

Fully Wireless Neural Recording System with a 65536-Electrode Array

Features

★ System

- Integrated 65536 titanium nitride (TiN) surface electrodes
- Wireless powered from a 13.56 MHz (F_{ref}) Inductive Link
- o Communicates to a relay station through Ultra-wideband (UWB) radio
- Simultaneous recording from 1024 or 256 electrodes
- Constant current biphasic stimulation with ± 1.4V compliance

★ Processor

Full-custom logic running at up to 108.5 MHz (F_{ref} * 8)

★ ADC

10-bit SAR ADC running at an average 8.7 MHz (F_{ref} * 16/25)

★ Analog Front End

- Chopper stabilized pixel amplifier with programmable chopping frequency
- Effective sampling rate of 33.9 kHz (256 electrodes) or 8.5 kHz (1024 electrodes)

★ Wireless Transceiver

- o 108.5 MBps uplink and 54.3 MBps downlink
- o Ultra-wide band (3.5-4.5 GHz)

★ Power management

60mW maximum received power

BISC N65K

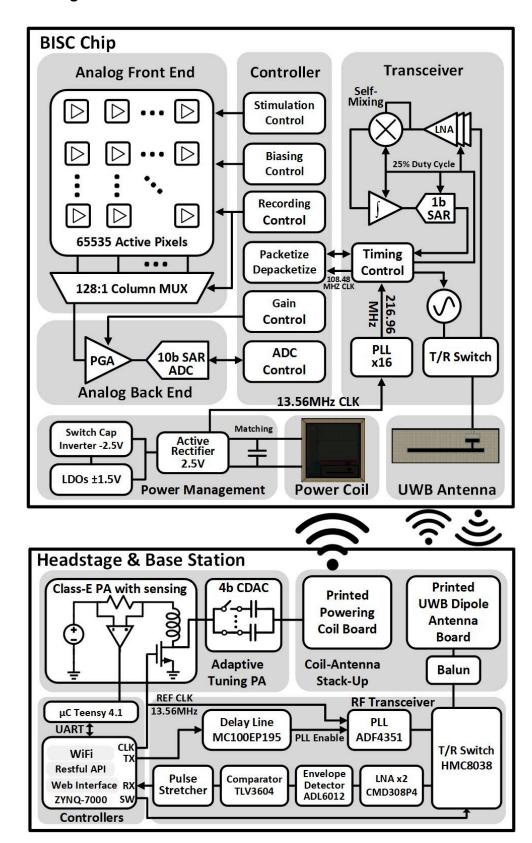
Table of Contents	
Features	1
1. Description	3
Terminology	3
Functional Block Diagram	4
BISC Headstage	5
BISC Base Station	5
Specifications	6
Chip Die Shot	7
© 2025 Kampto Neurotech, LLC Simplified Datasheet Page	2

1. Description

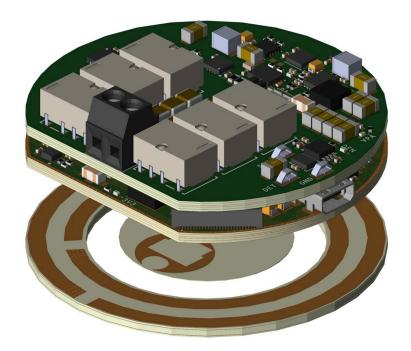
BISC is an Implantable Wireless High-Density Microelectrode Array System, a state-of-the-art solution architecturally designed to facilitate a minimally invasive bridge between the brain and computational devices. This system, comprising an integrated circuit chip, a headstage, and a base station, enables users to monitor and modulate neural signals in real-time.

Terminology

BISC refers to the complete system that contains:

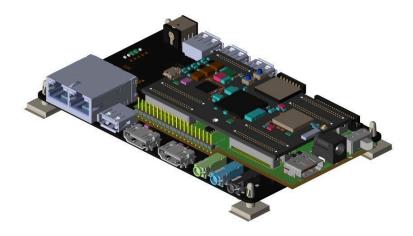

BISC Chip – The implantable integrated circuit chip

BISC Headstage – The external hardware that wirelessly connects to the BISC Chip


BISC Base Station – The external hardware processor that connects to the BISC Headstage using an HDMI cable

BISC API – The programming interface that allows full control of the BISC system

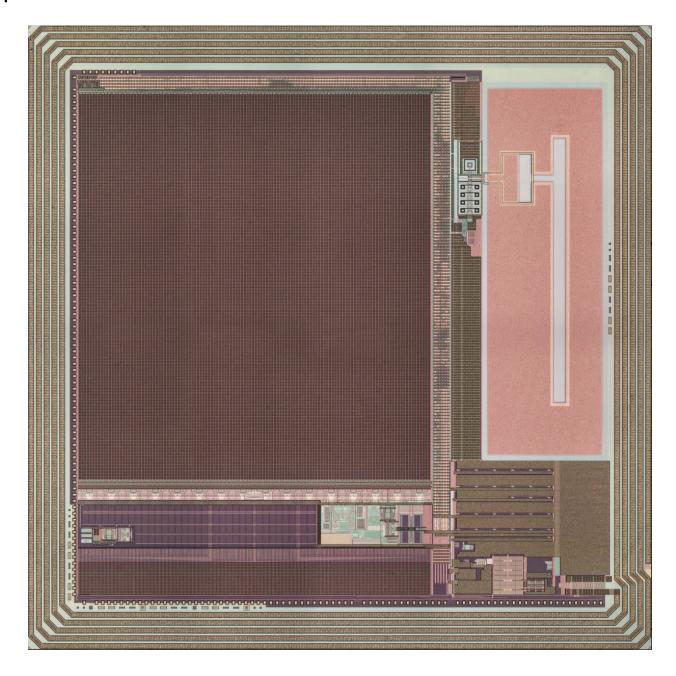
Functional Block Diagram


BISC Headstage

BISC Headstage without Case

The current version of the BISC headstage has a diameter of 53mm and a height of 35mm, including the case.

BISC Base Station


BISC Base Station without Case

The BISC Base Station is based on the krtkl Snickerdoodle, PiSmasher, and a custom interface board.

Specifications

Implant Chip Size	12mm × 12mm
Implant Chip Thickness	250μm - 10μm
Total Channels	65536
Simultaneous Readout Channels	1024/256
Readout Sampling Rate	8.475/33.9kHz
Readout Resolution	10-bits
Readout Gain	120 - 2900V/V
Readout High Pass Corner	5 - 120 @ 800pF Electrode Capacitance
Readout Input Refered Noise	5μVrms @ 1650V/V (10 - 8KHz)
Stimulation Scheme	Monopolar or Bipolar
Stimulation Current	10μΑ - 1120μΑ
Stimulation Current Profile	Biphasic

Chip Die Shot

