The material distribution within a mine face typically varies in the small scale and within daily assigned
extraction segments. These changes are not always visually identifiable but are relevant for the ore
quality from an extracted build and for adjusting the subsequent processing steps. Minimizing
misclassifications or false allocations of material will minimize energy-intensive material re-handling.
Imaging spectroscopy can help to identify and evaluate relevant minerals or deposit-specific geological
materials before the extraction. It also allows for a streamlining of the extraction itself and the
subsequent material transport to the processing facilities.

In this example, data from the former copper-gold-pyrite mine Apliki (Nicosia district, Republic of
Cyprus) are used to illustrate the use of hyperspectral imaging for mineral identification on open pit
mines. The samples and onsite data was collected by the German Research Centre for Geosciences
Potsdam (GFZ) and the University of Potsdam (UP) in cooperation with the Geological Survey
Department of the Republic of Cyprus (GSD) during a field campaign in March 2018. The results and
images presented here are part of the doctoral research by Koerting (2020).

The geochemical data (ICP-ES & Carbon and Sulfur analysis) of 36 samples from the site was clustered.
It identified seven different material groups. These groups were confirmed by evaluating the spectral
fingerprints of the samples and by the dominant mineralogy (XRD). The site-specific spectral library
(Fig. 1) shows one spectrum per cluster and was compiled in the laboratory from the 36 surface
samples using VNIR and SWIR instruments from the HySpex Classic series.
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For the mine face classification, the input parameters used for analysis were reduced to six clusters
by excluding the cluster dominated by gypsum. The resulting map (Fig. 2) highlights the location of the
stockwork zone as well as the disseminated and weathered sulphide ore. Here, each cluster represents
a different zone within the mine e.g. the mineralized pillow lavas, the smectitic-chloritic zone or the
chloritic stockwork zone.
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Figure 2. A: Expected zonation of the mine faces (Antivachis, 2015). B: Hyperspectral mapping of Apliki mine face @ unchssified

(Koerting 2020, in prep.) by the Binary Feature Fitting algorithm (Mielke et al, in prep.).

The hyperspectral map can be visualized on 3D models created by Structure-for-Motion (SfM) or by
implementing precise LIDAR modelling (Fig. 3). These models help with the allocation of material
onsite. Areas of e.g. high AIOH content can additionally be mapped by utilizing minimum wavelength
mapping (Python HypPy Toolbox, Bakker and Oosthoek) for the AIOH feature defined at 2160 — 2220
nm by Kirsch et al. (2018). This type of analysis aids in identifying areas with higher contaminant levels
(e.g. clay) to adjust the processing for the here extracted material.
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The example shows the potential of
hyperspectral imaging as a tool for
geological and mining applications. Its use
allows for a precise identification of

The hyperspectral data in this project was
acquired using VNIR and SWIR cameras from
the HySpex Classic series. The VNIR-1800
camera covers the 400 — 1000 nm range while

the SWIR-384 operates in the 930 — 2500 nm minerals. and mat.e-rials anywherg from
range. The cameras have a spectral resolution exploratlon.and mining to processing a.nd
of 3.3 and 5.5 nm, respectively. manufacturing. HySpex offers a varied

selection of turn-key solutions for scientific
and industrial applications. Contact us to
discuss your application and requirements
with our specialists.

The cameras are designed to operate in both
the laboratory and the field, preserving the
spectral fidelity needed for scientific and
industrial applications thanks to their low-
value optical aberrations, thermal stability and
custom lenses for a variety of working
distances. The portable field system utilizes a
battery-based, rugged data acquisition unit to

Contact:
power and control the cameras as well as the
necessary moving stages. hyspex@neo.no
The data analysis was performed with www.hyspex.com

material classification algorithms primed by
GFZ and advanced and distributed within the
ReSens+ product family by rad.Data Spectral
Analytics UG (limited), They provide fast, high-
precision geoinformation about quality,
guantity and location of minerals and

materials across all hyper- and multispectral ey —_
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