

COLLEGE PREP MATH

Algebra and Beyond

Master the algebra skills essential for college success

Global Sovereign University

Building a Bridge to Freedom Through Education

Table of Contents

Section	Page
1. Real Number System	3
2. Properties of Real Numbers	5
3. Exponents and Radicals	7
4. Polynomials	10
5. Factoring	13
6. Solving Linear Equations	16
7. Graphing Linear Equations	19
8. Systems of Equations	22
9. Inequalities	25
10. Quadratic Equations	28
11. Functions	31
12. Word Problem Strategies	34
Answer Key	37

Section 1: The Real Number System

Understanding number types is fundamental to algebra. All numbers we use in everyday math are real numbers.

Types of Numbers

Type	Definition	Examples
Natural Numbers (N)	Counting numbers	1, 2, 3, 4, 5...
Whole Numbers (W)	Natural numbers plus zero	0, 1, 2, 3, 4...
Integers (I)	Whole numbers and negatives	...-2, -1, 0, 1, 2...
Rational Numbers (Q)	Can be written as a fraction	$\frac{1}{2}$, -3, 0.75, 2
Irrational Numbers	Cannot be written as a fraction	π , $\sqrt{2}$, $\sqrt{3}$, e
Real Numbers (R)	All rational and irrational	All of the above

The Number Line

All real numbers can be placed on a number line. Numbers increase to the right and decrease to the left.

- Every point on the line represents a real number
- Between any two real numbers, there are infinitely many more

Absolute Value

$|x|$ = the distance from x to zero

- $|5| = 5$
- $|-5| = 5$
- $|0| = 0$

Distance is always positive or zero, never negative.

Classifying Numbers

Example: Classify -7

-7 is an integer, a rational number, and a real number

Example: Classify $\sqrt{5}$

$\sqrt{5} \approx 2.236\dots$ (non-repeating, non-terminating)

$\sqrt{5}$ is an irrational number and a real number

Practice: Real Numbers

1. Classify $0.333\dots$ (repeating): _____
2. Classify $\sqrt{16}$: _____
3. Is $-\sqrt{9}$ rational or irrational? _____
4. Find $|-12|$: _____
5. Find $|7 - 10|$: _____
6. List all number types that include -5 : _____

Section 2: Properties of Real Numbers

These properties are the rules that govern how numbers behave in operations.

The Properties

Property	Addition	Multiplication
Commutative	$a + b = b + a$	$a \times b = b \times a$
Associative	$(a + b) + c = a + (b + c)$	$(a \times b) \times c = a \times (b \times c)$
Identity	$a + 0 = a$	$a \times 1 = a$
Inverse	$a + (-a) = 0$	$a \times (1/a) = 1, a \neq 0$

Distributive Property

$$a(b + c) = ab + ac$$

This property connects multiplication and addition.

Example: $5(x + 3) = 5x + 15$

Example: $-2(4x - 7) = -8x + 14$

Zero Product Property

If $ab = 0$, then $a = 0$ or $b = 0$ (or both)

This is crucial for solving quadratic equations.

Example: If $(x - 3)(x + 5) = 0$, then $x = 3$ or $x = -5$

Applying Properties

Simplify: $3(2x + 4) + 5x$

$$= 6x + 12 + 5x \text{ (distributive)}$$

$$= 11x + 12 \text{ (combine like terms)}$$

Practice: Properties

1. Name the property: $7 + 3 = 3 + 7$ _____

2. Name the property: $5 \times 1 = 5$ _____

3. Apply distributive: $4(3x - 2) = \underline{\hspace{2cm}}$
4. Simplify: $2(x + 5) + 3(x - 1) = \underline{\hspace{2cm}}$
5. If $(x - 4)(x + 2) = 0$, find x: $\underline{\hspace{2cm}}$
6. What is the additive inverse of -8? $\underline{\hspace{2cm}}$

Section 3: Exponents and Radicals

Exponent Rules

Rule	Formula	Example
Product Rule	$a^m \times a^n = a^{m+n}$	$x^3 \times x^2 = x^5$
Quotient Rule	$a^m \div a^n = a^{m-n}$	$x^5 \div x^2 = x^3$
Power Rule	$(a^m)^n = a^{mn}$	$(x^2)^3 = x^6$
Zero Exponent	$a^0 = 1 (a \neq 0)$	$5^0 = 1$
Negative Exponent	$a^{-n} = 1/a^n$	$x^{-2} = 1/x^2$
Product to Power	$(ab)^n = a^n b^n$	$(2x)^3 = 8x^3$
Quotient to Power	$(a/b)^n = a^n/b^n$	$(x/3)^2 = x^2/9$

Working with Radicals

\sqrt{a} is the principal (positive) square root of a

- $\sqrt{25} = 5$ (because $5^2 = 25$)
- $\sqrt{x^2} = |x|$ (absolute value ensures positive result)

Radical Rules

- $\sqrt{(ab)} = \sqrt{a} \times \sqrt{b}$ (Product rule)
- $\sqrt{(a/b)} = \sqrt{a} / \sqrt{b}$ (Quotient rule)
- $\sqrt{a} \times \sqrt{a} = a$
- Cannot add/subtract unlike radicals: $\sqrt{2} + \sqrt{3} \neq \sqrt{5}$

Simplifying Radicals

Example: Simplify $\sqrt{72}$

$$\sqrt{72} = \sqrt{(36 \times 2)} = \sqrt{36} \times \sqrt{2} = 6\sqrt{2}$$

Example: Simplify $\sqrt{(50x^2)}$

$$\sqrt{(50x^2)} = \sqrt{(25 \times 2 \times x^2)} = 5x\sqrt{2}$$

Rational Exponents

$$a^{(1/n)} = \sqrt[n]{a}$$

$$a^{(m/n)} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

$$\bullet 8^{(1/3)} = \sqrt[3]{8} = 2$$

$$\bullet 16^{(3/4)} = (\sqrt[4]{16})^3 = 2^3 = 8$$

Practice: Exponents and Radicals

1. Simplify: $x^2 \times x^3 = \underline{\hspace{2cm}}$

2. Simplify: $(y^3)^2 = \underline{\hspace{2cm}}$

3. Simplify: $2^3 = \underline{\hspace{2cm}}$

4. Simplify: $\sqrt{98} = \underline{\hspace{2cm}}$

5. Simplify: $\sqrt{18x^2} = \underline{\hspace{2cm}}$

6. Evaluate: $27^{(2/3)} = \underline{\hspace{2cm}}$

Section 4: Polynomials

A polynomial is an expression with variables and coefficients, using only addition, subtraction, multiplication, and non-negative integer exponents.

Vocabulary

- **Monomial:** One term ($5x^2$, $-3y$, 7)
- **Binomial:** Two terms ($x + 5$, $3x^2 - 2$)
- **Trinomial:** Three terms ($x^2 + 3x + 2$)
- **Degree:** Highest exponent (degree of $4x^3 + 2x$ is 3)
- **Leading coefficient:** Coefficient of highest degree term

Adding and Subtracting Polynomials

Combine like terms (same variable and exponent)

Example: $(3x^2 + 5x - 2) + (2x^2 - 3x + 7)$

$$= 3x^2 + 2x^2 + 5x - 3x - 2 + 7$$

$$= 5x^2 + 2x + 5$$

Example: $(4x^2 - 3x + 1) - (2x^2 + 5x - 3)$

$$= 4x^2 - 3x + 1 - 2x^2 - 5x + 3 \text{ (distribute the negative)}$$

$$= 2x^2 - 8x + 4$$

Multiplying Polynomials

Multiply each term in the first by each term in the second.

Example: $3x(2x^2 - 5x + 4)$

$$= 6x^3 - 15x^2 + 12x$$

Example: $(x + 3)(x + 5)$ using FOIL

F: $x \times x = x^2$

O: $x \times 5 = 5x$

I: $3 \times x = 3x$

$$L: 3 \times 5 = 15$$

$$= x^2 + 5x + 3x + 15 = x^2 + 8x + 15$$

Special Products

Square of a Binomial:

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$(a - b)^2 = a^2 - 2ab + b^2$$

Difference of Squares:

$$(a + b)(a - b) = a^2 - b^2$$

Practice: Polynomials

1. Add: $(4x^2 - 3x + 2) + (2x^2 + 5x - 7) = \underline{\hspace{2cm}}$

2. Subtract: $(5x^2 + 2x - 1) - (3x^2 - 4x + 2) = \underline{\hspace{2cm}}$

3. Multiply: $4x(3x^2 - 2x + 5) = \underline{\hspace{2cm}}$

4. FOIL: $(x + 4)(x - 2) = \underline{\hspace{2cm}}$

5. Expand: $(x + 5)^2 = \underline{\hspace{2cm}}$

6. Multiply: $(3x - 2)(3x + 2) = \underline{\hspace{2cm}}$

Section 5: Factoring

Factoring is the reverse of multiplying—breaking an expression into factors that multiply to give the original.

Greatest Common Factor (GCF)

Always look for the GCF first!

Example: Factor $6x^3 + 9x^2$

$$\text{GCF} = 3x^2$$

$$= 3x^2(2x + 3)$$

Factoring Trinomials ($x^2 + bx + c$)

Find two numbers that multiply to c and add to b .

Example: Factor $x^2 + 7x + 12$

Need: $_ \times _ = 12$ and $_ + _ = 7$

Numbers: 3 and 4

$$= (x + 3)(x + 4)$$

Example: Factor $x^2 - 5x + 6$

Need: $_ \times _ = 6$ and $_ + _ = -5$

Numbers: -2 and -3

$$= (x - 2)(x - 3)$$

Factoring $ax^2 + bx + c$ ($a \neq 1$)

AC Method:

Example: Factor $2x^2 + 7x + 3$

1. Multiply $a \times c$: $2 \times 3 = 6$
2. Find factors of 6 that add to 7: 1 and 6
3. Rewrite: $2x^2 + x + 6x + 3$
4. Group: $(2x^2 + x) + (6x + 3)$

5. Factor each: $x(2x + 1) + 3(2x + 1)$

6. Final: $(2x + 1)(x + 3)$

Special Factoring Patterns

Difference of Squares: $a^2 - b^2 = (a + b)(a - b)$

Example: $x^2 - 16 = (x + 4)(x - 4)$

Perfect Square Trinomial:

$$a^2 + 2ab + b^2 = (a + b)^2$$

$$a^2 - 2ab + b^2 = (a - b)^2$$

Example: $x^2 - 10x + 25 = (x - 5)^2$

Practice: Factoring

1. Factor: $8x^2 + 12x = \underline{\hspace{2cm}}$

2. Factor: $x^2 + 9x + 20 = \underline{\hspace{2cm}}$

3. Factor: $x^2 - 7x + 12 = \underline{\hspace{2cm}}$

4. Factor: $x^2 - 25 = \underline{\hspace{2cm}}$

5. Factor: $x^2 + 6x + 9 = \underline{\hspace{2cm}}$

6. Factor: $3x^2 + 10x + 8 = \underline{\hspace{2cm}}$

Section 6: Solving Linear Equations

A linear equation has variables with exponent 1. The goal: isolate the variable on one side.

The Balance Principle

Whatever you do to one side, do to the other side.

Multi-Step Equations

Strategy:

1. Simplify each side (distribute, combine like terms)
2. Get all variable terms on one side
3. Get all constants on the other side
4. Divide to isolate the variable

Example: Solve $3(x - 2) + 4 = 2x + 7$

$$3x - 6 + 4 = 2x + 7 \text{ (distribute)}$$

$$3x - 2 = 2x + 7 \text{ (combine)}$$

$$3x - 2x = 7 + 2 \text{ (move terms)}$$

$$x = 9$$

Check: $3(9 - 2) + 4 = 3(7) + 4 = 25$; $2(9) + 7 = 25 \checkmark$

Equations with Fractions

Multiply every term by the LCD to clear fractions.

Example: Solve $x/2 + x/3 = 10$

$$\text{LCD} = 6$$

$$6(x/2) + 6(x/3) = 6(10)$$

$$3x + 2x = 60$$

$$5x = 60$$

$$x = 12$$

Variables on Both Sides

Example: Solve $5x + 3 = 2x + 15$

$$5x - 2x = 15 - 3$$

$$3x = 12$$

$$x = 4$$

Special Cases

- **No solution:** Variables cancel, false statement ($3 = 5$)
- **Infinite solutions:** Variables cancel, true statement ($4 = 4$)

Practice: Linear Equations

1. Solve: $4x - 7 = 2x + 9$
2. Solve: $3(2x - 1) = 5x + 4$
3. Solve: $x/4 + 5 = x/2 - 1$
4. Solve: $2(x + 3) - 5 = 3(x - 1)$
5. Solve: $5x - (2x + 3) = 3x - 3$
6. Solve: $0.5x + 1.2 = 0.3x + 2.8$

Section 7: Graphing Linear Equations

Linear equations graph as straight lines. Understanding slope and intercepts is key.

Slope-Intercept Form

$$y = mx + b$$

- m = slope (rise/run)
- b = y -intercept (where line crosses y -axis)

Example: $y = 2x + 3$ has slope 2 and y -intercept $(0, 3)$

Understanding Slope

$$\text{Slope} = \text{rise/run} = (y_2 - y_1) / (x_2 - x_1)$$

- Positive slope: line goes up from left to right
- Negative slope: line goes down from left to right
- Zero slope: horizontal line
- Undefined slope: vertical line

Finding Slope from Two Points

Example: Find slope between $(1, 3)$ and $(4, 9)$

$$m = (9 - 3) / (4 - 1) = 6/3 = 2$$

Graphing a Line

Method 1: Using slope-intercept form

1. Plot the y -intercept $(0, b)$
2. Use slope to find another point: rise over run
3. Draw the line through both points

Example: Graph $y = -3x + 4$

1. Plot $(0, 4)$
2. Slope = $-3 = -3/1$: down 3, right 1 $\rightarrow (1, 1)$

3. Connect the points

Other Forms of Linear Equations

Standard Form: $Ax + By = C$

Point-Slope Form: $y - y_1 = m(x - x_1)$

Converting to Slope-Intercept Form

Example: Convert $2x + 3y = 12$ to slope-intercept form

$$3y = -2x + 12$$

$$y = -\frac{2}{3}x + 4$$

Slope = $-\frac{2}{3}$, y-intercept = 4

Practice: Graphing

1. Find slope and y-intercept: $y = 4x - 5$
2. Find slope between (2, 5) and (6, 13): _____
3. Convert to slope-intercept: $4x - 2y = 8$
4. Write equation with slope 3 and y-int (0, -2): _____
5. What is the slope of a horizontal line? _____
6. Write equation through (1, 4) with slope 2: _____

Section 8: Systems of Equations

A system is two or more equations with the same variables. The solution is the point(s) where all equations are true.

Solving by Substitution

Solve one equation for a variable, substitute into the other.

Example:

$$y = 2x + 1$$

$$3x + y = 11$$

Substitute: $3x + (2x + 1) = 11$

$$5x + 1 = 11$$

$$5x = 10$$

$$x = 2$$

Back-substitute: $y = 2(2) + 1 = 5$

Solution: (2, 5)

Solving by Elimination

Add or subtract equations to eliminate a variable.

Example:

$$2x + 3y = 13$$

$$4x - 3y = 5$$

Add equations (y terms cancel):

$$6x = 18$$

$$x = 3$$

Substitute: $2(3) + 3y = 13 \rightarrow y = 7/3$

Solution: (3, 7/3)

Types of Solutions

- **One solution:** Lines intersect at one point
- **No solution:** Lines are parallel (same slope, different intercepts)
- **Infinite solutions:** Lines are the same (equations are equivalent)

Practice: Systems

Solve each system:

1. $y = 3x - 2$ and $x + y = 6$
2. $2x + y = 10$ and $x - y = 2$
3. $3x + 2y = 12$ and $x - y = 1$
4. $y = x + 4$ and $y = 2x + 1$

Section 9: Inequalities

Inequalities compare expressions using $<$, $>$, \leq , or \geq instead of $=$.

Inequality Symbols

- $<$ less than
- $>$ greater than
- \leq less than or equal to
- \geq greater than or equal to

Solving Inequalities

Same rules as equations, with one exception:

When you multiply or divide by a NEGATIVE number, FLIP the inequality sign!

Example: Solve $3x + 5 > 14$

$$3x > 9$$

$$x > 3$$

Example: Solve $-2x + 6 \leq 12$

$$-2x \leq 6$$

$$x \geq -3 \text{ (flip the sign!)}$$

Graphing Inequalities on a Number Line

- $<$ or $>$: open circle (not including)
- \leq or \geq : closed circle (including)
- Arrow points in direction of solutions

Compound Inequalities

AND (intersection): Both conditions must be true

Example: $-2 < x < 5$ (x is between -2 and 5)

OR (union): At least one condition must be true

Example: $x < -1$ or $x > 3$

Solving Compound Inequalities

Example: Solve $-3 \leq 2x + 1 < 7$

Subtract 1 from all parts: $-4 \leq 2x < 6$

Divide all parts by 2: $-2 \leq x < 3$

Practice: Inequalities

1. Solve: $5x - 3 > 17$
2. Solve: $-4x + 2 \leq 18$
3. Solve: $2(x - 3) < x + 4$
4. Solve: $-1 < 3x + 2 \leq 11$
5. Write inequality: x is at least 5 _____
6. Write inequality: x is no more than 10 _____

Section 10: Quadratic Equations

A quadratic equation has the form $ax^2 + bx + c = 0$, where $a \neq 0$.

Solving by Factoring

Use the Zero Product Property: if $ab = 0$, then $a = 0$ or $b = 0$

Example: Solve $x^2 + 5x + 6 = 0$

Factor: $(x + 2)(x + 3) = 0$

$$x + 2 = 0 \text{ or } x + 3 = 0$$

$$x = -2 \text{ or } x = -3$$

Solving by Square Roots

When equation is in form $x^2 = k$

Example: Solve $x^2 = 49$

$$x = \pm\sqrt{49} = \pm 7$$

Example: Solve $(x - 3)^2 = 16$

$$x - 3 = \pm 4$$

$$x = 3 + 4 = 7 \text{ or } x = 3 - 4 = -1$$

The Quadratic Formula

For $ax^2 + bx + c = 0$:

$$x = \frac{(-b \pm \sqrt{b^2 - 4ac})}{2a}$$

Example: Solve $2x^2 + 5x - 3 = 0$

$$a = 2, b = 5, c = -3$$

$$x = \frac{(-5 \pm \sqrt{(25 + 24)})}{4}$$

$$x = \frac{(-5 \pm \sqrt{49})}{4}$$

$$x = \frac{(-5 \pm 7)}{4}$$

$$x = 2/4 = 1/2 \text{ or } x = -12/4 = -3$$

The Discriminant

$b^2 - 4ac$ tells us about the solutions:

- Positive: Two real solutions
- Zero: One real solution (repeated)
- Negative: No real solutions (complex)

Practice: Quadratics

1. Solve by factoring: $x^2 - x - 12 = 0$
2. Solve by factoring: $x^2 + 4x = 0$
3. Solve: $x^2 = 81$
4. Solve: $(x + 2)^2 = 25$
5. Use quadratic formula: $x^2 + 6x + 5 = 0$
6. Find discriminant: $2x^2 + 3x + 5 = 0$. How many real solutions?

Section 11: Functions

A function is a rule that assigns exactly one output to each input.

Function Notation

$f(x)$ is read "f of x"

$f(x) = 2x + 3$ means: take x, multiply by 2, add 3

Example: If $f(x) = 2x + 3$, find $f(5)$

$$f(5) = 2(5) + 3 = 13$$

Domain and Range

- **Domain:** All possible input (x) values
- **Range:** All possible output (y or $f(x)$) values

Example: $f(x) = \sqrt{x}$

Domain: $x \geq 0$ (can't take square root of negative)

Range: $y \geq 0$ (square root is never negative)

The Vertical Line Test

A graph represents a function if every vertical line crosses it at most once.

Types of Functions

Type	Form	Graph Shape
Linear	$f(x) = mx + b$	Straight line
Quadratic	$f(x) = ax^2 + bx + c$	Parabola
Absolute Value	$f(x) = x $	V-shape
Square Root	$f(x) = \sqrt{x}$	Half parabola

Evaluating Functions

Example: $f(x) = x^2 - 3x + 2$. Find $f(-2)$

$$f(-2) = (-2)^2 - 3(-2) + 2 = 4 + 6 + 2 = 12$$

Practice: Functions

1. If $f(x) = 3x - 7$, find $f(4)$: _____
2. If $g(x) = x^2 + 2x$, find $g(-3)$: _____
3. If $h(x) = |x - 5|$, find $h(2)$: _____
4. What is the domain of $f(x) = 1/(x-3)$? _____
5. What is the domain of $f(x) = \sqrt{x-4}$? _____
6. Is $y = x^2$ a function? Why? _____

Section 12: Word Problem Strategies

The Problem-Solving Process

1. **Read** the problem carefully—multiple times
2. **Define variables**—what does x represent?
3. **Write an equation** from the problem
4. **Solve** the equation
5. **Check** your answer in the original problem
6. **Answer** in a complete sentence

Common Problem Types

Number Problems:

"The sum of two consecutive integers is 47. Find them."

Let x = first integer, $x + 1$ = second

$$x + (x + 1) = 47 \rightarrow 2x + 1 = 47 \rightarrow x = 23$$

The integers are 23 and 24.

Age Problems:

"Maria is 4 years older than twice her son's age. The sum of their ages is 52. Find their ages."

Let x = son's age, $2x + 4$ = Maria's age

$$x + (2x + 4) = 52 \rightarrow 3x + 4 = 52 \rightarrow x = 16$$

Son is 16, Maria is 36.

Distance Problems ($d = rt$):

"A car travels 180 miles at 60 mph. How long does it take?"

$$180 = 60t \rightarrow t = 3 \text{ hours}$$

Mixture Problems:

"How much 20% solution and 50% solution to make 15 liters of 30% solution?"

Let x = liters of 20%, $(15 - x)$ = liters of 50%

$$0.20x + 0.50(15 - x) = 0.30(15)$$

$$0.20x + 7.5 - 0.50x = 4.5$$

$$-0.30x = -3 \rightarrow x = 10 \text{ liters of 20\%}$$

Practice: Word Problems

1. The sum of three consecutive even integers is 78. Find them.
2. A rectangle's length is 3 more than twice its width. Perimeter is 48 cm. Find dimensions.
3. How long to travel 240 miles at 55 mph? (Round to nearest tenth)
4. A number increased by 15% equals 92. Find the original number.

Answer Key

Section 1: Real Numbers

1) Rational 2) Natural, Whole, Integer, Rational, Real (=4) 3) Rational (-3) 4) 12 5) 3 6) Integer, Rational, Real

Section 2: Properties

1) Commutative 2) Identity 3) $12x - 8$ 4) $5x + 7$ 5) $x = 4$ or $x = -2$ 6) 8

Section 3: Exponents and Radicals

1) $x^{\frac{1}{2}}$ 2) y^{12} 3) $\frac{1}{8}$ 4) $7\sqrt{2}$ 5) $3x^2\sqrt{2}$ 6) 9

Section 4: Polynomials

1) $6x^2 + 2x - 5$ 2) $2x^2 + 6x - 3$ 3) $12x^3 - 8x^2 + 20x$ 4) $x^2 + 2x - 8$ 5) $x^2 + 10x + 25$ 6) $9x^2 - 4$

Section 5: Factoring

1) $4x(2x + 3)$ 2) $(x + 4)(x + 5)$ 3) $(x - 3)(x - 4)$ 4) $(x + 5)(x - 5)$ 5) $(x + 3)^2$ 6) $(3x + 4)(x + 2)$

Section 6: Linear Equations

1) $x = 8$ 2) $x = 7$ 3) $x = 24$ 4) $x = 4$ 5) Infinite solutions 6) $x = 8$

Section 7: Graphing

1) $m = 4, b = -5$ 2) $m = 2$ 3) $y = 2x - 4$ 4) $y = 3x - 2$ 5) 0 6) $y = 2x + 2$

Section 8: Systems

1) (2, 4) 2) (4, 2) 3) (2, 3) 4) (3, 7)

Section 9: Inequalities

1) $x > 4$ 2) $x \geq -4$ 3) $x < 10$ 4) $-1 < x \leq 3$ 5) $x \geq 5$ 6) $x \leq 10$

Section 10: Quadratics

1) $x = 4$ or $x = -3$ 2) $x = 0$ or $x = -4$ 3) $x = \pm 9$ 4) $x = 3$ or $x = -7$ 5) $x = -1$ or $x = -5$ 6) Discriminant = -31, no real solutions

Section 11: Functions

1) 5 2) 3 3) 3 4) $x \neq 3$ (all real except 3) 5) $x \geq 4$ 6) Yes, passes vertical line test

Section 12: Word Problems

1) 24, 26, 28 2) Width = 7 cm, Length = 17 cm 3) 4.4 hours 4) 80

GLOBAL SOVEREIGN UNIVERSITY

Building a Bridge to Freedom Through Education — Not Handouts

www.globalsovereignuniversity.org