

Affordable Simulation Tools for Specialist Off-Road OEMs

Rupert Tull de Salis, ZeBeyond Ltd.
Nov 6, 2025

nafems.org

THE MODELLING AND SIMULATION COMMUNITY

Contents

- Use Case for Study: Forestry Harvester with Diesel Engine
- Engine Dutycycle – Power vs Time
 - **Is This a Candidate for a Diesel-Electric Hybrid?**
- Setting up Analysis Model
- Results: Comparing Total Cost of Ownership (TCO) over 10 years
- Summary and Conclusions

Forestry Harvester – Ponsse Ergo

Application: tree harvesting, paired with a forwarding vehicle to remove the logs.

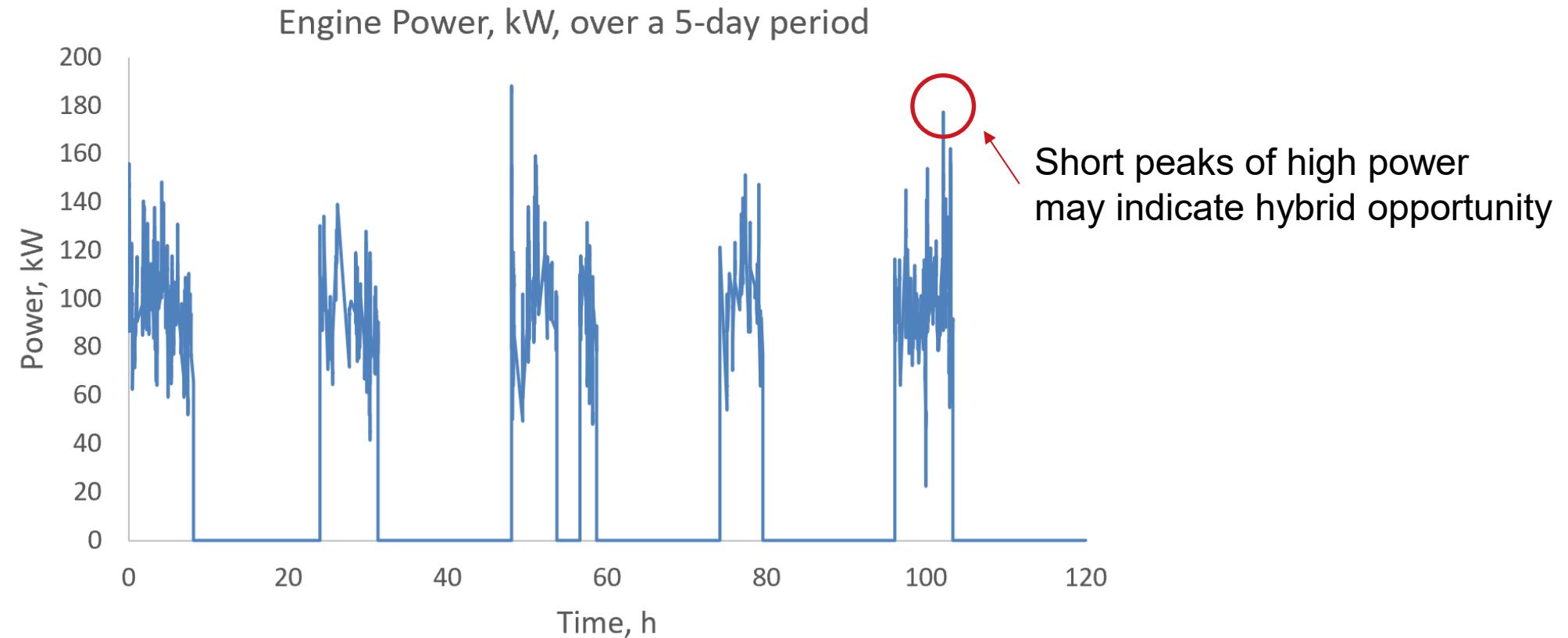
Operating weight **23 t**

Engine max power **210 kW**

Max. Reach horizontal **11 m**

Annual Sales ~ 1200 units

https://www.youtube.com/watch?v=K_yMPnsbIVA


https://www.youtube.com/watch?v=R-g_oR1_g4E

Engine Specifications

Parameter	Specification	Notes
Engine Manufacturer	Mercedes-Benz / MTU	Supplied under Daimler Truck Off-Highway (MTU) branding
Engine Model	OM 936 LA	Inline 6-cylinder diesel engine
Displacement	7.7 L	6 cyl × 1.28 L per cylinder
Rated Power	210 kW @ 2200 rpm	
Maximum Torque	≈ 1200 Nm @ 1200–1600 rpm	Broad flat torque curve
Emission Standard	EU Stage V / US Tier 4 Final	DOC + DPF + SCR after-treatment
Cooling System	Liquid-cooled	Engine and hydraulic oil coolers
Machine Operating Weight	≈ 20 500 kg (minimum)	8-wheel configuration
Transmission Type	Hydrostatic-mechanical drive	2-speed automatic transmission
Reference	Ponsse Ergo Sales Folder 2023 (PDF)	https://interexport.si/wp-content/uploads/2024/09/PONSSE_Ergo_Sales_Folder_2023.pdf

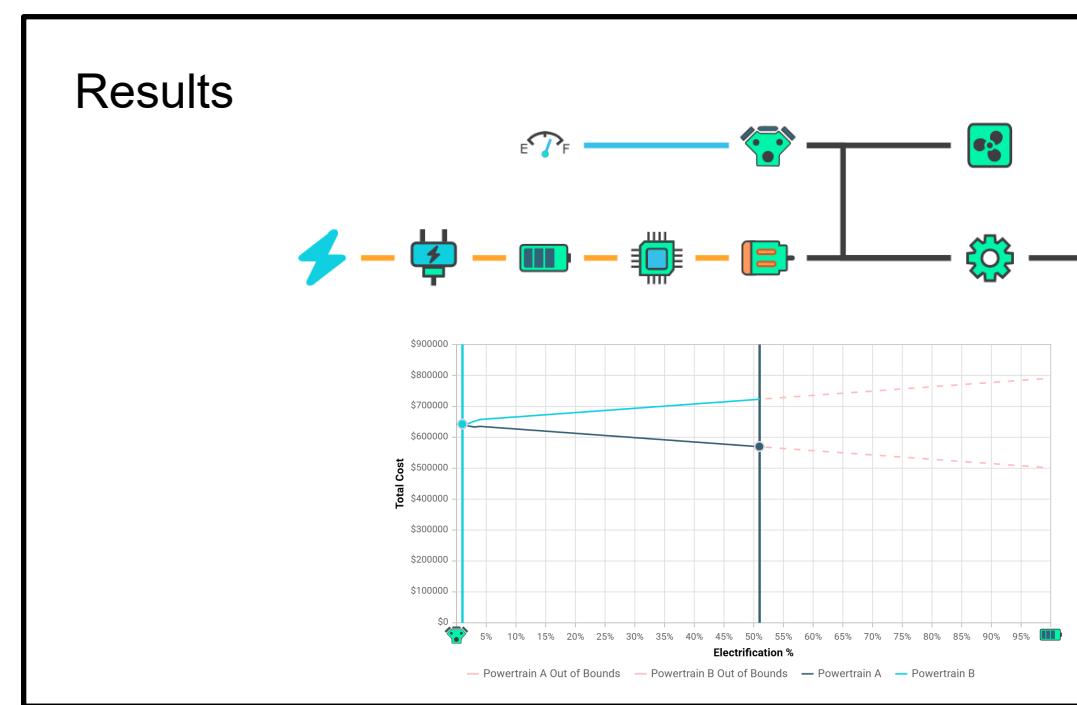
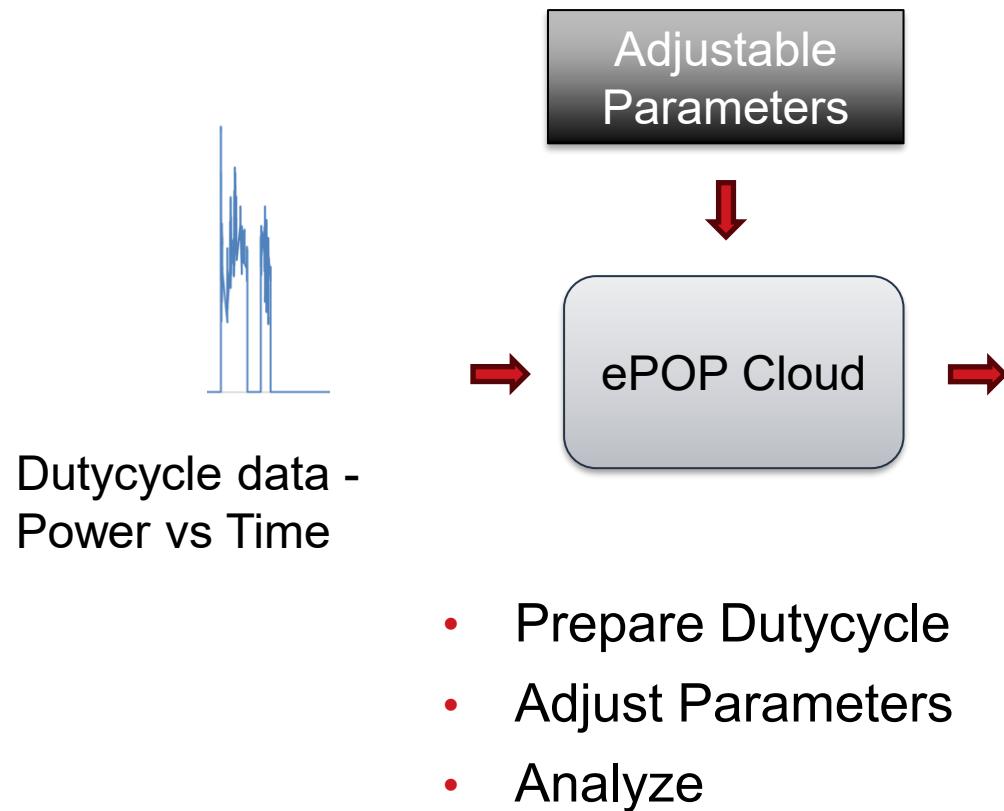
Engine Dutycycle over 5 days

Source of Dutycycle data

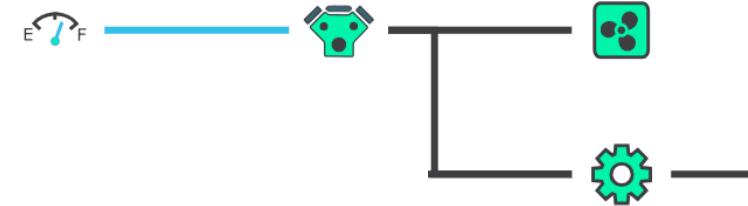
[Home](#) > [European Journal of Forest Research](#) > Article

High-resolution harvester data for estimating rolling resistance and forest trafficability

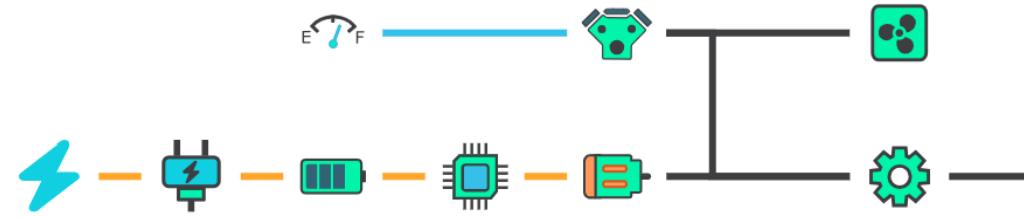
Research | [Open access](#) | Published: 09 July 2024



Volume 143, pages 1641–1656, (2024) [Cite this article](#)

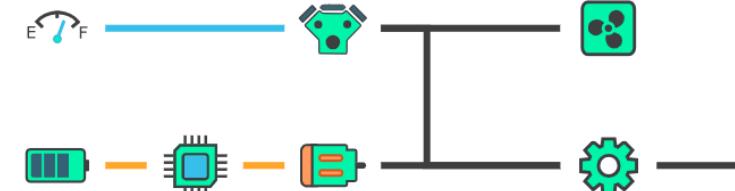
High-resolution harvester data for estimating rolling resistance and forest trafficability. Salmivaara, Aura; Holmström, Eero; Kulju, Sampo; Ala-Ilomäki, Jari; Virjosen, Petra; Nevalainen, Paavo; Heikkonen, Jukka; Launiainen, Samuli


European Journal of Forest Research, ISSN: 1612-4677, 2024. <https://zenodo.org/badge/DOI/10.5281/zenodo.12646047.svg>

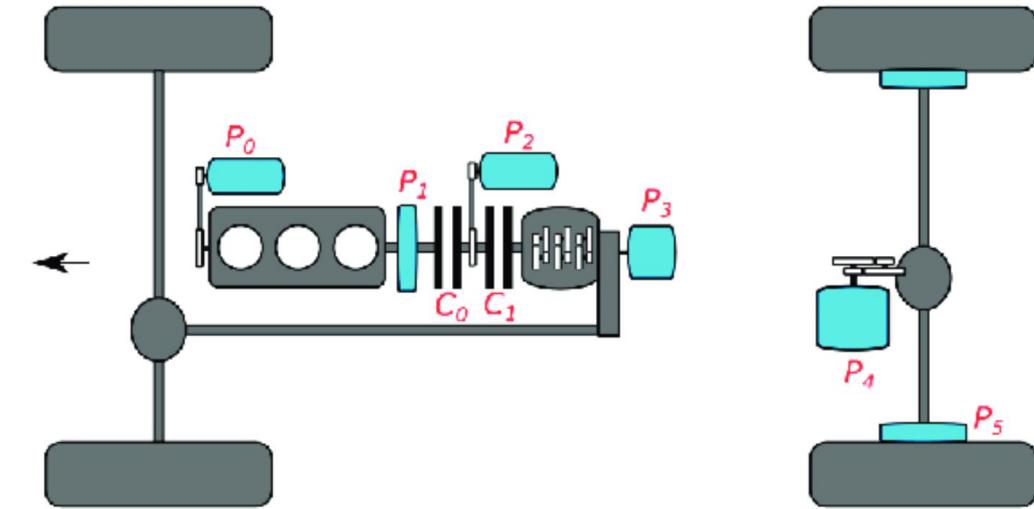
Setting up and Running the Model



Powertrain Configurations


Original ICE-only

Powertrain A: Parallel P0 Hybrid with Charging


Powertrain B: Parallel P0 Hybrid without Charging

Note: P2 configuration (with engine detachment) generally offers more fuel savings than P0, but requires complete redesign.

P0 – P5 Hybrid Configurations Explained

Notation	Traction Motor drive connection	Functional Characteristics
P0	Crankshaft, at front of engine (opposite end to transmission)	Motor cannot work with engine off.
P1	Crankshaft, at rear of engine	Motor cannot work with engine off.
P2	Between engine and transmission, after a disconnect clutch	Motor can work with engine off, saving fuel.
P3	On output shaft of transmission, before axle	Motor can work with engine off. But gearing is less advantageous than P2, and the motor must cover a large speed range.
P4	On axle	As P3.
P5	Inside wheels (hub motors)	As P3; lowest losses but highest costs.

Citation:
 TY - JOUR
 AU - Ruzimov, Sanjarbek
 AU - Mavlonov, Jamshid
 AU - Mukhitdinov, Akmal
 PY - 2022/01/01
 SP - B74
 EP - B86
 T1 - Analysis of the Powertrain Component Size of Electrified Vehicles Commercially Available on the Market
 VL - 24
 DO - 10.26552/com.C.2022.1.B74-B86
 JO - Communications - Scientific letters of the University of Zilina

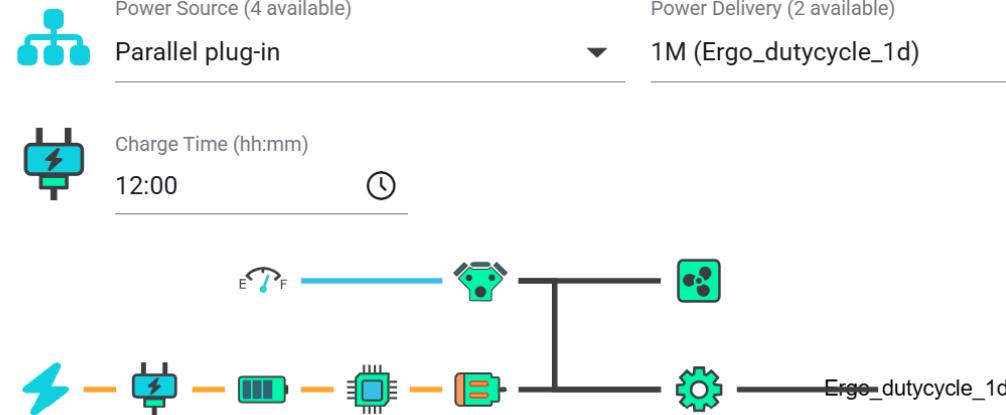
Configuration Adjustments

● Powertrain A (1 Combination)

● Powertrain B (1 Combination)

Technology (18.4M combinations)

- Inverter (5)
Si
- Motor (4)
Induction
- Rectifier (5)
Si
- Generator (4)
Permanent Magnet
- Battery (10)
Ergo
- Charger (2)
Si
- ICE (12)
Ergo_unlim
- Fuel Tank (3)
Diesel
- Transmission (2)
Direct Drive


Architecture (8 available)

Auto **Manual** Advanced

Copy from Powertrain B

Config Name

Powertrain A

Key	
Fuel	—
Electrical	—
Mechanical	—
Hydraulic	—

Parameter Adjustments

ICEs 4 8

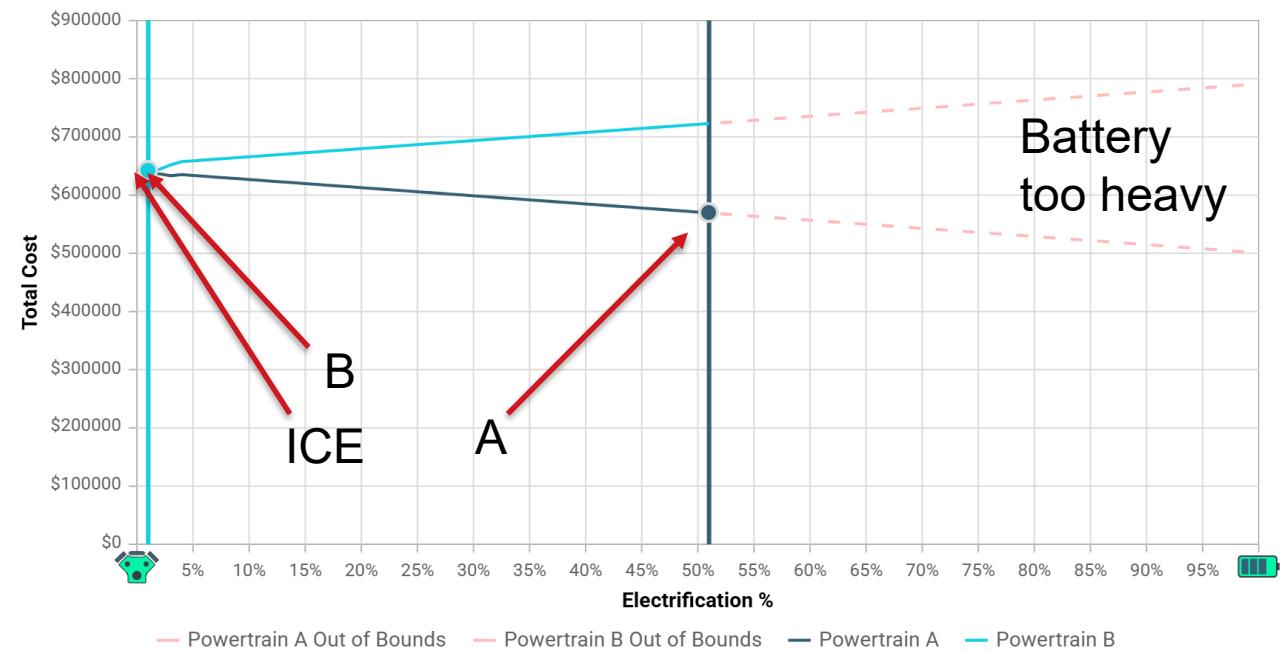
Name	Cost \$/kW	Volume Density kW/L	Mass Density kW/kg	Fuel	Series B.S.F.C. kg/kWh	Series Efficiency %	Parallel B.S.F.C. kg/kWh	Parallel Efficiency %	Heat Rejected to Coolant %	Embedded CO ₂ kg/kW	Minimum kW	Maximum kW
Diesel	145	0.95	0.25	Diesel	0.2593	32.3	0.3221	26	50	25		
Gasoline	115	1.25	0.4	Gasoline	0.23	34	0.3	26	50	18		
Fuel Cell	160	0.7	0.7	Hydrogen	0.0501	60	0.0601	50	50	0.05		
Diesel (NonHybrid Operation)	145	0.95	0.25	Diesel	0.38	22	0.38	22	50	25		
Fendt211	145.00	0.95	0.25	Diesel	0.25	33.50	0.25	33.50	33.00	25.00	40.00	85.00

Motors 4 0

Name	Cost \$/kW	Volume Density kW/L	Mass Density kW/kg	Efficiency
Permanent Magnet	125	10	5	96
Ferrite PM	65	3	1	93
Induction	40	4	2.5	92

Batteries 6 4

Name	Cost \$/kWh	Volume Density Wh/L	Mass Density Wh/kg	Minimum S.O.C. %	Maximum S.O.C. %	C Rating Peak	C Rating Continuous
LFP	120	275	130	20	100	5	3
NMC	140	575	225	20	100	10	2
NCA	150	650	250	20	100	12	2.5
Lead-Acid	100	95	40	60	100	20	0.4
Ultra-Capacitors	3000	0.01	15	10	100	500	10
LFP 30kWh Limit	120	275	130	20	100	5	3
LFP_724	120.00	275.00	130.00	20.00	90.00	5.00	3.00


Results: Hybrid versus Original ICE

	ICE only	A: Hybrid - charging	B: Hybrid – no charging
ICE Power kW	202.2	107.4	107.4
E-motor Power, kW		188.3	88.3
Battery size, kWh		591.9	20
Powertrain Cost \$	31930	115219	31051
Diesel Fuel Cost \$	611104	299448	611119
Electricity Cost \$	0	168318	0
TCO (10 year) \$	643034	582985	642170

ePOP Results:

- Fully electric is not feasible – battery weight
- ICE power set to 202 kW (actual vehicle 210 kW)
- Both hybrids downsize ICE to 107kW
- Hybrid A (with charging) reduces TCO by 11%
- Hybrid B (without charging) offers no benefit

Conclusion: Recharging is probably impractical for this application, so neither solution is attractive.

Summary and Conclusion

- Forestry Harvester: Off-highway, low volume, diesel-powered.
- Short peaks of max power suggest a hybrid opportunity.
- ePOP Cloud allows quick, non-expert analysis
- Results of study:
 - TCO savings are possible with a P0 hybrid, but only if charging is available
 - Charging is probably impractical in this application, so it's not worth pursuing
 - P0 is not the best configuration – P2 is better - BUT needs complete redesign
- This analysis is deliberately quick and simple to understand. It can be applied to low-volume applications as a first check to identify opportunities for hybridization.