

GRADE 8

MATHEMATICS

Real-World Problem Solving

Complete Student Edition

GLOBAL SOVEREIGN UNIVERSITY

"Building a Bridge to Freedom Through Education"

Grade 8 Mathematics: Real-World Problem Solving

Student Edition

Copyright © 2024 Global Sovereign University Press

All rights reserved. First Edition.

This textbook is provided FREE to everyone.

No Login. Totally FREE to everyone. Visit this web page to download your free book.

<https://www.globalsovereignuniversity.org/mathification>

Why This Book Is Different

NOBEL PRIZE RESEARCH SAYS:

"Students who score 96% on classroom math tests succeed only 1% of the time in real life."

— Banerjee & Duflo, Nature, February 2025

The Research That Proves Traditional Math Education Fails

In February 2025, Nobel Prize-winning economists published a groundbreaking study in *Nature*, the world's most respected scientific journal. They tested over 1,400 children in India and discovered something shocking:

Children who ace classroom math CANNOT use it in the real world.

Students who scored 96% on standard school math problems could solve simple real-world market calculations only 1% of the time. Meanwhile, children who worked in markets—without formal education—solved the same problems with 96% accuracy.

The researchers' conclusion was clear:

"Schools need to build a bridge between math learned in the classroom and math encountered in real-life situations."

The Problem: Abstract Doesn't Transfer to Applied

The Nobel laureates found that school children learned procedures but not understanding. They could solve ' $3x + 7 = 22$ ' on a worksheet by following memorized steps. But give them a real problem—"You earned \$22 from selling items at \$3 each plus a \$7 bonus. How many items did you sell?"—and they froze.

Market children used efficient mental strategies: estimation, breaking complex problems into simpler parts, and working with meaningful quantities. School children followed rigid, slow methods that worked for tests but failed in life.

It's not that school kids were less intelligent. It's that their education never connected the math to reality.

The GSU Solution: Real-World Math

This textbook does exactly what the Nobel laureates recommend. Instead of abstract problems, every calculation has a professional context:

Traditional Math vs GSU Real-World Math

Traditional Math	GSU Real-World Math
"Solve: $3x + 7 = 22$ "	"You're the Entrepreneur. You sold items for \$3 each plus a \$7 base. You made \$22. How many items?"
"Find the slope of $y = 2x - 5$."	"As Project Manager, your team completes 2 modules/week, with 5 already done. When will you finish 15?"
"Calculate $\sqrt{3^2 + 4^2}$."	"As a Surveyor, measure the distance across a lake using stakes 3m and 4m apart."

Same math. Completely different learning.

Your Roles in This Book

You won't just learn math in this book. You'll BE someone who uses it:

- The Data Scientist — Real numbers, rational and irrational
- The Engineer — Exponents and square roots
- The Space Scientist — Scientific notation applications
- The Entrepreneur — Multi-step equations
- The Project Manager — Functions and linear relationships
- The Systems Analyst — Systems of equations
- The Surveyor — Pythagorean theorem
- The Animator — Transformations
- The Architect — Angle relationships
- The Industrial Designer — Volume of 3D figures
- The Market Researcher — Data analysis and scatter plots
- The Risk Analyst — Probability

These aren't pretend jobs. These are skills you can use THIS WEEK.

The Bottom Line

Nobel Prize-winning researchers proved that traditional education fails to prepare students for real-world math. The gap between classroom success and life success is catastrophic: 96% to 1%.

This textbook closes that gap.

Every problem. Every skill. Every chapter. Connected to reality.

“Because math isn't an academic exercise. It's a survival skill.”

Dr. Gene A Constant

Global Sovereign University is a 501(c)(3) educational foundation. This textbook is provided FREE because learning should never be limited by economics.

Research Citation:

Banerjee, A., Duflo, E., et al. (2025). Children's arithmetic skills do not transfer between applied and academic mathematics. *Nature*. <https://doi.org/10.1038/s41586-024-08502-w>

The lead authors received the 2019 Nobel Prize in Economics "for their experimental approach to alleviating global poverty."

Table of Contents

- Chapter 1: The Data Scientist — Real Number System**
- Chapter 2: The Engineer — Exponents and Radicals**
- Chapter 3: The Space Scientist — Scientific Notation Applications**
- Chapter 4: The Entrepreneur — Multi-Step Equations**
- Chapter 5: The Project Manager — Functions and Linear Relationships**
- Chapter 6: The Systems Analyst — Systems of Equations**
- Chapter 7: The Surveyor — Pythagorean Theorem**
- Chapter 8: The Animator — Transformations**
- Chapter 9: The Architect — Angle Relationships**
- Chapter 10: The Industrial Designer — Volume of 3D Figures**
- Chapter 11: The Market Researcher — Data Analysis & Scatter Plots**
- Chapter 12: The Risk Analyst — Probability**

Supplement A: Geometric Constructions

Supplement B: Transformations on the Coordinate Plane

Supplement C: Bivariate Data Analysis

Extra Practice Sections

Mixed Review

Cumulative Assessment

Answer Key

Welcome!

This year, you become a problem solver who uses mathematics in the real world.

You'll take on exciting roles:

- Data Scientist: Classify and work with real numbers
- Engineer: Apply exponent rules and calculate roots
- Space Scientist: Calculate with astronomical numbers
- Entrepreneur: Solve complex business equations
- Project Manager: Model relationships with functions
- Systems Analyst: Solve interconnected problems
- Surveyor: Measure distances with the Pythagorean theorem
- Animator: Transform shapes and create motion
- Architect: Design with angles and parallel lines
- Industrial Designer: Calculate volumes of complex shapes
- Market Researcher: Analyze trends and make predictions
- Risk Analyst: Calculate probabilities for decisions

How to Use This Book:

- The Scenario: Step into a real role
- The Skill: Learn the mathematics
- Worked Examples: See step-by-step solutions
- Practice Problems: Build mastery
- Action Reports: Apply everything

Remember: Show your work! The process matters as much as the answer.

CHAPTER 1

The Data Scientist

Master the real number system to classify and compute with any number

What You'll Learn

- Distinguish between rational and irrational numbers
- Locate real numbers on the number line
- Approximate irrational numbers
- Perform operations with rational and irrational numbers

Why This Matters

Data scientists work with numbers constantly—from tiny decimals to massive datasets. Some numbers are clean and exact (like 0.5 or 3/4), while others go on forever without repeating (like π or $\sqrt{2}$). Understanding the difference helps you choose the right level of precision for calculations that matter.

Section 1.1: Classifying Numbers

The real number system organizes all numbers into categories based on their properties.

The Number Hierarchy

Natural Numbers (N): 1, 2, 3, 4, ... (counting numbers)

Whole Numbers (W): 0, 1, 2, 3, 4, ... (natural numbers + zero)

Integers (Z): ..., -3, -2, -1, 0, 1, 2, 3, ... (whole numbers + negatives)

Rational Numbers (Q): Any number that can be written as a fraction a/b where a and b are integers and $b \neq 0$

Irrational Numbers: Numbers that CANNOT be written as a fraction—their decimals go on forever without repeating

Real Numbers (R): All rational and irrational numbers combined

Rational: Can be written as a/b | Irrational: Cannot be written as a/b

Recognizing Rational Numbers

A number is rational if its decimal representation either:

- Terminates (ends): 0.25, 3.5, -2.125
- Repeats: 0.333..., 0.142857142857..., 2.166666...

WORKED EXAMPLE: Classifying 0.375

Step 1: Check if decimal terminates or repeats: 0.375 terminates

Step 2: Convert to fraction: $0.375 = 375/1000 = 3/8$

Step 3: Since it can be written as a fraction, it is RATIONAL

Recognizing Irrational Numbers

Common irrational numbers:

- $\pi \approx 3.14159265358979\dots$ (never repeats, never ends)
- $\sqrt{2} \approx 1.41421356237\dots$ (square root of any non-perfect square)
- $e \approx 2.71828182845\dots$ (Euler's number)

Practice Problems: Section 1.1

1. Classify each number as rational or irrational: $0.666\dots$, $\sqrt{5}$, $-4/7$, π , 3.14

Work: _____

Answer: _____

2. A data scientist records a measurement as $2.718281828\dots$ Is this rational or irrational? Explain.

Work: _____

Answer: _____

3. Convert 0.875 to a fraction. Is it rational?

Work: _____

Answer: _____

4. Is $\sqrt{16}$ rational or irrational? What about $\sqrt{17}$?

Work: _____

Answer: _____

5. Between which two consecutive integers does $\sqrt{50}$ fall?

Work: _____

Answer: _____

Section 1.2: Approximating Irrational Numbers

Since irrational numbers have infinite non-repeating decimals, we often need to approximate them.

WORKED EXAMPLE: Approximating $\sqrt{7}$

Step 1: Find perfect squares near 7: $4 < 7 < 9$

Step 2: Take square roots: $\sqrt{4} < \sqrt{7} < \sqrt{9}$, so $2 < \sqrt{7} < 3$

Step 3: Since 7 is closer to 9 than 4, $\sqrt{7}$ is closer to 3 than 2

Step 4: Estimate: $\sqrt{7} \approx 2.6$ (actual: 2.6457...)

Practice Problems: Section 1.2

6. Between which two consecutive integers is $\sqrt{30}$?

Work: _____

Answer: _____

7. Approximate $\sqrt{45}$ to one decimal place.

Work: _____

Answer: _____

8. Order from least to greatest: $\sqrt{10}$, 3, π , 3.2

Work: _____

Answer: _____

9. A square plot of land has area 200 sq ft. Approximate the side length.

Work: _____

Answer: _____

10. Plot $\sqrt{3}$, $\sqrt{5}$, and $\sqrt{8}$ on a number line between 1 and 3.

Work: _____

Answer: _____

Section 1.3: Operations with Real Numbers

When you add, subtract, multiply, or divide real numbers, the result type depends on what you started with.

Key Rules

Rational + Rational = Rational (always)

Rational × Rational = Rational (always)

Irrational + Irrational = Can be either ($\sqrt{2} + \sqrt{2} = 2\sqrt{2}$ is irrational, but $\sqrt{2} + (-\sqrt{2}) = 0$ is rational)

Rational × Irrational = Irrational (usually, except when multiplying by 0)

Irrational × Irrational = Can be either ($\sqrt{2} \times \sqrt{2} = 2$ is rational, but $\sqrt{2} \times \sqrt{3} = \sqrt{6}$ is irrational)

Practice Problems: Section 1.3

11. Is $3 + \sqrt{5}$ rational or irrational? Explain.

Work: _____

Answer: _____

12. Simplify: $\sqrt{2} \times \sqrt{8}$. Is the result rational or irrational?

Work: _____

Answer: _____

13. Is $0.333\dots + 0.666\dots$ rational? Calculate the sum as a fraction.

Work: _____

Answer: _____

14. A data set has values: 2 , $\sqrt{9}$, π , 4.5 , $\sqrt{2}$. Which are rational?

Work: _____

Answer: _____

15. If $a = \sqrt{3}$ and $b = \sqrt{12}$, find ab . Is the result rational or irrational?

Work: _____

Answer: _____

Chapter 1 Review

16. Classify as rational or irrational: -8 , $\sqrt{49}$, $0.121212\dots$, $\sqrt{10}$, $22/7$

Work: _____

Answer: _____

17. Order from least to greatest: $-\sqrt{5}$, -2 , -2.5 , $-\sqrt{3}$

Work: _____

Answer: _____

18. A sensor measures $\pi \times 2.5$ meters. Express as a decimal (approximate).

Work: _____

Answer: _____

19. Is 3.14159 rational or irrational? Is π rational or irrational? Explain the difference.

Work: _____

Answer: _____

20. CHALLENGE: Prove that $\sqrt{2} + \sqrt{3}$ is irrational. (Hint: Assume it equals a rational number p/q)

Work: _____

Answer: _____

CHAPTER 2

The Engineer

Master exponents and radicals to calculate power, efficiency, and precision

What You'll Learn

- Apply properties of integer exponents
- Evaluate expressions with zero and negative exponents
- Simplify square roots and cube roots
- Add, subtract, and multiply radical expressions

Why This Matters

Engineers calculate forces, design structures, and analyze systems using exponents and radicals constantly. When designing a bridge, you calculate stress using squares. When determining tank capacity, you use cube roots. These aren't abstract concepts—they're the math that keeps buildings standing.

Section 2.1: Properties of Integer Exponents

The Exponent Rules

Product Rule: $a^m \times a^n = a^{m+n}$

Quotient Rule: $a^m \div a^n = a^{m-n}$

Power Rule: $(a^m)^n = a^{m \times n}$

Zero Exponent: $a^0 = 1$ (when $a \neq 0$)

Negative Exponent: $a^{-n} = 1/a^n$

WORKED EXAMPLE: Simplify $2^4 \times 2^3$

Step 1: Apply product rule: add exponents with same base

Step 2: $2^4 \times 2^3 = 2^{4+3} = 2^7$

Step 3: Calculate: $2^7 = 128$

WORKED EXAMPLE: Simplify $5^6 \div 5^2$

Step 1: Apply quotient rule: subtract exponents

Step 2: $5^6 \div 5^2 = 5^{6-2} = 5^4$

Step 3: Calculate: $5^4 = 625$

Practice Problems: Section 2.1

1. Simplify: $3^5 \times 3^2 = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

2. Simplify: $7^8 \div 7^3 = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

3. Simplify: $(4^2)^3 = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

4. Evaluate: $8^0 = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

5. Simplify: $2^5 \times 2^{-3} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

Section 2.2: Negative and Zero Exponents

A negative exponent means 'take the reciprocal.'

WORKED EXAMPLE: Evaluate 3^{-2}

Step 1: Apply negative exponent rule: $3^{-2} = 1/3^2$

Step 2: Calculate: $1/3^2 = 1/9$

WORKED EXAMPLE: Simplify $(2/5)^{-3}$

Step 1: Apply negative exponent: $(2/5)^{-3} = (5/2)^3$

Step 2: Calculate: $(5/2)^3 = 125/8$

Practice Problems: Section 2.2

6. Evaluate: $4^{-2} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

7. Evaluate: $10^{-3} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

8. Simplify: $2^4 \times 2^{-6} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

9. Simplify: $(3^{-2})^2 = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

10. An engineer calculates force as $F = 10^6 \times 10^{-4}$ N. Simplify.

Work: _____

Answer: _____

Section 2.3: Square Roots and Cube Roots

\sqrt{a} means 'what number times itself equals a?'

$\sqrt[3]{a}$ means 'what number times itself 3 times equals a?'

Perfect Squares and Cubes

Perfect squares: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144...

Perfect cubes: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000...

WORKED EXAMPLE: Simplify $\sqrt{72}$

Step 1: Find largest perfect square factor: $72 = 36 \times 2$

Step 2: Split the radical: $\sqrt{72} = \sqrt{36} \times \sqrt{2}$

Step 3: Simplify: $\sqrt{36} \times \sqrt{2} = 6\sqrt{2}$

Practice Problems: Section 2.3

11. $\sqrt{144} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

12. $\sqrt[3]{27} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

13. Simplify: $\sqrt{50} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

14. Simplify: $\sqrt{128} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

15. A cube has volume 343 cm^3 . What is its side length?

Work: _____

Answer: _____

Section 2.4: Operations with Radicals

You can add/subtract radicals only if they have the same radicand (number under the radical).

$$a\sqrt{c} + b\sqrt{c} = (a + b)\sqrt{c}$$

$$\sqrt{a} \times \sqrt{b} = \sqrt{(ab)}$$

WORKED EXAMPLE: Simplify $3\sqrt{5} + 7\sqrt{5}$

Step 1: Same radicand (5), so add coefficients

Step 2: $3\sqrt{5} + 7\sqrt{5} = (3 + 7)\sqrt{5} = 10\sqrt{5}$

Practice Problems: Section 2.4

16. Simplify: $4\sqrt{3} + 2\sqrt{3} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

17. Simplify: $\sqrt{5} \times \sqrt{20} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

18. Simplify: $\sqrt{12} + \sqrt{27} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

19. Simplify: $2\sqrt{8} - \sqrt{32} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

20. A rectangular beam has width $\sqrt{18}$ cm and length $\sqrt{2}$ cm. Find the area.

Work: _____

Answer: _____

Chapter 2 Review

21. Simplify: $(2^3 \times 2^5) \div 2^4 = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

22. Evaluate: $5^{-2} + 5^0 = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

23. Simplify: $\sqrt{200} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

24. Simplify: $3\sqrt{7} - \sqrt{28} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

25. CHALLENGE: If $2^x = 32$ and $3^y = 81$, find $x + y$.

Work: _____

Answer: _____

CHAPTER 3

The Space Scientist

Master scientific notation to calculate cosmic distances and microscopic measurements

What You'll Learn

- Write numbers in scientific notation
- Convert between standard form and scientific notation
- Perform operations with numbers in scientific notation
- Compare very large and very small numbers

Why This Matters

Space scientists work with numbers that are impossibly large (93 million miles to the Sun) and impossibly small (atoms measured in billionths of a meter). Scientific notation makes these numbers manageable—and comparable. It's the language of science.

Section 3.1: Understanding Scientific Notation

Scientific Notation: $a \times 10^n$ where $1 \leq a < 10$

Large numbers: positive exponent (move decimal left)

Small numbers: negative exponent (move decimal right)

WORKED EXAMPLE: Write 93,000,000 in scientific notation

Step 1: Move decimal until you have a number between 1 and 10: 9.3

Step 2: Count places moved: 7 places to the left

Step 3: Write: 9.3×10^7

WORKED EXAMPLE: Write 0.00045 in scientific notation

Step 1: Move decimal until you have a number between 1 and 10: 4.5

Step 2: Count places moved: 4 places to the right

Step 3: Since original number is small, exponent is negative: 4.5×10^{-4}

Practice Problems: Section 3.1

1. Write in scientific notation: 45,000,000 = _____

Work: _____

Answer: _____

2. Write in scientific notation: $0.00067 = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

3. Write in standard form: $3.8 \times 10^5 = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

4. Write in standard form: $2.1 \times 10^{-4} = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

5. The distance to Alpha Centauri is 40,000,000,000,000 km. Write in scientific notation.

Work: _____

Answer: _____

Section 3.2: Multiplying and Dividing

$$(a \times 10^m) \times (b \times 10^n) = (a \times b) \times 10^{m+n}$$

$$(a \times 10^m) \div (b \times 10^n) = (a \div b) \times 10^{m-n}$$

WORKED EXAMPLE: Calculate $(3 \times 10^4) \times (2 \times 10^3)$

Step 1: Multiply the coefficients: $3 \times 2 = 6$

Step 2: Add the exponents: $10^4 \times 10^3 = 10^7$

Step 3: Combine: 6×10^7

Practice Problems: Section 3.2

6. $(4 \times 10^5) \times (3 \times 10^2) = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

7. $(8 \times 10^7) \div (2 \times 10^3) = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

8. $(5 \times 10^{-3}) \times (6 \times 10^5) = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

9. Light travels 3×10^8 m/s. How far in 5×10^2 seconds?

Work: _____

Answer: _____

10. A spacecraft travels 4.8×10^{12} km in 8×10^4 hours. Speed?

Work: _____

Answer: _____

Section 3.3: Adding and Subtracting

To add or subtract in scientific notation, the exponents must be the same.

WORKED EXAMPLE: Calculate $(4.2 \times 10^5) + (3.1 \times 10^4)$

Step 1: Rewrite with the same exponent: $3.1 \times 10^4 = 0.31 \times 10^5$

Step 2: Add coefficients: $4.2 + 0.31 = 4.51$

Step 3: Result: 4.51×10^5

Practice Problems: Section 3.3

11. $(6.5 \times 10^6) + (2.3 \times 10^6) = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

12. $(8.4 \times 10^5) - (3.2 \times 10^4) = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

13. Planet A is 5.8×10^8 km away. Planet B is 3.2×10^7 km away. Difference?

Work: _____

Answer: _____

14. Budget: $\$2.4 \times 10^7$. Spent: $\$8.6 \times 10^6$. Remaining?

Work: _____

Answer: _____

15. Two particles have masses 9.1×10^{-31} kg and 1.7×10^{-27} kg. Total mass?

Work: _____

Answer: _____

Section 3.4: Comparing in Scientific Notation

To compare: First compare exponents, then coefficients if exponents are equal.

Practice Problems: Section 3.4

16. Which is larger: 3.5×10^8 or 9.2×10^7 ?

Work: _____

Answer: _____

17. Order from least to greatest: 2.3×10^5 , 8.1×10^4 , 1.9×10^5

Work: _____

Answer: _____

18. The Sun is 1.5×10^8 km from Earth. Mars is 2.3×10^8 km. How many times farther is Mars?

Work: _____

Answer: _____

19. A virus is 2×10^{-7} m. A bacterium is 5×10^{-6} m. How many times larger is the bacterium?

Work: _____

Answer: _____

20. Earth's mass: 6×10^{24} kg. Jupiter's mass: 1.9×10^{27} kg. How many Earths equal Jupiter?

Work: _____

Answer: _____

Chapter 3 Review

21. Write 0.0000089 in scientific notation.

Work: _____

Answer: _____

22. $(7.2 \times 10^4) \times (1.5 \times 10^{-2}) =$ _____

Work: _____

Answer: _____

23. A satellite orbits at 3.6×10^7 m. Convert to km.

Work: _____

Answer: _____

24. How many seconds in a year? (365 days) Express in scientific notation.

Work: _____

Answer: _____

25. CHALLENGE: If the universe is 1.4×10^{10} years old and light travels 9.5×10^{12} km/year, what's the maximum observable universe radius?

Work: _____

Answer: _____

CHAPTER 4

The Entrepreneur

Master multi-step equations to analyze profit, loss, and business scenarios

What You'll Learn

- Solve equations with variables on both sides
- Solve equations with parentheses and distribution
- Identify equations with one, none, or infinite solutions
- Write and solve equations from word problems

Why This Matters

Entrepreneurs solve equations daily: 'If I price my product at \$x and sell 100 units minus \$500 in costs, when does profit equal \$2,000?' Business success depends on setting up and solving these equations correctly.

Section 4.1: Variables on Both Sides

When variables appear on both sides, collect them on one side first.

WORKED EXAMPLE: Solve $5x + 3 = 2x + 15$

Step 1: Subtract $2x$ from both sides: $5x - 2x + 3 = 15$
Step 2: Simplify: $3x + 3 = 15$
Step 3: Subtract 3 from both sides: $3x = 12$
Step 4: Divide by 3: $x = 4$

Practice Problems: Section 4.1

1. Solve: $7x + 4 = 3x + 20$

Work: _____

Answer: _____

2. Solve: $9x - 5 = 4x + 15$

Work: _____

Answer: _____

3. Solve: $8x - 12 = 5x + 6$

Work: _____

Answer: _____

4. Solve: $2x + 18 = 6x - 2$

Work: _____

Answer: _____

5. Company A charges $\$50 + \$20/\text{hr}$. Company B charges $\$30 + \$25/\text{hr}$. When are they equal?

Work: _____

Answer: _____

Section 4.2: Equations with Parentheses

Use the distributive property first, then solve.

WORKED EXAMPLE: Solve $3(x + 4) = 2(x - 1) + 17$

Step 1: Distribute: $3x + 12 = 2x - 2 + 17$

Step 2: Simplify right side: $3x + 12 = 2x + 15$

Step 3: Subtract $2x$: $x + 12 = 15$

Step 4: Subtract 12: $x = 3$

Practice Problems: Section 4.2

6. Solve: $4(x - 2) = 24$

Work: _____

Answer: _____

7. Solve: $2(3x + 5) = 4(x + 6)$

Work: _____

Answer: _____

8. Solve: $5(x - 3) - 2x = 3(x + 1)$

Work: _____

Answer: _____

9. Solve: $-2(4x - 3) = 3(2 - x) + 5$

Work: _____

Answer: _____

10. A phone plan costs $\$40 + \$5(g - 2)$ for g GB. Another costs $\$25 + \$8(g - 1)$. When equal?

Work: _____

Answer: _____

Section 4.3: Special Cases

One Solution, No Solution, or Infinite Solutions

One solution: Variables cancel to give $x =$ a number

No solution: Variables cancel to give a false statement (like $5 = 3$)

Infinite solutions: Variables cancel to give a true statement (like $4 = 4$)

WORKED EXAMPLE: Solve $2(x + 3) = 2x + 6$

Step 1: Distribute: $2x + 6 = 2x + 6$

Step 2: Subtract $2x$: $6 = 6$

Step 3: True statement! INFINITE SOLUTIONS (identity)

Practice Problems: Section 4.3

11. Solve: $3(x + 2) = 3x + 8$. How many solutions?

Work: _____

Answer: _____

12. Solve: $5x + 10 = 5(x + 2)$. How many solutions?

Work: _____

Answer: _____

13. Solve: $4(x - 1) = 2(2x + 3)$. How many solutions?

Work: _____

Answer: _____

14. Solve: $6x - 3 = 3(2x - 1)$. How many solutions?

Work: _____

Answer: _____

15. Create an equation with no solution using the form $ax + b = ax + c$.

Work: _____

Answer: _____

Chapter 4 Review

16. Solve: $8x - 7 = 3x + 18$

Work: _____

Answer: _____

17. Solve: $4(2x - 3) = 3(x + 4) + x$

Work: _____

Answer: _____

18. Monthly profit: Revenue = $\$50x$, Costs = $\$2000 + \$20x$. Find break-even units.

Work: _____

Answer: _____

19. Solve: $0.5(x + 4) = 0.25(2x + 16)$

Work: _____

Answer: _____

20. CHALLENGE: The sum of three consecutive integers is 99. Find the integers.

Work: _____

Answer: _____

CHAPTER 5

The Project Manager

Master functions and linear relationships to model and predict outcomes

What You'll Learn

- Understand and identify functions
- Use function notation
- Write linear equations in slope-intercept form
- Graph linear functions and interpret slope and y-intercept

Why This Matters

Project managers track progress, predict completion dates, and allocate resources. 'If my team completes 3 modules per week and we've finished 5, when will we hit 20?' Functions model these relationships, letting you predict the future from the present.

Section 5.1: Understanding Functions

A function assigns exactly ONE output for each input

Think of a function as a machine: put in a number, get out exactly one result.

The Vertical Line Test

If a vertical line crosses a graph more than once, it's NOT a function.

Practice Problems: Section 5.1

1. Is this a function? $\{(1, 3), (2, 5), (3, 7), (4, 9)\}$

Work: _____

Answer: _____

2. Is this a function? $\{(2, 4), (3, 5), (2, 6), (4, 8)\}$

Work: _____

Answer: _____

3. A vending machine takes \$1.50 and gives one snack. Is this a function? Explain.

Work: _____

Answer: _____

4. Does $y = x^2$ represent a function? Why or why not?

Work: _____

Answer: _____

5. Does $x = y^2$ represent a function? Why or why not?

Work: _____

Answer: _____

Section 5.2: Function Notation

f(x) means 'the output of function f when the input is x'

WORKED EXAMPLE: If $f(x) = 3x - 2$, find $f(5)$

Step 1: Replace x with 5: $f(5) = 3(5) - 2$

Step 2: Calculate: $f(5) = 15 - 2 = 13$

Practice Problems: Section 5.2

6. If $f(x) = 2x + 7$, find $f(4)$.

Work: _____

Answer: _____

7. If $g(x) = x^2 - 3x$, find $g(5)$.

Work: _____

Answer: _____

8. If $h(x) = 4x - 1$, find $h(-2)$.

Work: _____

Answer: _____

9. If $f(x) = 2x + 3$, find x when $f(x) = 15$.

Work: _____

Answer: _____

10. Project progress: $P(w) = 3w + 5$ modules after w weeks. Modules after 8 weeks?

Work: _____

Answer: _____

Section 5.3: Slope-Intercept Form

$$y = mx + b$$

m = slope (rate of change)

b = y -intercept (starting value)

Finding Slope

$$\text{slope} = (y_2 - y_1) / (x_2 - x_1) = \text{rise} / \text{run}$$

WORKED EXAMPLE: Find slope through (2, 5) and (6, 13)

Step 1: Use slope formula: $m = (13 - 5) / (6 - 2)$

Step 2: Calculate: $m = 8 / 4 = 2$

Practice Problems: Section 5.3

11. Find the slope between (1, 4) and (5, 12).

Work: _____

Answer: _____

12. Find the slope between (-2, 8) and (4, -4).

Work: _____

Answer: _____

13. What are the slope and y -intercept of $y = -3x + 7$?

Work: _____

Answer: _____

14. Write the equation: slope = 4, y -intercept = -2

Work: _____

Answer: _____

15. A line passes through (0, 5) with slope 2. Write the equation.

Work: _____

Answer: _____

Section 5.4: Writing Equations from Two Points

WORKED EXAMPLE: Write the equation of a line through (2, 7) and (4, 13)

Step 1: Find slope: $m = (13 - 7) / (4 - 2) = 6/2 = 3$

Step 2: Use point-slope with (2, 7): $y - 7 = 3(x - 2)$

Step 3: Simplify: $y - 7 = 3x - 6$

Step 4: Solve for y: $y = 3x + 1$

Practice Problems: Section 5.4

16. Write the equation through (1, 5) and (3, 11).

Work: _____

Answer: _____

17. Write the equation through (0, -3) and (4, 5).

Work: _____

Answer: _____

18. Week 2: 11 units complete. Week 5: 26 units complete. Write $P(w)$.

Work: _____

Answer: _____

19. After 3 hours, 45 miles traveled. After 7 hours, 105 miles. Write $d(t)$.

Work: _____

Answer: _____

20. Temperature drops from 68°F at 6 PM to 50°F at 10 PM. Write $T(h)$.

Work: _____

Answer: _____

Chapter 5 Review

21. If $f(x) = -2x + 8$, find $f(-3)$ and $f(0)$.

Work: _____

Answer: _____

22. Graph $y = 2x - 3$. Identify slope and y-intercept.

Work: _____

Answer: _____

23. Are these points on the same line? $(0, 4)$, $(2, 10)$, $(5, 19)$

Work: _____

Answer: _____

24. Gym membership: \$50 signup + \$30/month. Write $C(m)$ and find cost for 1 year.

Work: _____

Answer: _____

25. CHALLENGE: Two lines: $y = 2x + 5$ and $y = -x + 8$. Where do they intersect?

Work: _____

Answer: _____

CHAPTER 6

The Systems Analyst

Master systems of equations to solve interconnected business problems

What You'll Learn

- Understand systems of linear equations
- Solve systems by graphing
- Solve systems by substitution
- Solve systems by elimination

Why This Matters

Systems analysts solve problems with multiple constraints: 'If we sell x units of Product A and y units of Product B, total revenue must equal \$10,000 AND total units must be 500. 'Two equations, two unknowns—systems thinking.

Section 6.1: Understanding Systems

A system of equations is two or more equations with the same variables.

The solution is the point (x, y) that makes BOTH equations true.

Types of Solutions

One solution: Lines intersect at one point

No solution: Lines are parallel (never intersect)

Infinite solutions: Lines are the same (overlap completely)

Practice Problems: Section 6.1

1. Is $(3, 5)$ a solution to: $y = 2x - 1$ and $y = x + 2$? Check both equations.

Work: _____

Answer: _____

2. Is $(4, 7)$ a solution to: $y = 3x - 5$ and $y = x + 3$?

Work: _____

Answer: _____

3. What does it mean if two lines have the same slope but different y -intercepts?

Work: _____

Answer: _____

Section 6.2: Solving by Graphing

WORKED EXAMPLE: Solve by graphing: $y = x + 1$ and $y = -x + 5$

Step 1: Graph $y = x + 1$ (slope 1, y-intercept 1)

Step 2: Graph $y = -x + 5$ (slope -1, y-intercept 5)

Step 3: Find intersection point: (2, 3)

Step 4: Check: $3 = 2 + 1 \checkmark$ and $3 = -2 + 5 \checkmark$

Practice Problems: Section 6.2

4. Solve by graphing: $y = 2x - 1$ and $y = -x + 5$

Work: _____

Answer: _____

5. Solve by graphing: $y = x + 3$ and $y = x - 2$. What happens?

Work: _____

Answer: _____

Section 6.3: Solving by Substitution

Substitution works best when one equation is already solved for a variable.

WORKED EXAMPLE: Solve: $y = 3x - 4$ and $2x + y = 11$

Step 1: Substitute first equation into second: $2x + (3x - 4) = 11$

Step 2: Simplify: $5x - 4 = 11$

Step 3: Solve: $5x = 15$, so $x = 3$

Step 4: Find y : $y = 3(3) - 4 = 5$

Step 5: Solution: (3, 5)

Practice Problems: Section 6.3

6. Solve by substitution: $y = 2x + 1$ and $3x + y = 16$

Work: _____

Answer: _____

7. Solve by substitution: $x = 4y - 3$ and $2x + 3y = 5$

Work: _____

Answer: _____

8. Solve: $y = x - 5$ and $4x - 2y = 14$

Work: _____

Answer: _____

9. Adult tickets \$12, child tickets \$8. Total 45 tickets, revenue \$460. Find each.

Work: _____

Answer: _____

10. Sum of two numbers is 50. One is 8 more than the other. Find both.

Work: _____

Answer: _____

Section 6.4: Solving by Elimination

Elimination adds or subtracts equations to eliminate one variable.

WORKED EXAMPLE: Solve: $3x + 2y = 16$ and $3x - 2y = 8$

Step 1: Add equations to eliminate y: $6x = 24$

Step 2: Solve: $x = 4$

Step 3: Substitute back: $3(4) + 2y = 16$

Step 4: Solve: $12 + 2y = 16$, so $y = 2$

Step 5: Solution: $(4, 2)$

Practice Problems: Section 6.4

11. Solve by elimination: $2x + 3y = 13$ and $2x - 3y = -1$

Work: _____

Answer: _____

12. Solve by elimination: $4x + y = 14$ and $2x + y = 8$

Work: _____

Answer: _____

13. Solve: $3x + 4y = 25$ and $5x - 4y = 7$

Work: _____

Answer: _____

14. Solve: $2x + 5y = 19$ and $3x + 2y = 12$

Work: _____

Answer: _____

15. A store sold 100 items: phones at \$200 and cases at \$25. Revenue: \$8,450. Find each.

Work: _____

Answer: _____

Chapter 6 Review

16. Solve any method: $y = 4x - 7$ and $y = 2x + 3$

Work: _____

Answer: _____

17. Solve any method: $5x + 2y = 24$ and $3x - 2y = 8$

Work: _____

Answer: _____

18. Solve: $4x + 3y = 31$ and $2x + 5y = 29$

Work: _____

Answer: _____

19. Boat speed 20 mph still water. Downstream 25 mph, upstream 15 mph. Find current speed.

Work: _____

Answer: _____

20. CHALLENGE: Find a, b if system has no solution: $y = 3x + a$ and $y = bx + 5$

Work: _____

Answer: _____

CHAPTER 7

The Surveyor

Master the Pythagorean theorem to calculate distances and verify right angles

What You'll Learn

- Understand the Pythagorean theorem
- Find missing sides of right triangles
- Determine if a triangle is a right triangle
- Apply the theorem to real-world problems

Why This Matters

Surveyors measure land without walking every inch. Need to know the distance across a lake? Use the Pythagorean theorem. Checking if a corner is exactly 90° ? That's the 3-4-5 rule. This ancient formula is used every day in construction, navigation, and design.

Section 7.1: The Pythagorean Theorem

$$a^2 + b^2 = c^2$$

Where a and b are the legs (sides that form the right angle)

And c is the hypotenuse (longest side, opposite the right angle)

WORKED EXAMPLE: Find c when $a = 6$ and $b = 8$

Step 1: Use Pythagorean theorem: $a^2 + b^2 = c^2$

Step 2: Substitute: $6^2 + 8^2 = c^2$

Step 3: Calculate: $36 + 64 = c^2$

Step 4: Simplify: $100 = c^2$

Step 5: Take square root: $c = 10$

Practice Problems: Section 7.1

1. Find c : $a = 3$, $b = 4$

Work: _____

Answer: _____

2. Find c : $a = 5$, $b = 12$

Work: _____

Answer: _____

3. Find c : $a = 8$, $b = 15$

Work: _____

Answer: _____

4. A ladder reaches 12 ft up a wall, with its base 5 ft from the wall. Ladder length?

Work: _____

Answer: _____

5. A 50-inch TV is measured diagonally. If width is 40 in, what's the height?

Work: _____

Answer: _____

Section 7.2: Finding a Leg

WORKED EXAMPLE: Find a when $b = 9$ and $c = 15$

Step 1: Rearrange: $a^2 = c^2 - b^2$

Step 2: Substitute: $a^2 = 15^2 - 9^2$

Step 3: Calculate: $a^2 = 225 - 81 = 144$

Step 4: Take square root: $a = 12$

Practice Problems: Section 7.2

6. Find a : $b = 24$, $c = 25$

Work: _____

Answer: _____

7. Find b : $a = 20$, $c = 29$

Work: _____

Answer: _____

8. A 17-ft ladder leans against a wall with base 8 ft away. Height reached?

Work: _____

Answer: _____

9. A support wire is 41 m long, anchored 9 m from a pole. Pole height?

Work: _____

Answer: _____

10. A kite is 80 m away horizontally, string 100 m. Height of kite?

Work: _____

Answer: _____

Section 7.3: Is It a Right Triangle?

If $a^2 + b^2 = c^2$, it's a right triangle. If not, it isn't.

Common Pythagorean Triples

3-4-5 and multiples (6-8-10, 9-12-15, ...)

5-12-13 and multiples

8-15-17

7-24-25

Practice Problems: Section 7.3

11. Is a triangle with sides 9, 12, 15 a right triangle?

Work: _____

Answer: _____

12. Is a triangle with sides 7, 10, 12 a right triangle?

Work: _____

Answer: _____

13. Is a triangle with sides 20, 21, 29 a right triangle?

Work: _____

Answer: _____

14. A surveyor measures a corner with legs 6m and 8m, diagonal 10.2m. Is it 90° ?

Work: _____

Answer: _____

15. Find the missing value for a Pythagorean triple: 9, __, 15

Work: _____

Answer: _____

Section 7.4: Real-World Applications

Practice Problems: Section 7.4

16. Distance between points $(0, 0)$ and $(6, 8)$ on a coordinate plane?

Work: _____

Answer: _____

17. A ship sails 30 km east, then 40 km north. Straight-line distance from start?

Work: _____

Answer: _____

18. A ramp must rise 4 ft over a horizontal run of 12 ft. Ramp length?

Work: _____

Answer: _____

19. A baseball diamond has 90-ft sides. Distance from home to second base?

Work: _____

Answer: _____

20. A surveyor needs to measure across a pond. She marks 60m and 80m legs. Direct distance?

Work: _____

Answer: _____

Chapter 7 Review

21. Find the hypotenuse: legs = 11 and 60

Work: _____

Answer: _____

22. Find the leg: other leg = 45, hypotenuse = 53

Work: _____

Answer: _____

23. Verify: 11, 60, 61 is a Pythagorean triple.

Work: _____

Answer: _____

24. A 26-ft pole is stabilized by a wire from its top to a point 10 ft from the base. Wire length?

Work: _____

Answer: _____

25. CHALLENGE: Find the distance from (2, 3) to (7, 15).

Work: _____

Answer: _____

CHAPTER 8

The Animator

Master transformations to create movement and design in the coordinate plane

What You'll Learn

- Perform translations, reflections, and rotations
- Identify and describe transformations
- Understand dilations and scale factors
- Compose multiple transformations

Why This Matters

Animators bring characters to life by transforming shapes frame by frame. Translations make things slide, rotations make them spin, reflections create mirror images, and dilations change size. Every video game, animated movie, and digital effect uses these four transformations.

Section 8.1: Translations

A translation slides a figure without rotating or flipping it.

$$(x, y) \rightarrow (x + a, y + b)$$

where a = horizontal shift, b = vertical shift

WORKED EXAMPLE: Translate (3, 5) by (4, -2)

Step 1: Add horizontal shift: $3 + 4 = 7$

Step 2: Add vertical shift: $5 + (-2) = 3$

Step 3: New point: $(7, 3)$

Practice Problems: Section 8.1

1. Translate $(2, 4)$ by $(5, 3)$. New coordinates?

Work: _____

Answer: _____

2. Translate $(-1, 6)$ by $(-3, -4)$. New coordinates?

Work: _____

Answer: _____

3. Triangle ABC has vertices A(1, 2), B(4, 2), C(2, 5). Translate by (3, -1). Find new vertices.

Work: _____

Answer: _____

4. A character at (10, 8) moves (-6, 4). New position?

Work: _____

Answer: _____

5. Point P(5, -2) becomes P'(1, 3). Describe the translation.

Work: _____

Answer: _____

Section 8.2: Reflections

Reflection Rules

Over x-axis: $(x, y) \rightarrow (x, -y)$

Over y-axis: $(x, y) \rightarrow (-x, y)$

Over $y = x$: $(x, y) \rightarrow (y, x)$

Over $y = -x$: $(x, y) \rightarrow (-y, -x)$

Practice Problems: Section 8.2

6. Reflect (4, 7) over the x-axis.

Work: _____

Answer: _____

7. Reflect (-3, 5) over the y-axis.

Work: _____

Answer: _____

8. Reflect (2, 8) over the line $y = x$.

Work: _____

Answer: _____

9. Triangle with vertices (1, 1), (4, 1), (2, 4). Reflect over y-axis.

Work: _____

Answer: _____

10. Point A(-2, 5) becomes A'(-2, -5). Over which line was it reflected?

Work: _____

Answer: _____

Section 8.3: Rotations

Rotation Rules (about origin)

90° counterclockwise: $(x, y) \rightarrow (-y, x)$

180°: $(x, y) \rightarrow (-x, -y)$

270° counterclockwise (or 90° clockwise): $(x, y) \rightarrow (y, -x)$

Practice Problems: Section 8.3

11. Rotate (3, 5) 90° counterclockwise about the origin.

Work: _____

Answer: _____

12. Rotate (4, -2) 180° about the origin.

Work: _____

Answer: _____

13. Rotate (-1, 6) 270° counterclockwise about the origin.

Work: _____

Answer: _____

14. Triangle A(2, 1), B(5, 1), C(3, 4) rotated 90° CCW. Find new vertices.

Work: _____

Answer: _____

15. Point (5, 2) becomes (-2, 5). What rotation occurred?

Work: _____

Answer: _____

Section 8.4: Dilations

$(x, y) \rightarrow (kx, ky)$ where k is the scale factor

$k > 1$: enlargement

$0 < k < 1$: reduction

$k < 0$: enlargement/reduction with 180° rotation

Practice Problems: Section 8.4

16. Dilate (4, 6) by scale factor 2 centered at origin.

Work: _____

Answer: _____

17. Dilate (10, 15) by scale factor 0.5 centered at origin.

Work: _____

Answer: _____

18. Rectangle vertices (0, 0), (4, 0), (4, 3), (0, 3). Dilate by $k = 3$.

Work: _____

Answer: _____

19. A figure dilates from area 20 sq units to 180 sq units. Scale factor?

Work: _____

Answer: _____

20. Point (3, 2) becomes (9, 6). What was the scale factor?

Work: _____

Answer: _____

Chapter 8 Review

21. Translate $(5, -3)$ by $(-2, 4)$, then reflect over x-axis.

Work: _____

Answer: _____

22. Rotate $(4, 1)$ 90° CCW, then dilate by factor 2.

Work: _____

Answer: _____

23. Identify the transformation: $A(2, 5) \rightarrow A'(5, 2)$

Work: _____

Answer: _____

24. Which transformations preserve congruence? (translation, rotation, reflection, dilation)

Work: _____

Answer: _____

25. CHALLENGE: A triangle with area 12 is dilated, then dilated again by $k=2$. Final area 108. First k ?

Work: _____

Answer: _____

CHAPTER 9

The Architect

Master angle relationships to design structures with precision

What You'll Learn

- Identify and calculate angles formed by parallel lines and transversals
- Apply the triangle angle sum theorem
- Work with exterior angles of triangles
- Understand and apply angle-angle similarity

Why This Matters

Architects design buildings with precise angles. Roof pitches, window frames, support beams—every angle must be calculated exactly. When parallel support beams are cut by a diagonal brace, specific angle relationships emerge. Understanding these relationships ensures structures are stable and beautiful.

Section 9.1: Angles with Parallel Lines

Key Angle Pairs

Corresponding angles: same position, same side of transversal → EQUAL

Alternate interior angles: opposite sides, between parallels → EQUAL

Alternate exterior angles: opposite sides, outside parallels → EQUAL

Co-interior (same-side interior) angles: same side, between parallels → SUPPLEMENTARY (sum = 180°)

Practice Problems: Section 9.1

1. Lines m and n are parallel. If angle 1 = 65°, what is its corresponding angle?

Work: _____

Answer: _____

2. Alternate interior angles measure $3x + 10$ and $5x - 20$. Find x and the angle measures.

Work: _____

Answer: _____

3. Co-interior angles measure $2x$ and $3x + 30$. Find x and the angle measures.

Work: _____

Answer: _____

4. If two parallel beams are cut by a diagonal brace at 72° , what is the alternate interior angle?

Work: _____

Answer: _____

5. Prove: If alternate interior angles are equal, the lines are parallel.

Work: _____

Answer: _____

Section 9.2: Triangle Angle Sum

The sum of angles in any triangle = 180°

WORKED EXAMPLE: Find x in a triangle with angles 45° , 60° , and x°

Step 1: Use angle sum: $45 + 60 + x = 180$

Step 2: Simplify: $105 + x = 180$

Step 3: Solve: $x = 75^\circ$

Practice Problems: Section 9.2

6. Triangle angles: 35° , 75° , x° . Find x .

Work: _____

Answer: _____

7. Isosceles triangle: base angles both 55° . Find the vertex angle.

Work: _____

Answer: _____

8. Triangle angles: x° , $2x^\circ$, $3x^\circ$. Find all three angles.

Work: _____

Answer: _____

9. Right triangle: one acute angle is 32° . Find the other acute angle.

Work: _____

Answer: _____

10. Equilateral triangle: find each angle measure.

Answer: _____

Section 9.3: Exterior Angles

Exterior angle = sum of two remote interior angles

WORKED EXAMPLE: Find the exterior angle if remote interior angles are 40° and 65°

Step 1: Apply theorem: exterior = $40 + 65$

Step 2: Calculate: exterior = 105°

Practice Problems: Section 9.3

11. Remote interior angles are 48° and 67° . Find the exterior angle.

Work: _____

Answer: _____

12. Exterior angle is 130° . One remote interior is 55° . Find the other.

Work: _____

Answer: _____

13. Exterior angle = $4x$, remote interiors are x and $2x + 15$. Find x .

Work: _____

Answer: _____

14. A roof pitch creates an exterior angle of 145° . One interior angle is 90° . Find the other.

Work: _____

Answer: _____

15. Prove: An exterior angle is always greater than either remote interior angle.

Work: _____

Answer: _____

Section 9.4: Similar Triangles (AA Similarity)

If two angles of one triangle equal two angles of another, the triangles are similar

Similar triangles have equal angles and proportional sides.

Practice Problems: Section 9.4

16. Triangle ABC: angles 50° , 60° , 70° . Triangle DEF: angles 50° , 60° , x° . Find x . Are they similar?

Work: _____

Answer: _____

17. Two similar triangles have sides 3, 4, 5 and 6, 8, x . Find x .

Work: _____

Answer: _____

18. A 6-ft person casts a 4-ft shadow. A tree casts a 20-ft shadow. Tree height?

Work: _____

Answer: _____

19. Triangle sides 5, 12, 13. Similar triangle has shortest side 15. Find other sides.

Work: _____

Answer: _____

20. Two triangles: angles 30° , 60° , 90° and 30° , 60° , 90° . Must they be similar?

Congruent?

Work: _____

Answer: _____

Chapter 9 Review

21. Parallel lines cut by transversal. One angle = 118° . Find all 8 angles.

Work: _____

Answer: _____

22. Triangle angles: $(x + 20)^\circ$, $(2x - 10)^\circ$, $(x + 30)^\circ$. Find all angles.

Work: _____

Answer: _____

23. Exterior angle = $5x - 10$, remote interiors = $2x + 5$ and $x + 15$. Find x .

Work: _____

Answer: _____

24. A ramp rises 3 ft over 12 ft. A larger ramp rises 5 ft. Horizontal distance?

Work: _____

Answer: _____

25. CHALLENGE: In triangle ABC, angle A = 40° . BD bisects angle B, CD bisects angle C. Find angle BDC.

Work: _____

Answer: _____

CHAPTER 10

The Industrial Designer

Master volume calculations to design products and containers

What You'll Learn

- Calculate volume of cylinders
- Calculate volume of cones
- Calculate volume of spheres
- Solve real-world problems involving volume

Why This Matters

Industrial designers create everything from soda cans to storage tanks. How much liquid fits in that bottle? How much material for that cone-shaped funnel? How much air in that basketball? Volume calculations are essential for product design.

Section 10.1: Volume of Cylinders

$$V = \pi r^2 h$$

where r = radius of the base circle and h = height

WORKED EXAMPLE: Find volume: cylinder with radius 5 cm, height 12 cm

Step 1: Use the formula $V = \pi r^2 h$

Step 2: Substitute: $V = \pi \times 5^2 \times 12$

Step 3: Calculate: $V = \pi \times 25 \times 12 = 300\pi$

Step 4: Approximate: $V \approx 942.48 \text{ cm}^3$

Practice Problems: Section 10.1

1. Find volume: cylinder with $r = 4$ in, $h = 10$ in. (Leave answer in terms of π)

Work: _____

Answer: _____

2. Find volume: cylinder with diameter 14 cm, height 8 cm.

Work: _____

Answer: _____

3. A water tank has radius 3 m and height 7 m. Volume in cubic meters?

Work: _____

Answer: _____

4. A can has volume 350 cm^3 and height 12 cm. Find the radius.

Work: _____

Answer: _____

5. How many liters fit in a cylinder with $r = 10 \text{ cm}$, $h = 20 \text{ cm}$? ($1 \text{ L} = 1000 \text{ cm}^3$)

Work: _____

Answer: _____

Section 10.2: Volume of Cones

$$V = (1/3)\pi r^2 h$$

A cone's volume is exactly $1/3$ of a cylinder with the same base and height.

WORKED EXAMPLE: Find volume: cone with radius 6 cm, height 9 cm

Step 1: Use the formula $V = (1/3)\pi r^2 h$

Step 2: Substitute: $V = (1/3) \times \pi \times 6^2 \times 9$

Step 3: Calculate: $V = (1/3) \times \pi \times 36 \times 9 = 108\pi$

Step 4: Approximate: $V \approx 339.29 \text{ cm}^3$

Practice Problems: Section 10.2

6. Find volume: cone with $r = 3 \text{ in}$, $h = 8 \text{ in}$.

Work: _____

Answer: _____

7. Find volume: cone with diameter 10 cm, height 15 cm.

Work: _____

Answer: _____

8. An ice cream cone has $r = 2 \text{ in}$, $h = 6 \text{ in}$. Volume of ice cream it holds?

Work: _____

Answer: _____

9. A cone has volume $100\pi \text{ cm}^3$ and height 12 cm. Find the radius.

Work: _____

Answer: _____

10. A funnel (cone) has radius 8 cm and volume $384\pi \text{ cm}^3$. Find the height.

Work: _____

Answer: _____

Section 10.3: Volume of Spheres

$$V = (4/3)\pi r^3$$

WORKED EXAMPLE: Find volume: sphere with radius 6 cm

Step 1: Use the formula $V = (4/3)\pi r^3$

Step 2: Substitute: $V = (4/3) \times \pi \times 6^3$

Step 3: Calculate: $V = (4/3) \times \pi \times 216 = 288\pi$

Step 4: Approximate: $V \approx 904.78 \text{ cm}^3$

Practice Problems: Section 10.3

11. Find volume: sphere with $r = 9 \text{ in.}$

Work: _____

Answer: _____

12. Find volume: sphere with diameter 20 cm.

Work: _____

Answer: _____

13. A basketball has diameter 24 cm. Volume of air inside?

Work: _____

Answer: _____

14. A sphere has volume $36\pi \text{ in}^3$. Find the radius.

Work: _____

Answer: _____

15. Compare: sphere $r = 3$ vs. cube side = 6. Which has greater volume?

Work: _____

Answer: _____

Section 10.4: Composite Figures

For composite figures, break them into basic shapes and add/subtract volumes.

Practice Problems: Section 10.4

16. A cone ($r = 4$, $h = 6$) sits on a cylinder ($r = 4$, $h = 10$). Total volume?

Work: _____

Answer: _____

17. A hemisphere ($r = 5$) tops a cylinder ($r = 5$, $h = 8$). Total volume?

Work: _____

Answer: _____

18. A cylinder ($r = 6$, $h = 15$) has a cone-shaped hole ($r = 6$, $h = 15$) drilled out.

Remaining volume?

Work: _____

Answer: _____

19. An ice cream cone holds 8π in³ of cone + hemisphere scoop ($r = 2$). Total?

Work: _____

Answer: _____

20. A capsule is a cylinder ($r = 3$, $h = 10$) with hemisphere ends. Total volume?

Work: _____

Answer: _____

Chapter 10 Review

21. A silo is a cylinder ($r = 8\text{m}$, $h = 20\text{m}$) topped with a hemisphere. Total volume?

Work: _____

Answer: _____

22. Water fills a cone at $5 \text{ cm}^3/\text{sec}$. How long to fill a cone with $r = 6\text{cm}$, $h = 9\text{cm}$?

Work: _____

Answer: _____

23. A ball (sphere $r = 6$) is dropped in a cylinder ($r = 6$, $h = 20$). Water rises. How much?

Work: _____

Answer: _____

24. Three tennis balls ($r = 3.5 \text{ cm}$ each) fit in a cylindrical can. Can dimensions and volume?

Work: _____

Answer: _____

25. CHALLENGE: A cone, cylinder, and sphere all have radius 4 and height/diameter 8. Order by volume.

Work: _____

Answer: _____

CHAPTER 11

The Market Researcher

Master data analysis to find patterns and make predictions

What You'll Learn

- Construct and interpret scatter plots
- Identify correlation (positive, negative, none)
- Draw and use lines of best fit
- Use two-way tables to analyze categorical data

Why This Matters

Market researchers analyze data to predict consumer behavior. Is there a relationship between advertising spending and sales? Do age and product preference correlate? Scatter plots and trend lines reveal patterns that guide million-dollar decisions.

Section 11.1: Scatter Plots

A scatter plot shows the relationship between two quantitative variables.

Each point represents one data pair (x, y) .

Types of Correlation

Positive correlation: As x increases, y tends to increase

Negative correlation: As x increases, y tends to decrease

No correlation: No clear pattern between x and y

Practice Problems: Section 11.1

1. Study hours vs test scores: Positive, negative, or no correlation? Explain.

Work: _____

Answer: _____

2. Temperature vs ice cream sales: Positive, negative, or no correlation?

Work: _____

Answer: _____

3. Shoe size vs IQ: Positive, negative, or no correlation?

Work: _____

Answer: _____

4. Car age vs resale value: Positive, negative, or no correlation?

Work: _____

Answer: _____

5. Data: (1,3), (2,5), (3,4), (4,7), (5,8). Plot and describe correlation.

Work: _____

Answer: _____

Section 11.2: Lines of Best Fit

A line of best fit (trend line) approximates the overall trend in a scatter plot.

It passes through the 'middle' of the data points, minimizing distances.

WORKED EXAMPLE: Data suggests trend line $y = 2x + 1$. Predict y when $x = 10$.

Step 1: Substitute $x = 10$ into equation: $y = 2(10) + 1$

Step 2: Calculate: $y = 21$

Practice Problems: Section 11.2

6. Line of best fit: $y = 3x + 5$. Predict y when $x = 8$.

Work: _____

Answer: _____

7. Line of best fit: $y = -2x + 50$. Predict y when $x = 15$.

Work: _____

Answer: _____

8. Ad spending (x thousands) vs sales (y thousands): $y = 4.5x + 10$. Predict sales for \$5000 ad spend.

Work: _____

Answer: _____

9. Data points: (2, 9), (4, 15), (6, 21), (8, 27). Find a line of best fit.

Work: _____

Answer: _____

10. Using your line from #9, predict y when $x = 12$.

Work: _____

Answer: _____

Section 11.3: Interpreting Slope and Intercept

In context, slope represents the rate of change.

The y-intercept represents the starting value when $x = 0$.

Practice Problems: Section 11.3

11. $\text{Sales} = 500 + 20(\text{advertising})$. What does the 20 mean? The 500?

Work: _____

Answer: _____

12. $\text{Cost} = 2.50x + 150$. x = units produced. Interpret slope and y-intercept.

Work: _____

Answer: _____

13. $\text{Test score} = 60 + 5(\text{hours studied})$. Interpret and predict score for 8 hours.

Work: _____

Answer: _____

14. $\text{Weight loss} = -0.5(\text{weeks}) + 200$. Starting weight? Rate of loss? Weight after 10 weeks?

Work: _____

Answer: _____

15. A researcher finds height (cm) = $75 + 6(\text{age in years})$ for children ages 2-12. Interpret.

Work: _____

Answer: _____

Section 11.4: Two-Way Tables

Two-way tables organize categorical data by two variables.

They help identify patterns and associations.

Practice Problems: Section 11.4

16. 100 students surveyed: 40 prefer pizza, 35 prefer tacos, 25 prefer burgers. 60 are girls. 25 girls prefer pizza. Complete a two-way table.

Work: _____

Answer: _____

17. From your table in #16, what percent of girls prefer pizza?

Work: _____

Answer: _____

18. From your table, what percent of pizza-lovers are girls?

Work: _____

Answer: _____

19. 200 customers: 120 bought Product A, 80 bought B. 150 were repeat customers. 90 repeat customers bought A. Make a two-way table.

Work: _____

Answer: _____

20. From #19, are repeat customers more likely to buy A or B?

Work: _____

Answer: _____

Chapter 11 Review

21. Describe the correlation: as exercise increases, resting heart rate tends to decrease.

Answer: _____

22. Line of best fit: $y = -3x + 100$. Predict y when $x = 25$.

Work: _____

Answer: _____

23. Revenue = $1000 + 150(\text{employees})$. Interpret slope. Predict revenue with 20 employees.

Work: _____

Answer: _____

24. Why might correlation not imply causation? Give an example.

Work: _____

Answer: _____

25. CHALLENGE: Data shows strong positive correlation between firefighters sent and fire damage. Does sending fewer firefighters reduce damage? Explain.

Work: _____

Answer: _____

CHAPTER 12

The Risk Analyst

Master probability to assess risks and make informed decisions

What You'll Learn

- Calculate theoretical and experimental probability
- Use sample spaces and organized lists
- Calculate compound probability (independent and dependent events)
- Use simulations to estimate probability

Why This Matters

Risk analysts help companies make decisions under uncertainty. What's the probability a product will fail? What are the odds of two system failures on the same day? Insurance, investment, and business strategy all depend on understanding probability.

Section 12.1: Basic Probability

$P(\text{event}) = \text{favorable outcomes} / \text{total possible outcomes}$

Probability ranges from 0 (impossible) to 1 (certain).

Can also be expressed as a percent (0% to 100%).

Practice Problems: Section 12.1

1. A standard die is rolled. $P(\text{rolling a 5})$?

Work: _____

Answer: _____

2. A standard die is rolled. $P(\text{rolling even})$?

Work: _____

Answer: _____

3. A bag has 5 red, 3 blue, 2 green marbles. $P(\text{red})$?

Work: _____

Answer: _____

4. A spinner has 8 equal sections numbered 1-8. $P(\text{prime number})$?

Work: _____

Answer: _____

5. A card is drawn from a standard 52-card deck. $P(\text{heart})$?

Work: _____

Answer: _____

Section 12.2: Compound Events - Independent

Independent events: The outcome of one doesn't affect the other.

$$P(A \text{ and } B) = P(A) \times P(B)$$

WORKED EXAMPLE: Two coins are flipped. $P(\text{both heads})$?

Step 1: Events are independent

Step 2: $P(\text{head on first}) = 1/2$

Step 3: $P(\text{head on second}) = 1/2$

Step 4: $P(\text{both heads}) = 1/2 \times 1/2 = 1/4$

Practice Problems: Section 12.2

6. A die is rolled twice. $P(6, \text{ then } 6)$?

Work: _____

Answer: _____

7. A coin is flipped 3 times. $P(\text{all heads})$?

Work: _____

Answer: _____

8. $P(\text{rain today}) = 0.3$, $P(\text{rain tomorrow}) = 0.4$. $P(\text{rain both days})$?

Work: _____

Answer: _____

9. A machine has 2% defect rate. Two items checked. $P(\text{both defective})$?

Work: _____

Answer: _____

10. Spinner A: 3 sections (1,2,3). Spinner B: 4 sections (1,2,3,4). $P(\text{both show 2})$?

Work: _____

Answer: _____

Section 12.3: Compound Events - Dependent

Dependent events: The outcome of one affects the probability of the other.

$$P(A \text{ and } B) = P(A) \times P(B|A)$$

$P(B|A)$ means 'probability of B given that A already happened'

WORKED EXAMPLE: Draw 2 cards without replacement. $P(\text{both aces})$?

Step 1: $P(\text{first ace}) = 4/52$

Step 2: After drawing an ace, $P(\text{second ace}) = 3/51$

Step 3: $P(\text{both aces}) = (4/52) \times (3/51) = 12/2652 = 1/221$

Practice Problems: Section 12.3

11. Bag: 6 red, 4 blue marbles. Draw 2 without replacement. $P(\text{both red})$?

Work: _____

Answer: _____

12. Bag: 6 red, 4 blue. Draw 2 without replacement. $P(\text{first red, then blue})$?

Work: _____

Answer: _____

13. 5 boys, 7 girls in a group. Two picked randomly. $P(\text{both girls})$?

Work: _____

Answer: _____

14. A deck of cards. Draw 2 without replacement. $P(\text{both hearts})$?

Work: _____

Answer: _____

15. 10 tickets in a hat, 3 winners. You draw 2. $P(\text{winning at least one})$?

Work: _____

Answer: _____

Section 12.4: Sample Spaces and Simulations

A sample space lists all possible outcomes.

Simulations use random trials to estimate probability.

Practice Problems: Section 12.4

16. List the sample space for flipping a coin twice.

Work: _____

Answer: _____

17. List the sample space for rolling a die and flipping a coin.

Work: _____

Answer: _____

18. How many outcomes in the sample space for rolling 3 dice?

Work: _____

Answer: _____

19. A simulation runs 1000 trials of an event. 230 successes. Estimated $P(\text{success})$?

Work: _____

Answer: _____

20. Theoretical $P(\text{event}) = 0.25$. After 200 trials, expected successes?

Work: _____

Answer: _____

Chapter 12 Review

21. A bag has 8 white, 5 black, 7 gray marbles. $P(\text{not white})$?

Work: _____

Answer: _____

22. Two dice rolled. $P(\text{sum} = 7)$?

Work: _____

Answer: _____

23. 3 coins flipped. $P(\text{exactly 2 heads})$?

Work: _____

Answer: _____

24. System A has 95% reliability, System B has 90%. $P(\text{both work})$?

Work: _____

Answer: _____

25. CHALLENGE: A password is 4 digits (0-9, repeats allowed). $P(\text{all same digit})$?

Work: _____

Answer: _____

EXTRA PRACTICE

Additional problems for each chapter to build mastery

Chapter 1 Extra Practice: Real Numbers

1. Classify: $\sqrt{64}$, $\sqrt{65}$, 0.123123..., $\pi/2$

Work: _____

Answer: _____

2. Order from least to greatest: $\sqrt{12}$, 3.5, $\sqrt{15}$, 4

Work: _____

Answer: _____

3. Simplify: $\sqrt{18} + \sqrt{50}$

Work: _____

Answer: _____

4. Between which integers is $\sqrt{85}$?

Work: _____

Answer: _____

5. Is $3\sqrt{2} + 5$ rational or irrational?

Work: _____

Answer: _____

Chapter 2 Extra Practice: Exponents and Radicals

6. Simplify: $(3^4 \times 3^{-2}) \div 3^3$

Work: _____

Answer: _____

7. Simplify: $\sqrt{180}$

Work: _____

Answer: _____

8. Evaluate: $2^{-3} + 4^{-1}$

Work: _____

Answer: _____

9. Simplify: $5\sqrt{3} \times 2\sqrt{6}$

Work: _____

Answer: _____

10. Simplify: $\sqrt[3]{64} + \sqrt{81}$

Work: _____

Answer: _____

Chapter 3 Extra Practice: Scientific Notation

11. Write in scientific notation: 0.0000456

Work: _____

Answer: _____

12. $(2.4 \times 10^6) \times (5 \times 10^{-3}) = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

13. $(9.6 \times 10^8) \div (3.2 \times 10^5) = \underline{\hspace{2cm}}$

Work: _____

Answer: _____

14. Compare: 5.2×10^7 vs 8.1×10^6

Work: _____

Answer: _____

15. A light-year is 9.46×10^{12} km. Alpha Centauri is 4.37 light-years away. Distance in km?

Work: _____

Answer: _____

Chapter 4 Extra Practice: Multi-Step Equations

16. Solve: $8x - 5 = 3x + 20$

Work: _____

Answer: _____

17. Solve: $4(2x - 3) = 3(x + 4) - 1$

Work: _____

Answer: _____

18. Solve: $6x + 10 = 2(3x + 5)$. How many solutions?

Work: _____

Answer: _____

19. Cell plan A: $\$45 + \$0.05/\text{text}$. Plan B: $\$30 + \$0.08/\text{text}$. When equal?

Work: _____

Answer: _____

20. Solve: $\frac{1}{2}(4x - 8) = x + 6$

Work: _____

Answer: _____

Chapters 5-6 Extra Practice: Functions and Systems

21. If $f(x) = -3x + 10$, find $f(-2)$.

Work: _____

Answer: _____

22. Find slope and y-intercept: $4x + 2y = 10$

Work: _____

Answer: _____

23. Write equation through (2, 5) and (6, 13).

Work: _____

Answer: _____

24. Solve by substitution: $y = 3x - 1$ and $2x + y = 14$

Work: _____

Answer: _____

25. Solve by elimination: $3x + 4y = 18$ and $5x - 4y = 6$

Work: _____

Answer: _____

Chapters 7-8 Extra Practice: Pythagorean Theorem and Transformations

26. Find c : $a = 15$, $b = 20$

Work: _____

Answer: _____

27. Is 9, 40, 41 a Pythagorean triple?

Work: _____

Answer: _____

28. Distance from (1, 2) to (7, 10)?

Work: _____

Answer: _____

29. Rotate (5, -3) 90° counterclockwise about origin.

Work: _____

Answer: _____

30. Reflect (4, 7) over $y = x$.

Work: _____

Answer: _____

Chapters 9-10 Extra Practice: Angles and Volume

31. Parallel lines cut by transversal. One angle = 72° . Find its alternate interior angle.

Work: _____

Answer: _____

32. Triangle angles: $2x$, $3x$, $4x$. Find all angles.

Work: _____

Answer: _____

33. Volume of cylinder: $r = 7$, $h = 10$. (Leave in terms of π)

Work: _____

Answer: _____

34. Volume of cone: $r = 9$, $h = 12$.

Work: _____

Answer: _____

35. Volume of sphere: $r = 6$.

Work: _____

Answer: _____

Chapters 11-12 Extra Practice: Data and Probability

36. Line of best fit: $y = 2.5x + 8$. Predict y when $x = 12$.

Work: _____

Answer: _____

37. Describe correlation: As study time increases, test scores tend to increase.

Work: _____

Answer: _____

38. $P(\text{rolling two dice and getting sum of } 9)$?

Work: _____

Answer: _____

39. Bag: 7 red, 5 blue. Draw 2 without replacement. $P(\text{both blue})$?

Work: _____

Answer: _____

40. A coin is flipped 4 times. $P(\text{exactly 3 heads})$?

Work: _____

Answer: _____

ANSWER KEY

Check your work and learn from mistakes

Chapter 1: Real Numbers

1. $0.666\dots$ = rational (repeating), $\sqrt{5}$ = irrational, $-4/7$ = rational, π = irrational, 3.14 = rational (terminating)
2. Irrational (non-repeating, non-terminating decimal suggesting e)
3. $0.875 = 7/8$, rational
4. $\sqrt{16} = 4$ (rational, perfect square); $\sqrt{17} \approx 4.12$ (irrational)
5. Between 7 and 8 (since $49 < 50 < 64$)
6. Between 5 and 6 (since $25 < 30 < 36$)
7. $\sqrt{45} \approx 6.7$
8. $\sqrt{10} \approx 3.16$, so the order is 3, π (3.14), $\sqrt{10}$, 3.2
9. $\sqrt{200} \approx 14.1$ ft
10. $\sqrt{3} \approx 1.7$, $\sqrt{5} \approx 2.2$, $\sqrt{8} \approx 2.8$
- 11-15. [See detailed solutions in teacher guide]
- 16-20. [See detailed solutions in teacher guide]

Chapter 2: Exponents and Radicals

1. $3^7 = 2187$
2. $7^5 = 16807$
3. $4^6 = 4096$
4. $8^0 = 1$
5. $2^2 = 4$
6. $4^{-2} = 1/16$
7. $10^{-3} = 0.001$
8. $2^{-2} = 1/4$
9. $3^{-4} = 1/81$
10. $10^2 = 100$ N

11. $\sqrt{144} = 12$

12. $\sqrt[3]{27} = 3$

13. $\sqrt{50} = 5\sqrt{2}$

14. $\sqrt{128} = 8\sqrt{2}$

15. $\sqrt[3]{343} = 7 \text{ cm}$

16-20. $6\sqrt{3}$; 10; $5\sqrt{3}$; 0; 6 cm^2

21-25. $2^4 = 16$; 1.04; $10\sqrt{2}$; $\sqrt{7}$; $x + y = 9$

Chapter 3: Scientific Notation

1. 4.5×10^7

2. 6.7×10^{-4}

3. 380,000

4. 0.00021

5. $4 \times 10^{13} \text{ km}$

6-10. 1.2×10^8 ; 4×10^4 ; 3×10^3 ; $1.5 \times 10^{11} \text{ m}$; $6 \times 10^7 \text{ km/hr}$

11-15. 8.8×10^6 ; 8.08×10^5 ; $5.48 \times 10^8 \text{ km}$; 1.54×10^7 ; $\sim 3 \times 10^{-27} \text{ kg}$

16-20. 3.5×10^8 ; 8.1×10^4 , 1.9×10^5 , 2.3×10^5 ; $\sim 1.5 \times$; $25 \times$; ~ 316 Earths

21-25. 8.9×10^{-6} ; 1.08×10^3 ; $3.6 \times 10^4 \text{ km}$; $\sim 3.15 \times 10^7 \text{ s}$; $\sim 1.33 \times 10^{23} \text{ km}$

Chapter 4: Multi-Step Equations

1. $x = 4$

2. $x = 4$

3. $x = 6$

4. $x = 5$

5. 4 hours

6. $x = 8$

7. $x = 7$

8. No solution

9. $x = 1$

10. 5 GB

11-15. No solution; Infinite; No solution; Infinite; Answers vary

16-20. $x = 5$; $x = 6$; 67 units; Infinite solutions; 32, 33, 34

Chapters 5-6: Functions and Systems

Chapter 5: 1. Yes; 2. No (2 maps to 4 and 6); 6. 15; 7. 10; 8. -9; 9. $x = 6$; 10. 29 modules
11. $m = 2$; 12. $m = -2$; 13. $m = -3$, $b = 7$; 14. $y = 4x - 2$; 15. $y = 2x + 5$
16-20. $y = 3x + 2$; $y = 2x - 3$; $P(w) = 5w + 1$; $d(t) = 15t$; $T(h) = -4.5h + 68$
21-25. $f(-3) = 14$, $f(0) = 8$; $m = 2$, $b = -3$; No; $C(m) = 50 + 30m$, \$410; (1, 7)

Chapter 6: 1. Yes; 2. Yes; 4. (2, 3); 5. No solution (parallel)
6-10. (3, 7); (1, 2); (2, 3); 25 adults, 20 children; 21 and 29
11-15. (3, 2); (3, 2); (4, 3); (2, 3); 35 phones, 65 cases
16-20. (5, 13); (4, 2); (4, 3); 2.5 mph; $b = 3$, any $a \neq 5$

Chapters 7-8: Pythagorean Theorem and Transformations

Chapter 7: 1. $c = 5$; 2. $c = 13$; 3. $c = 17$; 4. 13 ft; 5. 30 in
6-10. $a = 7$; $b = 21$; 15 ft; 40 m; 60 m
11-15. Yes; No; Yes; No (should be 10); 12
16-20. 10 units; 50 km; ~ 12.6 ft; ~ 127.3 ft; 100 m
21-25. 61; 28; Yes ($11^2 + 60^2 = 61^2$); ~ 24.2 ft; 13 units

Chapter 8: 1. (7, 7); 2. (-4, 2); 3. $A'(4, 1)$, $B'(7, 1)$, $C'(5, 4)$; 4. (4, 12); 5. (-4, 5)
6-10. (4, -7); (3, 5); (8, 2); (-1, 1), (-4, 1), (-2, 4); x-axis
11-15. (-5, 3); (-4, 2); (6, 1); (-1, 2), (-1, 5), (-4, 3); 90° CCW
16-20. (8, 12); (5, 7.5); All $\times 3$; $k = 3$; $k = 3$
21-25. (3, -1); (2, 8); Reflection over $y = x$; T, R, R (not dilation); $k = 3$

Chapters 9-10: Angles and Volume

Chapter 9: 1. 65° ; 2. $x = 15$, angles = 55° ; 3. $x = 30$, angles = 60° and 120° ; 4. 72°
6-10. 70° ; 70° ; 30° , 60° , 90° ; 58° ; 60°
11-15. 115° ; 75° ; $x = 25$; 55° ; Exterior > either remote (since exterior = sum)
16-20. $x = 70^\circ$, yes; $x = 10$; 30 ft; 36, 48; Similar but not necessarily congruent
21-25. 118° , 62° , etc.; 35° , 60° , 85° ; $x = 10$; 20 ft; 110°

Chapter 10: 1. $160\pi \text{ in}^3$; 2. $392\pi \text{ cm}^3$; 3. $63\pi \text{ m}^3$; 4. $r \approx 3.04 \text{ cm}$; 5. $\sim 6.28 \text{ L}$
6-10. $24\pi \text{ in}^3$; $125\pi/3 \text{ cm}^3$; $8\pi \text{ in}^3$; $r = 5 \text{ cm}$; $h = 18 \text{ cm}$
11-15. $972\pi \text{ in}^3$; $4000\pi/3 \text{ cm}^3$; $2304\pi \text{ cm}^3$; $r = 3 \text{ in}$; Cube ($216 > 113.1$)
16-20. 192π ; $250\pi/3 + 200\pi$; 360π ; $8\pi + 16\pi/3$; $90\pi + 36\pi$
21-25. $1408\pi/3 \text{ m}^3$; $\sim 113 \text{ sec}$; 8 cm rise; $r = 3.5$, $h = 21$, $V = 257.25\pi$; Sphere < Cone < Cylinder

Chapters 11-12: Data and Probability

Chapter 11: 1-5. Positive; Positive; None; Negative; Positive moderate

6-10. 29; 20; \$32,500; $y = 3x + 3$; 39

11-15. Slope = revenue per \$ of advertising, intercept = base revenue; Per-unit cost, fixed cost; ~100; 195 lbs; 6 cm/year growth rate

16-20. [Table solutions]; ~42%; ~63%; [Table solutions]; Yes, $90/120 = 75\%$ vs $60/80 = 75\%$

21-25. Negative; 25; 4000; Correlation \neq causation; Larger fires need more firefighters

Chapter 12: 1. $1/6$; 2. $1/2$; 3. $1/2$; 4. $4/8 = 1/2$ (primes: 2,3,5,7); 5. $13/52 = 1/4$

6-10. $1/36$; $1/8$; 0.12; 0.0004; $1/12$

11-15. $30/90 = 1/3$; $24/90 = 4/15$; $42/132 = 7/22$; $156/2652 = 1/17$; ~47%

16-20. {HH, HT, TH, TT}; 12 outcomes; 216; 0.23; 50

21-25. $12/20 = 3/5$; $6/36 = 1/6$; $4/8 = 1/2$; 0.855; $1/1000$

Extra Practice Answers

1. $\sqrt{64} = 8$ (rational), $\sqrt{65}$ (irrational), 0.123123... (rational), $\pi/2$ (irrational)

2. $\sqrt{12}$, 3.5, $\sqrt{15}$, 4

3. $3\sqrt{2} + 5\sqrt{2} = 8\sqrt{2}$

4. Between 9 and 10

5. Irrational

6. $3^{-1} = 1/3$

7. $6\sqrt{5}$

8. $1/8 + 1/4 = 3/8$

9. $10\sqrt{18} = 30\sqrt{2}$

10. $4 + 9 = 13$

11-40. [See teacher guide for complete solutions.]