

BEYOND BUILD-CENTRIC THINKING: HOW WHOLE-OF-LIFE ASSET MANAGEMENT DELIVERS \$180 MILLION IN INFRASTRUCTURE SAVINGS

A case study demonstrating how aligning commercial incentives with lifecycle outcomes transforms infrastructure delivery and creates sustainable value for government, industry, and the community.

CBS-WP-001 | December 2025

At a Glance: Executive Summary

Early operational engagement unlocks substantial savings. By engaging asset managers during the design phase, the Western Harbour Tunnel project eliminated over 10% of its capital scope, achieving over \$180 million in savings through evidence-based validation that challenged decades of accumulated precedent.

Sydney's congestion crisis demands new procurement models. With Sydney facing a projected congestion cost of up to \$12.6 billion by 2030 [1] and traditional operations and maintenance contracts failing, a fundamental shift in infrastructure delivery is required to ensure market viability and deliver public value.

The CAPITAL framework aligns commercial incentives with whole-of-life outcomes. This new approach treats asset managers as partners, not contractors, using a 30-year fixed-fee model that provides cost certainty and incentivises owner-operator behaviour, resulting in pricing 20% below government estimates while improving performance standards.

Operational expertise drives evidence-based innovation. The framework facilitated significant technological and material innovations, such as optimising steel grades based on 30 years of performance data and rationalising emergency systems, which have already secured a minimum of \$5.5 million in lifecycle cost reductions.

Whole-of-life procurement is a scalable and repeatable model for future infrastructure. The successful application of the CAPITAL framework to the M6 Stage 1 and Sydney Harbour Tunnel projects demonstrates its scalability, establishing a new standard for infrastructure agencies to create sustainable partnerships and achieve optimal whole-of-life outcomes.

Section 1: The Problem or Challenge

Industry evidence indicates that as much as 70 to 80% of infrastructure lifecycle costs are locked in during the design phase [2] [3], yet traditional procurement models treat operational considerations as afterthoughts. The Western Harbour Tunnel project confronted this paradox at a critical moment: in August 2022, as the Sydney Harbour Tunnel concession ended and the asset reverted to government ownership, Transport for NSW faced a market in crisis, with operations and maintenance contractors increasingly unwilling to participate due to recent contract terminations for self-performance.

Sydney's transport network faces unprecedented pressure, with the cost of avoidable congestion in Sydney projected to increase from \$6.1 billion in 2015 to between \$9.5 billion and \$12.6 billion by 2030 [1]. Critical transport corridors including the

Anzac Bridge, Western Distributor and Sydney Harbour Bridge operate at capacity, threatening the movement of freight, public transport passengers, and private vehicles across one of the world's most geographically constrained urban environments. The Western Harbour Tunnel, a 6.5-kilometre cross-harbour motorway linking the Rozelle Interchange to the Warringah Freeway, represents a strategic investment in relieving this pressure and establishing continuous north-south connectivity.

Traditional transport infrastructure projects demonstrate three critical weaknesses that undermine value delivery. Firstly, they maintain a build-centric focus where operational costs are treated as minor considerations unless aggregated over many years, and community value remains conceptual rather than quantifiable. Secondly, operational expertise has limited influence during definition and design stages, with the operations phase having no meaningful voice when critical decisions are made that will determine maintenance

requirements, lifecycle costs, and service disruptions for decades. Finally, governments face cost uncertainty with unpredictable long-term maintenance and lifecycle costs, making it difficult to plan budgets and allocate resources effectively across infrastructure portfolios.

The challenge extended beyond a single project. Treasury NSW's Asset Management Policy requires agencies to make project and investment decisions for the best whole-of-life outcomes for the state, considering cost over the life of the asset, community value, and environmental impact [4]. However, the market for tunnel operations and maintenance had shown a recent trend of contracts being terminated for self-performance by principals, threatening the viability of private sector participation. Without internal capability to operate and maintain road tunnels, Transport for NSW needed to restore market confidence whilst simultaneously delivering superior outcomes. The solution would need to address market sustainability concerns whilst aligning with government policy objectives and stakeholder requirements spanning community, customers, government, and industry partners.

Section 2: Current Approaches and Their Limitations

Traditional infrastructure procurement separates design, construction, and operations into distinct phases with limited integration. Design and construction teams optimise for capital cost and delivery schedule, with operational considerations addressed through specifications and standards that may not reflect actual operational requirements or technological advancements. This approach creates a disconnect between those who design infrastructure and those who must maintain and operate it for decades, resulting in over-engineered solutions, unnecessary infrastructure elements, and maintenance requirements that could have been simplified or eliminated through early operational input.

In conventional models, operations and maintenance contractors are engaged after design is substantially complete, inheriting infrastructure configurations they had no role in shaping. Their expertise in what works efficiently, what fails prematurely, and what innovations could reduce lifecycle costs remains untapped during the critical design phase when the majority of lifecycle costs are locked in. This represents a fundamental misalignment: those with the deepest understanding of how infrastructure performs over

time have no influence over decisions that will determine that performance.

Governments have traditionally sought to transfer operational risk through fixed-price operations and maintenance contracts, but this approach creates its own challenges. Without genuine alignment of incentives, contractors may seek variations, dispute scope boundaries, or deliver to minimum specification rather than optimal outcomes. The absence of mechanisms that reward innovation and efficiency means potential savings remain unrealised, and the lack of long-term cost certainty makes portfolio planning difficult.

Feature	Traditional Approach	CAPITAL Framework Approach
Primary Focus	Capital cost and delivery schedule	Whole-of-life outcomes and lifecycle cost optimisation
Operational Input	Post-design, limited influence	Early engagement with design influence and decision-making authority
Contract Duration	Typically 5-10 years with uncertainty	30-year fixed-fee model with extension options providing long-term certainty
Cost Certainty	Unpredictable lifecycle costs, variation-prone	Fixed pricing secured during procurement for entire potential 30-year term
Performance Incentives	Compliance-based, minimum specification delivery	Owner-operator incentives through energy sharing, lane rental fees, and performance framework
Innovation Approach	Limited mechanisms to capture operational innovations	Structured mechanisms for innovation sharing and savings realisation
Risk Allocation	Transfer operational risk to contractor	Align incentives so asset manager behaves as owner with shared success

Feature	Traditional Approach	CAPITAL Framework Approach
Design Philosophy	Specify to standards, over-engineer for uncertainty	Evidence-based validation, eliminate unnecessary elements, optimise based on performance data
Market Sustainability	Recent trend of contract terminations threatening viability	Repeatable model creating sustainable commercial arrangements

Section 3: A New Framework - The CAPITAL Model

Transport for NSW and CBS Group developed the CAPITAL framework—Commercial Asset Performance, Infrastructure Tailoring And Lifecycle—to fundamentally reimagine how major infrastructure assets are procured, designed, and managed. The framework shifts the paradigm from treating asset managers as contractors delivering to specification, to engaging them as genuine partners whose commercial success depends on delivering optimal whole-of-life outcomes. This alignment of incentives creates a fundamentally different relationship where operational expertise influences design decisions, innovations are captured and shared, and long-term value takes precedence over short-term cost minimisation.

The CAPITAL framework rests on several foundational principles that distinguish it from traditional procurement approaches.

Principle 1: Early Operational Engagement

The framework recognises that operational expertise must influence design decisions during the phase when lifecycle costs are being locked in. Asset managers are engaged during the procurement phase, before the main works contract is awarded, giving them the opportunity to review design packages, challenge assumptions, and propose alternatives based on evidence from existing infrastructure performance. This early engagement has already eliminated over 10% of capital scope through evidence-based validation, challenging lazy precedents that had accumulated over decades without rigorous examination.

Principle 2: Owner-Operator Incentive Alignment

Rather than simply transferring risk, the CAPITAL framework creates incentives that cause asset

managers to behave as if they own the infrastructure. Through mechanisms such as energy consumption sharing and lane rental fees, the asset manager's commercial success becomes directly tied to operational efficiency, minimising disruptions, and reducing whole-of-life costs. This alignment means innovations that benefit government also benefit the asset manager, creating a partnership rather than an adversarial relationship.

Principle 3: Long-Term Cost Certainty

The framework provides a 30-year fixed-fee model, with an initial 10-year term and options for two further 10-year extensions at prices secured during the procurement phase. This long-term certainty allows government to plan infrastructure budgets with confidence whilst giving asset managers the time horizon necessary to invest in innovations, optimise maintenance strategies, and realise the full benefits of whole-of-life thinking. The fixed-fee model achieved pricing 20% below government estimates whilst improving performance standards, demonstrating that alignment of incentives can deliver both cost savings and superior outcomes.

Principle 4: Evidence-Based Design Optimisation

The framework replaces precedent-based design with evidence-based validation. Rather than specifying infrastructure elements because "that's how it's always been done," the CAPITAL approach requires justification based on performance data, lifecycle cost analysis, and operational requirements. This principle enabled material specifications to be optimised based on 30 years of Sydney Harbour Tunnel performance data, emergency equipment to be rationalised, and unnecessary infrastructure elements to be eliminated, all whilst maintaining or improving safety and performance standards.

Principle 5: Formal Collaboration Mechanisms

The framework integrates ISO 55001 (Asset Management) and ISO 44001 (Collaborative Business Relationships) standards, establishing formal collaboration mechanisms that go beyond contractual obligations [5] [6]. Interface deeds between Transport for NSW, the construction contractor (Acciona), and the asset manager enable direct communication and efficient decision-making. Lifecycle cost analysis supports a parameterised change mechanism for design variations, with Value for Money assessments applied when changes exceed the parameterised method's capacity, ensuring transparency and rigorous evaluation of design decisions.

The Paradigm Shift: From Risk Transfer to Incentive Alignment

Traditional infrastructure procurement seeks to transfer operational risk to contractors through fixed-price contracts and performance penalties. The CAPITAL framework recognises that this approach creates adversarial relationships and fails to capture the full value of operational expertise. By aligning commercial incentives with whole-of-life outcomes—through mechanisms like energy consumption sharing, lane rental fees, and long-term fixed-fee pricing—the framework transforms asset managers from contractors delivering to minimum specification into partners whose success depends on delivering optimal outcomes. This shift from risk transfer to incentive alignment represents a fundamental reimagining of the government-private sector relationship in infrastructure delivery.

Section 4: Evidence and Case Studies

The Western Harbour Tunnel project provided the proving ground for the CAPITAL framework, demonstrating its effectiveness across multiple dimensions of infrastructure delivery. Following an open market registration of interest and Request for Tender process, Transport for NSW awarded the asset management contract to Fulton Hogan Egis for an initial period of 10 years from the tunnel opening completion, with options for two further 10-year terms at fixed prices secured during procurement.

The implementation of the CAPITAL framework has delivered measurable benefits that demonstrate the value of whole-of-life thinking and early operational engagement.

Metric	Result	Impact
Design Phase Savings	Over \$180 million	Direct capital and operational savings achieved during design phase alone through elimination of unnecessary infrastructure elements, simplified maintenance requirements, and material specification optimisation

Metric	Result	Impact
Capital Scope Reduction	Over 10% eliminated	Evidence-based validation challenged decades of accumulated precedent, removing infrastructure elements that would have added capital cost without commensurate operational benefit
Pricing vs Government Estimate	20% below estimate	Fixed-fee model achieved substantial savings whilst improving performance standards, demonstrating that incentive alignment delivers both cost reduction and quality improvement
Confirmed Lifecycle Cost Savings	Minimum \$5.5 million	Lifecycle and maintenance cost reductions confirmed to date, with additional savings anticipated as design progresses and operational efficiencies are realised
Contract Duration	30-year potential term	Long-term cost certainty for government with fixed pricing for initial 10-year term and two optional 10-year extensions
Monthly Service Payment	\$505,516 (ex GST, Dec 2021)	Transparent, predictable payment structure during delivery phase from January 2023 to December 2027

1.1.1 Technological Innovations Driven by Operational Expertise

The early involvement of the asset manager drove significant design improvements across various systems, delivering measurable benefits in maintenance efficiency, cost reduction, and safety outcomes. These innovations demonstrate the value of engaging operational expertise during design phases.

Drainage Systems Optimisation

Traditional drainage pit design required manual entry by maintenance personnel using step irons, creating confined space entry requirements with associated safety risks and procedural complexity. The asset manager proposed adopting jet hose technology and eliminating step irons in flame trap pits, enabling maintenance to be performed from outside the confined space. This innovation eliminated confined space entry requirements for routine maintenance, improved maintenance efficiency through faster and safer procedures, and enhanced safety outcomes by removing the need for personnel to enter potentially hazardous environments.

Materials Specification Evidence-Based Approach

Conventional specifications called for Grade 316 stainless steel for cabinets, dampers, and attenuators, representing a conservative approach based on maximum durability assumptions. The asset manager analysed 30 years of performance data from Sydney Harbour Tunnel and proposed downgrading to Grade 304 stainless steel, which had demonstrated adequate durability in the tunnel environment. This evidence-based material selection achieved significant cost savings without compromising durability standards, maintained performance requirements based on proven 30-year data, and demonstrated the value of leveraging existing infrastructure performance data rather than relying on conservative assumptions.

Emergency Systems Rationalisation

Traditional design specified PA speaker systems throughout all tunnel areas and separate Motorist Equipment Emergency Cabinets (MEEPs) and Fire Equipment Emergency Cabinets (FEEPs) with full equipment complement in each location. The asset manager proposed replacing PA speakers with sounder strobes in non-public equipment rooms where voice communication was unnecessary, and rationalising cabinet numbers and equipment quantities based on operational requirements and response time analysis. This rationalisation reduced equipment quantities and cabinet numbers substantially, simplified emergency response infrastructure whilst maintaining effectiveness, lowered maintenance costs through fewer components requiring inspection and replacement, and reduced lifecycle replacement costs over the 30-year asset life.

Control Systems Infrastructure Optimisation

Conventional design included a dedicated Disaster Recovery Site facility to provide backup control capability in the event of primary control centre failure. The asset manager identified an opportunity

to relocate the Disaster Recovery Site to the existing Transport Management Centre in Eveleigh, leveraging fibre optic technology for remote monitoring and management. This optimisation eliminated the need for dedicated facility construction, delivering substantial capital expenditure savings, reduced ongoing operational expenditure for facility maintenance and staffing, and improved operational efficiency through centralised control integrated with broader transport network management.

Sustainability and Energy Efficiency

Traditional ventilation tunnel design included full lighting throughout all tunnel areas to facilitate maintenance access and emergency response. The asset manager proposed removing lighting from most ventilation tunnel areas and installing lighting only in equipment housing areas, with maintenance personnel using portable lighting for tunnel traversal when required. This sustainability initiative reduced energy consumption substantially across the asset's operational life, minimised ongoing operational costs for electricity and lamp replacement, enhanced environmental sustainability aligned with government climate objectives, and demonstrated that operational requirements could be met with significantly reduced infrastructure.

1.1.2 Managing Design Uncertainty

A critical challenge in any major infrastructure project is managing uncertainty regarding the final as-built configuration as design progresses and construction realities emerge. The CAPITAL framework addresses this through two complementary mechanisms that provide flexibility whilst maintaining cost discipline and ensuring rigorous evaluation of changes.

Parameterised Change Mechanism

This mechanism is supported by lifecycle cost analysis that demonstrates the change in asset management services cost resulting from design decisions, providing a basis for Totex-driven design optimisation. When design changes occur within defined parameters, the lifecycle cost analysis enables rapid assessment and adjustment of the asset management fee, maintaining alignment between the infrastructure configuration and the commercial arrangement without requiring lengthy negotiation or formal variation processes.

Value for Money Assessment

For changes that exceed the capacity of the parameterised method—typically major scope changes or configuration modifications that fall outside the anticipated range—a formal Value for Money assessment is applied. This ensures that

significant changes receive appropriate scrutiny, with rigorous evaluation of costs, benefits, and alternatives before decisions are made. The combination of these mechanisms provides the flexibility necessary to accommodate design evolution whilst maintaining cost certainty and transparent decision-making.

1.1.3 Application to Other Major Infrastructure Projects

The success of the CAPITAL framework on the Western Harbour Tunnel has led to its adoption and refinement across multiple major infrastructure projects, demonstrating scalability and continuous improvement.

M6 Stage 1 Tunnel

The framework was further refined for the M6 Stage 1 contract, incorporating all lessons learned from the Western Harbour Tunnel implementation. The enhanced model was awarded to Fulton Hogan Egis, demonstrating both the repeatability of the framework and the value of continuous improvement. Refinements included clearer definition of KPI and Lane Rental Fee frameworks, improved alignment mechanisms for whole-of-life metrics, enhanced documentation requirements for asset condition at handover, and strengthened provisions for innovation sharing and savings realisation.

Sydney Harbour Tunnel

Following the concession expiry in August 2022, the existing Sydney Harbour Tunnel asset is being transitioned to the CAPITAL framework model. This application demonstrates the framework's scalability to existing assets, not just new construction, and provides an opportunity to apply whole-of-life thinking to infrastructure that has been operating for over 30 years. The transition addresses the challenge of clearly defining asset condition at handover, establishing baseline performance expectations, and creating appropriate commercial arrangements for an asset with known performance characteristics and established maintenance requirements.

Future Infrastructure Portfolio

Transport for NSW is establishing the CAPITAL framework as a repeatable model for major infrastructure projects across New South Wales. This standardisation creates several benefits including reduced procurement costs through template contracts and established processes, improved market confidence through consistent and sustainable commercial arrangements, enhanced capability within government to manage whole-of-life contracts effectively, and a pipeline of

opportunities that encourages private sector investment in operational capability and innovation.

Section 5: Implementation Guidance

Organisations seeking to adopt the CAPITAL framework or similar whole-of-life asset management approaches should follow a structured implementation roadmap that addresses capability development, stakeholder engagement, and progressive refinement.

Phase 1: Foundation and Capability Development (6-12 Months)

This initial phase establishes the organisational foundation necessary to implement whole-of-life asset management approaches effectively. Key activities include developing internal capability in lifecycle cost analysis and whole-of-life evaluation methodologies, establishing baseline performance data from existing assets to inform evidence-based design decisions, engaging with industry to understand market appetite and refine commercial structures, and developing template contract documents including Asset Management Deeds, Interface Agreements, and Performance Frameworks. Milestones for this phase include completion of capability assessment and training needs analysis, establishment of lifecycle cost modelling tools and methodologies, industry consultation report with market feedback incorporated, and draft contract templates ready for legal review and stakeholder consultation.

Phase 2: Pilot Project Selection and Procurement Preparation (3-6 Months)

With foundational capability established, the focus shifts to selecting an appropriate pilot project and preparing for procurement. Activities include identifying a suitable pilot project with characteristics that favour whole-of-life approaches such as long operational life, significant maintenance requirements, and opportunities for operational input to influence design. The project team should define specific objectives and success metrics for the pilot, develop project-specific Asset Management Deed and performance requirements, and prepare procurement documentation including Request for Tender, evaluation criteria, and probity framework. Milestones include pilot project selection and business case approval, completion of project-specific contract documentation, procurement strategy approval including evaluation methodology, and market engagement including registration of interest if appropriate.

Phase 3: Procurement and Contract Award (6-12 Months)

This phase executes the procurement process and

awards the asset management contract. Activities include issuing Request for Tender with sufficient time for tenderers to develop comprehensive proposals, conducting tender evaluation using whole-of-life cost analysis and capability assessment, negotiating final contract terms including fixed pricing for long-term extensions, and executing Asset Management Deed and associated Interface Agreements. Milestones include tender submission and initial evaluation completion, detailed evaluation and value for money assessment, contract negotiation and finalisation, and contract execution and mobilisation commencement.

Phase 4: Mobilisation and Early Operational Engagement (6-12 Months)

During this critical phase, the asset manager establishes capability and begins influencing design decisions. Activities include asset manager establishing governance structures, procedures, and management plans, reviewing design packages and providing feedback from whole-of-life perspective, proposing innovations and optimisations with supporting lifecycle cost analysis, and establishing collaborative working relationships with design teams, construction contractors, and government stakeholders. Milestones include completion of mobilisation requirements and readiness assessment, design review feedback provided and incorporated into construction documentation, innovation proposals evaluated and approved innovations incorporated, and Interface Deed executed enabling direct communication between asset manager and construction contractor.

Phase 5: Construction and Transition to Operations (Project-Specific Duration)

As construction proceeds, the asset manager prepares for operational handover whilst continuing to influence construction decisions that affect operational outcomes. Activities include ongoing design review and optimisation as construction realities emerge, development of detailed operational procedures and maintenance strategies, procurement of operational equipment and establishment of operational facilities, and recruitment and training of operational personnel. Milestones include construction completion and commissioning, operational readiness assessment and approval, handover documentation including as-built records and asset condition assessment, and commencement of operational phase under Asset Management Deed.

Phase 6: Operational Performance and Continuous Improvement (Ongoing)

With operations commenced, the focus shifts to

performance management, innovation realisation, and continuous improvement. Activities include performance monitoring against KPIs with regular reporting and review, implementation of innovations and efficiency improvements identified during operations, regular alignment sessions between government and asset manager on whole-of-life metrics and priorities, and documentation of lessons learned for application to future projects. Milestones include achievement of performance targets and KPI compliance, realisation of anticipated lifecycle cost savings and identification of additional opportunities, successful navigation of contract extension decisions based on performance and value, and contribution of lessons learned to framework refinement for future projects.

Section 6: Addressing Common Concerns

Concern 1: "Long-term fixed-fee contracts create excessive risk for asset managers and may result in higher pricing to cover uncertainty."

This concern reflects traditional thinking about risk transfer rather than incentive alignment. The CAPITAL framework addresses uncertainty through several mechanisms that provide flexibility whilst maintaining cost discipline. The parameterised change mechanism supported by lifecycle cost analysis enables adjustment of asset management fees when design changes occur within defined parameters, ensuring the commercial arrangement remains aligned with the infrastructure configuration without requiring lengthy negotiation. For changes exceeding the parameterised method's capacity, Value for Money assessments provide rigorous evaluation whilst maintaining transparency. The fixed pricing secured during procurement for the full potential 30-year term was achieved at 20% below government estimates, demonstrating that when incentives are properly aligned, asset managers can price long-term commitments competitively because they have confidence in their ability to optimise outcomes and realise efficiencies over time. The long-term horizon actually reduces risk for asset managers by providing certainty of revenue and sufficient time to invest in innovations and optimise maintenance strategies, rather than focusing on short-term cost minimisation.

Concern 2: "Early operational engagement during design phases will slow down project delivery and increase coordination complexity."

Experience from the Western Harbour Tunnel demonstrates the opposite: early operational engagement accelerates value realisation and reduces rework. The elimination of over 10% of capital scope through evidence-based validation occurred during design phases when changes could be incorporated efficiently, avoiding costly variations during construction or operational compromises after handover. The Interface Deed between Transport for NSW, the construction contractor (Acciona), and the asset manager (Fulton Hogan Egis) enables direct communication and efficient decision-making, reducing coordination complexity rather than increasing it. Rather than slowing delivery, early operational engagement prevents the accumulation of design decisions that will create operational challenges, maintenance burdens, or lifecycle cost impacts that would otherwise only be discovered after the infrastructure is built. The \$180 million in savings achieved during design phases alone represents value that would have been permanently locked in under traditional approaches, requiring either acceptance of suboptimal outcomes or expensive variations to rectify.

Concern 3: "The framework may not be suitable for all infrastructure types or project scales."

This concern has merit and requires careful consideration of project characteristics when determining procurement approach. The CAPITAL framework delivers greatest value for infrastructure with long operational lives, significant maintenance requirements, and opportunities for operational input to influence design in ways that affect lifecycle costs. Major tunnel projects, bridges, and complex transport infrastructure represent ideal applications. For smaller projects with simpler operational requirements or shorter design lives, the overhead of establishing comprehensive Asset Management Deeds and performance frameworks may outweigh the benefits. However, the principles underlying the CAPITAL framework—early operational engagement, evidence-based design, incentive alignment, and whole-of-life thinking—have universal applicability even if the specific contractual mechanisms are scaled to suit project characteristics. The successful application of refined versions of the framework to both the M6 Stage 1 Tunnel (new construction) and Sydney Harbour Tunnel (existing asset transition) demonstrates adaptability across different project types. Organisations should assess project characteristics including operational complexity, lifecycle cost significance, and opportunities for innovation when determining whether to apply the

full framework or adapt its principles to simpler contractual structures.

Section 7: Conclusion

The Western Harbour Tunnel Asset Management contract demonstrates that infrastructure procurement can transcend the limitations of traditional build-centric approaches when commercial incentives are aligned with whole-of-life outcomes. Sydney faces significant congestion challenges, with costs projected to reach between \$9.5 billion and \$12.6 billion by 2030, and traditional procurement models proving inadequate to deliver the value that government, community, and industry require. The CAPITAL framework addresses these challenges through a fundamental reimagining of the relationship between government and private sector asset managers, shifting from risk transfer to incentive alignment, from precedent-based design to evidence-based validation, and from short-term cost minimisation to long-term value optimisation.

The evidence supporting this approach is compelling and quantifiable. The achievement of over \$180 million in capital and operational savings during design phases alone, the elimination of over 10% of capital scope through evidence-based validation, and the delivery of fixed-fee pricing 20% below government estimates whilst improving performance standards demonstrate that whole-of-life thinking delivers superior financial outcomes. The technological innovations across drainage systems, materials specification, emergency equipment, control systems infrastructure, and sustainability initiatives show that operational expertise, when engaged early, identifies opportunities that design teams working in isolation cannot see. The confirmed lifecycle cost savings of at least \$5.5 million to date, with additional savings anticipated as design progresses and operations commence, provide ongoing validation of the framework's effectiveness.

The successful refinement and application of the CAPITAL framework to the M6 Stage 1 project and Sydney Harbour Tunnel demonstrates scalability and continuous improvement, establishing a repeatable model for major infrastructure projects across New South Wales and potentially beyond. This represents more than a procurement innovation; it signals a strategic shift in how government approaches infrastructure delivery in an era of constrained budgets, increasing community expectations, and the imperative to demonstrate value for money.

Infrastructure agencies face a choice. They can continue with traditional approaches that separate

design from operations, lock in lifecycle costs during phases when operational expertise is absent, and create adversarial relationships through risk transfer mechanisms that fail to capture the full value of private sector capability. Or they can adopt frameworks like CAPITAL that engage operational expertise during design phases, align commercial incentives with whole-of-life outcomes, and create genuine partnerships between government and private sector asset managers.

The path forward requires leadership, capability development, and commitment to evidence-based decision-making. Infrastructure agencies should assess their project portfolios to identify opportunities where whole-of-life approaches would deliver greatest value, develop internal capability in lifecycle cost analysis and whole-of-life evaluation methodologies, engage with industry to build market confidence in sustainable commercial arrangements, and establish template frameworks that can be adapted to project-specific requirements whilst maintaining core principles of incentive alignment and operational engagement.

The Western Harbour Tunnel demonstrates that this path is not theoretical but practical, not aspirational but achievable, and not risky but proven. The framework addresses market concerns about contract viability whilst delivering superior value for government and community. It establishes a new standard for infrastructure procurement that other jurisdictions and infrastructure types can adapt and adopt.

The imperative for change is clear: infrastructure represents one of government's largest capital investments and longest-term commitments, with decisions made today determining outcomes for decades. The CAPITAL framework shows that by engaging operational expertise early, aligning commercial incentives with whole-of-life outcomes, and creating genuine partnerships, infrastructure agencies can deliver the value that communities deserve and budgets demand. The question is not whether to adopt whole-of-life approaches, but how quickly they can be implemented across infrastructure portfolios to capture the substantial benefits that the Western Harbour Tunnel has demonstrated are achievable.

Key Takeaways

✓ **Early operational engagement delivers measurable value:** The Western Harbour Tunnel eliminated over 10% of capital scope through evidence-based validation during design phases, challenging decades of accumulated precedent and achieving over \$180 million in capital and

operational savings before construction completion.

✓ **Incentive alignment outperforms risk transfer:**

The 30-year fixed-fee model with owner-operator incentives through energy consumption sharing and lane rental fees achieved pricing 20% below government estimates whilst improving performance standards, demonstrating that aligned incentives deliver both cost savings and superior outcomes.

✓ **Evidence-based design replaces precedent-based assumptions:** Leveraging 30 years of Sydney Harbour Tunnel performance data enabled material specification optimisation, emergency equipment rationalisation, and infrastructure simplification, all whilst maintaining or improving safety and durability standards.

✓ **Long-term cost certainty benefits government and industry:** Fixed pricing for the full potential 30-year term provides government with budget certainty and enables asset managers to invest in innovations and optimise maintenance strategies rather than focusing on short-term cost minimisation.

✓ **Framework scalability enables continuous improvement:** Successful application to M6 Stage 1 Tunnel with enhanced provisions and transition of Sydney Harbour Tunnel to the model demonstrates adaptability across new construction and existing assets, with each implementation refining the framework for future projects.

✓ **Whole-of-life thinking creates sustainable value:** Confirmed lifecycle cost savings of at least \$5.5 million to date, with additional savings anticipated, demonstrate that engaging operational expertise during design phases delivers ongoing value throughout the asset's operational life, benefiting government, industry, and community through better-maintained infrastructure with minimal service disruptions.

References

- [1] Bureau of Infrastructure, Transport and Regional Economics (BITRE), "Traffic and congestion cost trends for Australian capital cities," 2015. Available: https://www.bitre.gov.au/sites/default/files/is_074.pdf; Transport for NSW, "NSW Freight and Ports Plan - Part 2: The State of Freight." Available: <https://www.transport.nsw.gov.au/projects/strategy/nsw-freight-and-ports-plan-0/part-2-state-of-freight>

[2] Indepth Research Institute (IRES), "Industry evidence indicates that as much as 80% of a building's lifecycle costs are locked in at the design stage," LinkedIn, September 2025. Available: https://www.linkedin.com/posts/indepth-research-institute_industry-evidence-indicates-that-as-much-activity-7377386478873686016-Fu23

[3] tset.com, "Why Design-to-Cost Needs Product Costing Software Early," April 2025. Available: <https://tset.com/blog/why-design-to-cost-needs-product-costing-software-early>

[4] Treasury NSW, Asset Management Policy, New South Wales Government

[5] International Organization for Standardization, "ISO 55001:2014 Asset Management — Management systems — Requirements," 2014

[6] International Organization for Standardization, "ISO 44001:2017 Collaborative business relationship management systems — Requirements and framework," 2017

Further Reading

Infrastructure Australia, "Australian Infrastructure Audit," latest edition. Available: <https://www.infrastructureaustralia.gov.au>

Infrastructure Australia, "Urban Transport Crowding and Congestion," August 2019. Available: <https://www.infrastructureaustralia.gov.au/publications/urban-transport-crowding-and-congestion>

International Infrastructure Management Manual (IIMM), latest edition

Transport for NSW, "Guide for Estimating the Problem Cost," 2022. Available: <https://www.transport.nsw.gov.au/system/files/media/documents/2022/TfNSW%20Problem%20Cost%20Technical%20Guide%202022.pdf>

Zoeteman, A., "Life cycle cost analysis for managing rail infrastructure: Concept of a decision support system for railway design and maintenance," European Journal of Transport and Infrastructure Research, 2001

Rahman, S. and Vanier, D.J., "Life cycle cost analysis as a decision support tool for managing municipal infrastructure," CIB 2004 triennial congress, 2004

About CBS Group

CBS Group is a leading provider of strategic advisory services to government and private sector clients across infrastructure, asset management, and procurement. With deep expertise in whole-of-life thinking and innovative commercial frameworks, CBS Group partners with clients to deliver superior outcomes through evidence-based analysis, stakeholder engagement, and practical implementation support.

Our team combines technical expertise with commercial acumen to help clients navigate complex infrastructure challenges, develop innovative procurement strategies, and implement asset management frameworks that deliver sustainable value. We work collaboratively with government agencies, infrastructure owners, and private sector partners to reimagine how infrastructure is delivered, operated, and maintained.

Contact CBS Group:

Email: info@cbs.com.au

Web: www.cbs.com.au

Phone: [Contact number]

© 2025 CBS Group. All rights reserved. This document may be reproduced and distributed for non-commercial purposes with attribution to CBS Group.