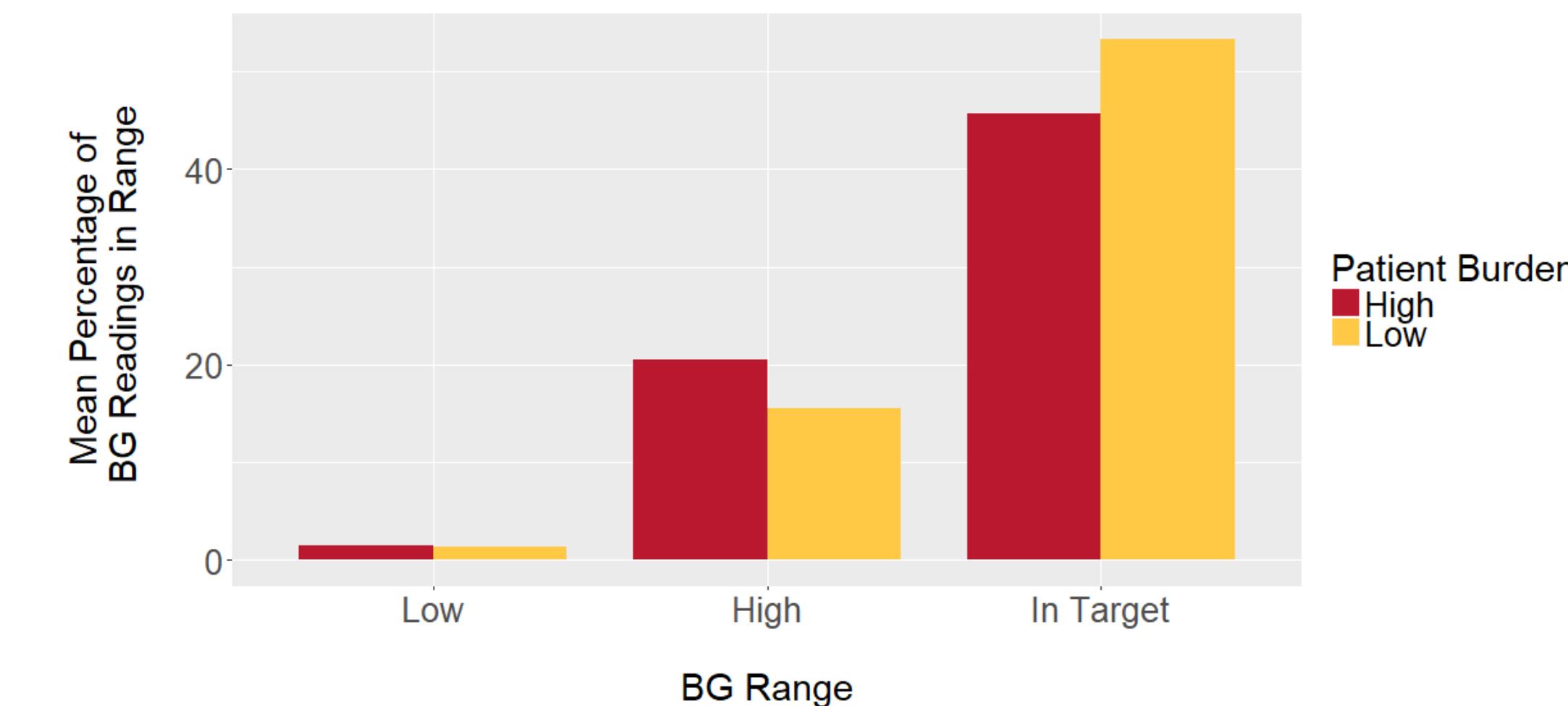
Measurement of Patient Burden

- ❖ Computed a Patient Burden Annotation Index (PBAI) by summing structured and free-text annotations that reflected negative mood or health-related symptoms in a user's first 14 days of engagement
- ❖ Focused on the first 14 days of engagement to capture patient burden before major effects of the digital therapeutic

Table 1. Examples of burden-related annotations.

Theme	Example Annotations
Negative Mood	<i>Structured</i> : 'I feel stressed', 'I feel sad' <i>Free-Text</i> : 'stress levels on overload right now', 'I get very depressed when my BG is high because I want it to stay in the proper range'
Health-Related Symptoms	<i>Structured</i> : 'I feel sick', 'I am feeling light-headed' <i>Free-Text</i> : 'did not check b/s. still not feeling good', 'not sleeping well'

Results


Predictors of Burden

- ❖ A negative binomial regression analysis was conducted with patient characteristics modeled to predict the PBAI (offset by total annotation counts)
- ❖ Individuals with complex medication regimens (non-insulin and insulin injectables) had a greater PBAI than those with simple medication regimens (no meds and oral meds), $\exp(b) = 1.31$ $p = .02$

Burden and Glucose Control

- ❖ Patients tracked their blood glucose readings throughout their usage of BlueStar
- ❖ Blood glucose readings were categorized as in target, high, or low according to timing (e.g., fasting, post meal) and value
- ❖ We then estimated the relationship between patient burden and blood glucose control with negative binomial regression
- ❖ Patient burden was associated with lower proportion of 'in target', $\exp(b) = .998$, $p = .04$ blood glucose readings
- ❖ Also related to higher proportions of low ($\exp(b) = 1.007$, $p = .01$) and high ($\exp(b) = 1.003$, $p = .06$) blood glucose readings

Figure 2. Proportion of blood glucose readings in each range by burden.

Conclusion

- ❖ Results suggest that data from digital therapeutics can be used to assess levels of patient burden among Type 2 diabetes patients
- ❖ Patient burden assessed during early engagement with a digital therapeutic is associated with worse blood glucose control
- ❖ Future research could explore using the PBAI to evaluate the impact of a digital therapeutic on patient burden over time and design interventions that precisely target individuals in need of additional support

References

See our reference list by scanning this QR Code.