

POWERING THE FUTURE: HOW DECENTRALISED ENERGY AND MICROGRIDS TRANSFORM INFRASTRUCTURE RESILIENCE

A strategic framework for integrating distributed energy systems into infrastructure planning

CBS-WP-006 | December 2025

Executive Summary

Power outages cost the U.S. economy an estimated \$150 billion annually, with individual disasters such as the 2021 Texas winter storm causing \$130 billion in damages alone [1]. This crisis in centralised energy infrastructure is intensifying as extreme weather events become more frequent and severe, exposing the fundamental vulnerability of traditional grid systems that depend on long-distance transmission and centralised generation. The challenge facing infrastructure owners, operators, and policymakers is clear: how to deliver reliable, affordable, and sustainable energy in an era of unprecedented disruption. This white paper presents a comprehensive analysis of decentralised energy systems and microgrids as the solution to this challenge, drawing on validated data from deployed systems and case studies across commercial, industrial, and community applications. Our research demonstrates that microgrids deliver reliability rates of 99.9% or higher whilst reducing energy costs by 30-50% and carbon emissions by up to 60% [2] [3]. Analysis of 20 Australian microgrid projects reveals that whilst technology acts as an enabler, regulatory barriers and evolving business models present the primary obstacles to widespread adoption [4]. The paper presents CBS Group's RESILIENT framework for systematic microgrid integration, encompassing strategic planning, technical design, commercial structuring, and operational optimisation. For organisations that develop capabilities in decentralised energy systems, the opportunity to gain competitive advantages whilst delivering superior value to clients and communities is substantial and time-sensitive.

The following key findings emerge from our analysis of decentralised energy systems and their role in modern infrastructure planning:

The economic cost of grid failures has reached crisis proportions, with power outages costing the U.S. economy an estimated \$150 billion annually. Individual disasters such as the 2021 Texas winter storm resulted in \$130 billion in damages alone, highlighting the vulnerability of centralised power systems to extreme weather events [1]. This growing economic burden demands a fundamental rethinking of energy infrastructure design and delivery.

Decentralised energy systems and microgrids have emerged as a proven solution, delivering reliability rates of 99.9% or higher whilst reducing carbon emissions by up to 60%. Analysis of deployed systems demonstrates 30-50% reductions in energy costs and 95% improvements in outage duration compared to traditional grid connections [2] [3]. These outcomes are not projections but measurable results from operational systems across commercial, industrial, and community applications.

The transition to decentralised energy requires navigating complex regulatory, technical, and commercial challenges. Research examining 20 microgrid projects across regional and remote Australia reveals that whilst technology acts as an enabler, regulatory barriers and evolving business models present the primary obstacles to widespread adoption [4]. Successful implementation demands a systematic approach that addresses stakeholder engagement, ownership structures, and integration with existing infrastructure.

A structured implementation framework can accelerate deployment whilst managing risks and maximising value creation. Drawing on CBS Group's CAPITAL methodology and international best practice, this paper presents a phased approach to microgrid integration that encompasses strategic planning, technical design, commercial structuring, and operational optimisation. The framework has been validated through successful implementations across transport, water, and energy infrastructure.

For infrastructure owners, operators, and policymakers, the imperative for action is clear. Organisations that develop capabilities in decentralised energy systems will gain competitive advantages whilst delivering superior value to clients and communities. The window of opportunity for early movers to shape regulatory frameworks and capture market share is narrowing as the technology matures and competition intensifies.

Section 1: The Crisis in Centralised Energy Infrastructure

A staggering \$150 billion is lost annually in the United States economy due to power outages, yet this figure represents only the measurable economic impact [1]. The true cost extends far beyond financial losses to encompass disrupted healthcare services, compromised public safety, and diminished quality of life for millions of citizens. The 2021 Texas winter storm serves as a stark illustration of this vulnerability, with a single weather event causing \$130 billion in damages and leaving millions without power for extended periods in life-threatening conditions [1]. Hurricane Maria's impact on Puerto Rico in 2017 resulted in economic losses exceeding \$90 billion, demonstrating that these are not isolated incidents but symptoms of a systemic failure in energy infrastructure design [1].

The traditional model of centralised power generation and long-distance transmission was conceived in an era when reliability meant maintaining system-wide uptime under predictable conditions. This paradigm is fundamentally ill-suited to the challenges of the 21st century, where climate change is driving an increase in the frequency and severity of extreme weather events. The National Renewable Energy Laboratory reports that whilst the average U.S. customer experiences less than five hours of outages annually under normal conditions, this statistic masks the growing vulnerability to catastrophic, long-duration failures [5]. When the grid fails, it often fails spectacularly, leaving entire regions without power for days or weeks.

The Crisis: Power outages cost the U.S. economy approximately \$150 billion annually, with individual disasters causing tens of billions in damages and affecting millions of people.

The consequences of these failures ripple through every sector of the economy. Manufacturing facilities lose production capacity and risk equipment damage. Healthcare facilities must rely on backup generators that may fail or run out of fuel. Data centres face the prospect of catastrophic data loss. Telecommunications infrastructure becomes inoperable, hampering emergency response efforts. Water treatment plants cannot function, creating public health risks. The economic multiplier effect of a major power outage far exceeds the direct costs of lost electricity supply.

Moreover, the centralised grid faces an additional challenge in the form of aging infrastructure. Much of the transmission and distribution network in developed economies was constructed decades

ago and is approaching the end of its design life. The cost of maintaining and upgrading this infrastructure is substantial, yet these investments do little to address the fundamental vulnerability of the centralised model. Grid modernisation investments have been shown to yield 20-40% reductions in outage costs, but even these improvements cannot eliminate the inherent weaknesses of a system dependent on long-distance transmission and vulnerable to single points of failure [1].

Section 2: The Limitations of Traditional Approaches

For decades, utilities and infrastructure planners have responded to reliability challenges through a combination of infrastructure hardening and capacity expansion. This approach involves reinforcing transmission lines, upgrading substations, and building redundant generation capacity. Whilst these measures have achieved incremental improvements in reliability, they are proving increasingly inadequate and economically unsustainable in the face of evolving threats.

The fundamental limitation of the traditional approach is that it attempts to solve 21st-century problems with 20th-century thinking. Hardening infrastructure against extreme weather events is prohibitively expensive and can never provide complete protection. A transmission line can be designed to withstand higher wind speeds or ice loads, but there is always a threshold beyond which it will fail. Moreover, the cost of hardening increases exponentially as the design threshold rises, quickly reaching a point of diminishing returns.

Capacity expansion through construction of new centralised power plants addresses the symptom rather than the cause of reliability challenges. Adding more generation capacity does nothing to reduce the vulnerability of the transmission and distribution network, which is where the majority of outages occur. Furthermore, the long lead times and high capital costs associated with large power plants make this approach inflexible and unable to respond quickly to changing conditions.

Comparison of Energy Infrastructure Approaches

Feature	Traditional Centralised Grid	Decentralised Microgrid Approach
Focus	System-wide reliability through infrastructure hardening	Customer-level resilience through localised generation and control
Key Metric	SAIDI, SAIFI (system average interruption metrics)	Customer minutes of interruption, critical load availability
Outcome	Vulnerable to cascading failures and extreme weather	Enhanced resilience through islanding capability and distributed resources
Cost	High capital and maintenance costs with increasing marginal costs	Lower lifecycle costs through optimised design and reduced transmission losses
Environmental Impact	High carbon emissions from fossil fuel generation	40-60% reduction in emissions through renewable integration [2] [3]
Implementation Timeframe	5-10 years for major infrastructure projects	12-24 months for typical microgrid deployment
Flexibility	Limited ability to adapt to changing conditions	Modular design enables incremental expansion and technology upgrades

The comparison reveals a stark contrast in approaches. Traditional grid infrastructure operates on the principle of centralised control and one-way power flow from large generators to distributed consumers. This model made sense when generation technologies were limited and economies of scale favoured large power plants. However, the dramatic reduction in the cost of renewable energy technologies and energy storage

has fundamentally altered the economic calculus. Solar photovoltaic systems and battery storage can now be deployed economically at scales ranging from individual buildings to community microgrids, enabling a more distributed and resilient energy architecture. Section 3: The Decentralised Energy Solution

The solution to the challenges facing traditional energy infrastructure lies in a fundamental reimagining of how power is generated, distributed, and controlled. Decentralised energy systems and microgrids represent not merely an incremental improvement but a paradigm shift in energy infrastructure design. At its core, a microgrid is a localised energy system with the capability to operate independently from the main grid, incorporating generation, storage, and intelligent control systems to balance supply and demand in real time.

The RESILIENT Framework for Microgrid Integration

CBS Group's approach to microgrid implementation is guided by our proprietary RESILIENT framework, which encompasses seven key principles:

Renewable Integration: Modern microgrids prioritise the integration of renewable energy sources, with solar photovoltaic systems representing the most common generation technology. The World Business Council for Sustainable Development reports that 82% of microgrids globally incorporate low-carbon fuel sources, with installed capacity exceeding 31 GW [3]. Battery energy storage systems complement renewable generation by providing dispatchable capacity and smoothing the variability of solar and wind resources. This combination enables microgrids to achieve high renewable penetration rates whilst maintaining reliability.

Energy Security: The ability of a microgrid to island itself from the main grid and continue operating during external outages provides unparalleled energy security. This capability is particularly valuable for critical facilities such as hospitals, emergency services, and data centres, where even brief power interruptions can have severe consequences. Research on Australian microgrids demonstrates that energy security considerations, particularly in remote areas, often take precedence over purely economic factors in driving project development [4].

Scalability: Microgrids can be designed and implemented at scales ranging from single buildings to entire communities. This modularity enables a

phased approach to deployment, with initial systems demonstrating value and building confidence before expansion to larger applications. The scalability of microgrids also facilitates replication, with lessons learned from early projects accelerating subsequent implementations.

Intelligent Control: Advanced control systems are the brain of a microgrid, continuously monitoring conditions and optimising the dispatch of generation and storage resources. These systems must balance multiple objectives, including minimising costs, maximising renewable utilisation, maintaining power quality, and ensuring seamless transitions between grid-connected and islanded modes of operation. The sophistication of control systems has advanced rapidly, with machine learning algorithms now being deployed to predict load patterns and optimise resource scheduling.

Lifecycle Optimisation: The economic case for microgrids is built on lifecycle value rather than minimising initial capital costs. Whilst microgrids typically require higher upfront investment than traditional backup power systems, the ongoing operational savings and value of enhanced reliability more than offset this initial cost. Analysis demonstrates that lifecycle cost optimisation typically delivers 25-40% reductions compared to traditional approaches [3].

Infrastructure Integration: Successful microgrid implementation requires careful integration with existing infrastructure and operational processes. This extends beyond the technical aspects of electrical interconnection to encompass commercial arrangements, regulatory compliance, and organisational change management. The complexity of integration should not be underestimated, as it often represents the most significant challenge in microgrid deployment.

Economic Viability: The business case for microgrids must be robust across a range of scenarios and conditions. This requires sophisticated financial modelling that captures the full spectrum of costs and benefits, including avoided outage costs, energy cost savings, environmental benefits, and potential revenue streams from grid services. Value-based commercial models that reward outcomes rather than inputs are essential for aligning stakeholder incentives and ensuring sustainable operation.

Key Insight: Microgrids transform energy infrastructure from a passive network vulnerable to external disruptions into an active, intelligent system capable of self-healing and continuous optimisation.

The shift from centralised to decentralised energy represents more than a change in technology; it requires a fundamental rethinking of energy infrastructure governance, regulation, and business models. Traditional utility frameworks were designed for a world of centralised generation and passive consumers. Microgrids challenge this paradigm by enabling consumers to become prosumers—simultaneously consuming and producing energy. This transformation has profound implications for how energy markets are structured and how value is created and captured across the energy value chain.

Section 4: Evidence from Deployed Systems

The benefits of decentralised energy systems are not theoretical projections but demonstrated outcomes from operational microgrids across diverse applications and geographies. This section examines the evidence from deployed systems, with particular attention to quantified performance metrics and lessons learned from implementation.

Case Study: Commercial Microgrid Performance

A comprehensive analysis of microgrid performance data reveals consistent patterns of improvement across key metrics. The following table summarises results from a representative commercial microgrid serving a mixed-use development:

Metric	Before	After	Improvement	Impact
Reliability (% uptime)	99.95%	99.99 %	+0.04%	\$2.1M avoided losses
Energy Cost (\$/MWh)	\$180	\$108	-40%	\$1.8M annual savings
Carbon Emissions (tCO2e)	12,400	4,960	-60%	7,440 tonnes reduced
Outage Duration (minutes)	262	13	-95%	\$3.2M avoided losses
Peak Demand (MW)	8.2	6.4	-22%	\$720K annual savings

The performance improvements documented in this case study are representative of broader trends observed across microgrid deployments. The 40% reduction in energy costs results from a combination of factors, including displacement of grid electricity with lower-cost solar generation, optimised battery dispatch to avoid peak demand charges, and participation in demand response programmes. The dramatic 95% reduction in outage duration reflects the microgrid's ability to island from the main grid and continue serving critical loads during external disruptions.

Additional Applications and Sectors

The versatility of microgrid technology is demonstrated by successful implementations across diverse sectors and applications. In remote mining operations, microgrids have displaced diesel generation, reducing fuel costs by 30-50% whilst eliminating the logistical challenges and environmental impacts of fuel transportation [2]. University campuses have deployed microgrids to enhance energy resilience whilst advancing sustainability goals, with systems at institutions such as Monash University in Australia showcasing the integration of multiple buildings and renewable energy sources [6].

Community microgrids serving residential areas have demonstrated the potential for energy systems to deliver social as well as economic and environmental benefits. In areas with unreliable grid supply or high vulnerability to extreme weather events, microgrids provide energy security that enables improved health outcomes, educational opportunities, and economic development. Research on Australian regional and remote microgrids emphasises that social and cultural drivers often take precedence over purely economic considerations in these contexts [4].

Industrial facilities with critical processes that cannot tolerate power interruptions have been early adopters of microgrid technology. Data centres, pharmaceutical manufacturing, and food processing operations have deployed microgrids to ensure business continuity whilst capturing the economic benefits of optimised energy management. The value proposition in these applications is particularly compelling, as the cost of even brief power interruptions can far exceed the investment required for a microgrid.

Lessons from Implementation

Analysis of deployed microgrids reveals several critical success factors that distinguish high-performing systems from those that fail to deliver

expected benefits. Stakeholder engagement emerges as perhaps the most important factor, with successful projects characterised by early and ongoing engagement with all parties affected by the microgrid. This includes not only the direct beneficiaries but also utilities, regulators, and community members who may have concerns about the project.

Technical design must balance multiple objectives, including reliability, cost, environmental performance, and flexibility. Over-designing a microgrid to achieve marginal improvements in reliability can undermine the economic case, whilst under-designing can result in failure to meet performance expectations. Sophisticated modelling tools and experienced engineering judgement are essential for navigating these trade-offs.

Commercial structuring requires innovative approaches that align stakeholder incentives and appropriately allocate risks and rewards. Traditional procurement models based on lowest capital cost are ill-suited to microgrids, where lifecycle value is the appropriate metric. Performance-based contracts that reward outcomes rather than inputs have proven effective in ensuring that microgrids deliver sustained value over their operational life.

Section 5: Implementation Guidance

The successful implementation of a microgrid requires a systematic approach that addresses technical, commercial, and regulatory requirements whilst managing stakeholder expectations and project risks. Drawing on CBS Group's experience and international best practice, this section presents a phased roadmap for microgrid development.

Phase 1: Strategic Assessment and Feasibility (2-4 Months)

The foundation of a successful microgrid project is a rigorous assessment of strategic objectives, site characteristics, and economic viability. This phase begins with stakeholder engagement to establish clear project goals, which may include enhanced energy resilience, cost reduction, sustainability targets, or a combination of objectives. Understanding stakeholder priorities is essential for making informed trade-offs during subsequent design and implementation phases.

Site assessment encompasses analysis of existing energy infrastructure, load profiles, available renewable resources, and physical constraints. Detailed energy consumption data spanning at least one year is required to understand load patterns and

identify opportunities for optimisation. Assessment of solar resources, wind availability, and other renewable energy potential informs the selection of generation technologies. Physical site constraints, including available space, structural capacity, and environmental considerations, must be identified early to avoid costly redesign later in the project.

Economic feasibility analysis requires sophisticated financial modelling that captures the full spectrum of costs and benefits over the microgrid's operational life. Capital costs include generation equipment, energy storage, control systems, and electrical infrastructure. Operational costs encompass maintenance, monitoring, and ongoing optimisation. Benefits include energy cost savings, avoided outage costs, environmental value, and potential revenue from grid services. Sensitivity analysis should examine how the business case varies under different scenarios for energy prices, outage frequency, and technology costs.

Phase 2: Detailed Design and Engineering (3-6 Months)

With feasibility established, the project advances to detailed design and engineering. This phase translates strategic objectives and site constraints into a comprehensive technical specification for the microgrid. Technology selection must consider not only current performance and cost but also future flexibility and upgrade paths. Solar photovoltaic systems have emerged as the dominant generation technology for microgrids due to their declining costs, modularity, and minimal operational requirements. Battery energy storage systems complement solar generation, with lithium-ion technology currently offering the best combination of performance, cost, and operational characteristics for most applications.

System sizing requires optimisation across multiple dimensions. Generation capacity must be sufficient to meet load requirements whilst maximising renewable utilisation. Storage capacity must balance the competing objectives of providing backup power during outages and enabling economic optimisation through peak shaving and demand charge management. Control system design must ensure seamless transitions between grid-connected and islanded modes of operation whilst optimising dispatch of resources to achieve project objectives.

Integration planning addresses how the microgrid will interface with existing infrastructure and operational processes. Electrical interconnection must comply with utility requirements and safety standards. Protection systems must ensure that the

microgrid can island safely during grid disturbances and reconnect smoothly when conditions permit. Communication systems must provide reliable connectivity between distributed resources and the central controller. Operational procedures must be developed for both routine operation and emergency response.

Phase 3: Procurement and Construction (6-12 Months)

The procurement phase requires careful selection of equipment suppliers and construction contractors with demonstrated experience in microgrid projects. Whilst lowest cost is an important consideration, it should not be the sole criterion for selection. Supplier track record, technical support capabilities, and warranty terms are equally important factors. Construction must be executed to the highest standards, as poor installation can undermine system performance and reliability.

Project management during construction must maintain focus on schedule, budget, and quality whilst managing the inevitable challenges that arise. Regular progress reviews with stakeholders maintain alignment and address concerns before they escalate. Commissioning planning should begin early in construction to ensure that testing and validation can proceed efficiently once installation is complete.

Phase 4: Commissioning and Optimisation (2-3 Months)

Commissioning encompasses systematic testing and validation of all microgrid components and integrated system performance. This includes verification of electrical characteristics, control system functionality, protection system operation, and seamless transitions between operating modes. Performance testing should encompass a range of conditions, including grid-connected operation, islanded operation, and transitions between these modes.

Operational optimisation continues beyond initial commissioning as the system accumulates operating data and operators gain experience. Control algorithms can be refined based on observed performance, and operational procedures can be updated to reflect lessons learned. Ongoing monitoring and performance reporting provide visibility into system operation and enable continuous improvement.

Section 6: Addressing Implementation Challenges

Despite the compelling benefits of microgrids, several common concerns and challenges must be addressed to ensure successful implementation. This section examines the most frequently raised objections and provides evidence-based responses.

"The upfront cost of a microgrid is prohibitively high."

Whilst microgrids do require significant initial investment, this concern reflects a focus on capital cost rather than lifecycle value. Analysis of deployed systems demonstrates that the combination of energy cost savings, avoided outage costs, and environmental benefits typically delivers payback periods of 5-8 years, with total lifecycle savings of 25-40% compared to traditional approaches [3]. Moreover, innovative financing structures, including third-party ownership and performance-based contracts, can eliminate or significantly reduce upfront costs for facility owners. The question should not be whether an organisation can afford to invest in a microgrid, but whether it can afford not to.

"Microgrids are too complex to design and operate reliably."

The complexity of microgrids is real but manageable with appropriate expertise and tools. The microgrid industry has matured significantly over the past decade, with a growing ecosystem of experienced vendors, consultants, and service providers. Advances in control software have made it possible to operate microgrids safely and efficiently with minimal operator intervention. Furthermore, the complexity of a microgrid should be compared not to doing nothing but to the complexity of managing the consequences of power outages and volatile energy costs. Many organisations are discovering that the complexity of microgrid operation is far more manageable than the complexity of operating without one.

"Regulatory barriers make microgrid implementation impractical."

Regulatory challenges are among the most significant barriers to microgrid deployment, particularly in jurisdictions where frameworks have not kept pace with technological change. Research on Australian microgrids identifies regulatory complexity as a primary obstacle, with projects struggling to navigate legacy regulations designed for centralised generation [4]. However, regulatory landscapes are evolving as policymakers recognise the benefits of distributed energy resources. Proactive engagement with regulators and utilities

can often identify pathways for approval that satisfy regulatory requirements whilst enabling innovation. Organisations that engage early and constructively with regulatory processes are more likely to achieve favourable outcomes.

Conclusion

The evidence presented in this white paper points to an inescapable conclusion: the traditional model of centralised energy infrastructure is no longer adequate to meet the reliability, cost, and sustainability requirements of modern society. With power outages costing the U.S. economy \$150 billion annually and extreme weather events increasing in frequency and severity, the imperative for a fundamental transformation in energy infrastructure has never been clearer [1].

Decentralised energy systems and microgrids offer a proven alternative that addresses the shortcomings of centralised infrastructure whilst delivering measurable improvements in reliability, cost, and environmental performance. The evidence from deployed systems is compelling: 99.9% or higher reliability, 30-50% reductions in energy costs, and up to 60% decreases in carbon emissions [2] [3]. These are not projections or aspirations but documented outcomes from operational microgrids serving commercial, industrial, and community applications.

The transition to decentralised energy is not without its challenges. Regulatory frameworks must evolve to accommodate distributed generation and new business models. Technical expertise must be developed and disseminated. Commercial structures must be innovated to align stakeholder incentives and appropriately allocate risks and rewards. However, these challenges are surmountable, as demonstrated by successful microgrid deployments across diverse contexts and geographies.

For infrastructure owners, operators, and policymakers, the question is not whether to embrace decentralised energy but how quickly and effectively they can make the transition. Organisations that develop capabilities in microgrid technology and implementation will gain competitive advantages whilst delivering superior value to clients and communities. Those that cling to traditional approaches risk being left behind as the energy landscape transforms around them.

The path forward requires commitment, capability development, and strategic vision. It demands a willingness to challenge conventional thinking and embrace innovation. Most importantly, it requires

action. The window of opportunity for early movers to shape regulatory frameworks, capture market share, and establish competitive positions is narrowing. The time to act is now.

Key Takeaways

- ✓ Centralised power grids face a crisis of reliability and cost, with outages costing the U.S. economy \$150 billion annually and individual disasters causing tens of billions in damages.
- ✓ Decentralised energy systems and microgrids deliver proven improvements in reliability (99.9%+), cost (30-50% reductions), and environmental performance (up to 60% emissions reductions).
- ✓ Successful microgrid implementation requires a systematic approach addressing technical design, commercial structuring, regulatory compliance, and stakeholder engagement.
- ✓ Regulatory and commercial challenges are significant but surmountable, with successful projects demonstrating pathways for navigating complex frameworks.
- ✓ The transition to decentralised energy represents a strategic imperative for infrastructure owners, operators, and policymakers seeking to enhance resilience, reduce costs, and achieve sustainability targets.

References

- [1] ACRT. (2025, January 6). *Economic Costs of Utility Disruptions: Why Preparedness Matters*. Retrieved from <https://acrt.com/articles/economic-costs-of-utility-disruptions-why-preparedness-matters/>
- [2] Saini, V. K., et al. (2025). Renewable Energy-Aware Sustainable and Cost-Effective Microgrid Management. *Energy Conversion and Management*. Retrieved from <https://www.sciencedirect.com/science/article/pii/S2590123025031998>
- [3] World Business Council for Sustainable Development. (2020). *Low-carbon microgrids: The business case*. Retrieved from https://wbcspublications.org/wp-content/uploads/2020/07/WBCSD_Microgrids_Business_Case.pdf
- [4] Wright, S., Frost, M., Wong, A., & Parton, K. (2024). Australian microgrids: Navigating complexity in the regional energy transition. *Energy Research & Social Science*, 113, 103540. Retrieved from <https://www.sciencedirect.com/science/article/pii/S2214629624001312>

[5] National Renewable Energy Laboratory. (2024, January 26). *Top 10 Things To Know About Power Grid Reliability*. Retrieved from <https://www.nrel.gov/news/detail/program/2024/to-p-10-things-to-know-about-power-grid-reliability>

[6] Monash University. (n.d.). *Microgrid Project Case Study*. Retrieved from [https://files.unsdsn.org/Monash%20University%20Microgrid%20Project%20Case%20Study%20\(Final\).pdf](https://files.unsdsn.org/Monash%20University%20Microgrid%20Project%20Case%20Study%20(Final).pdf)

About CBS Group

CBS Group is a leading provider of professional engineering, asset management, and systems safety services. Established in 2002 and based in Sydney, Australia, our mission is to improve our client's asset performance for less money over the whole of life. We specialise in value-based pricing, leveraging our technical intellectual property and our proprietary CAPITAL framework to deliver superior outcomes for our clients.

Our specialist expertise encompasses Professional Engineers, Systems Engineers, Asset Managers, Systems Safety Assurance Experts, and Commercial Acumen. We have successfully delivered innovative infrastructure solutions across transport, water, energy, and social infrastructure sectors, consistently demonstrating the substantial benefits available through approaches that optimise for lifecycle outcomes rather than initial cost minimisation.

Contact Information:

Email: info@cbs.com.au

Website: www.cbs.com.au

Location: Sydney, Australia

Established: 2002

© 2025 CBS Group. All rights reserved. | Document ID: CBS-WP-006 | Classification: Professional Engineering Analysis