

Control and Data Plane
Integration for High-throughput
Modular Automation

(3 Case Studies)

WWW.GINKGO.BIO

Contact us today!

Control and Data
Plane Integration for
High-throughput
Modular Automation
(3 Case Studies)

Greg Lammers, Jose Cortez, Chris Bremner

INTRODUCTION

Ginkgo’s Automation Control Software (ACS)

provides a flexible interface for the integration

of our RAC systems with a wide range of

customer software integration needs. Our

platform uses open-source messaging

standards and schema definition tools to

ensure that new integrations can be developed

rapidly. This paper details three case studies

where ACS was integrated into various

high-throughput environments. Each case

study describes a scenario presented and

summarizes the solution that was developed

both for launching protocol runs and integrating

the data generated by them into automated

LIMS data pipelines.

The three case studies are presented here in

order of increasing complexity. We see the

simpler integration presented in Case Study A

as the integration mode that covers most

high-throughput customers. Case Study A

should be thought of as the default mode.

Case Studies B and C are heavy-weight modes

of integration that illustrate what software

integrations can look like when sizable software

and hardware ecosystems are already in place,

such as a Manufacturing Execution System

(MES) and data flow management from multiple

workcell platforms.

We do not cover the low-throughput scenario

(i.e. no automated data pipelines) in this

document, which can easily be accomplished

without the need for any customized software.

This scenario deserves mention here since it

will suit the needs of many customers, but it is

too simple to merit its own integration case

study. Files generated by devices are made

available in ACS applications, and they can be

downloaded manually as needed. In Case

Study A, we will point out the two relevant

steps for this integration mode.

Learn more ​​ ​ ​​ ​ ​ ​ 2

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

(Note: In this document, we’ll use the general

term MES instead of the more specialized term

“Laboratory Execution System (LES)” that

typically applies in this domain since MES is

more widely known.)

Learn more ​​ ​ ​​ ​ ​ ​ 3

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

CASE STUDY A — DIRECT PROTOCOL
EXECUTION WITH FILE-BASED OUTPUT

Scenario

In this customer’s scenario, laboratory

scientists directly execute protocols on RACs

without an orchestration layer, like a

Manufacturing Execution System (MES). They

expect to receive raw data from the

instruments on the RACs, and they also expect

this data to be available in a data warehouse.

Launching Protocol Runs

The RAC platform provides a tool that allows

users to launch protocol runs directly on RACs

without the need for external software. This tool

provides a schema-driven, user-friendly

interface for launching protocol runs with their

required parameters. A screenshot of this tool

is provided in FIG. 1 for a plate read protocol

on a BMG Labtech PHERAstar®.

For this case, the customer needed additional

validation and transformation logic added to

the protocol launching tool.

Learn more ​​ ​ ​​ ​ ​ ​ 4

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

FIGURE 1. Protocol Launcher - Generic PHERAstar Read form

This was provided as part of the agreement

between the customer and Ginkgo Automation.

The custom version of the protocol launcher is

maintained by Ginkgo Automation separate

from other customer code and is updated as

the customer designs new protocols.

Data Return

This version of the RAC-based workflow

requires scientists and data scientists to

understand the output coming directly from

devices installed on the RAC system. These

devices typically generate files that are stored

local to the device and are exposed through

applications provided by ACS.

The primary data-producing instrument in this

example scenario is a Pherastar plate reader.

When the ACS application for the device

Learn more ​​ ​ ​​ ​ ​ ​ 5

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

JavaScript

Contact us today!

completes an operation, it produces a message

to its message bus with the following contents:

{
 "data": {
 "file_url": "<ACS_APPLICATION_URL>/data/<UUID>.1569902.pherastar_results.csv",
 "event_type": "plate_read",
 "line_number": 3,
 "container_id": "id123",
 "protocol_name": "OD600"
 },
 "baggage": {
 "acs_app_version": "5.3.0",
 "protocol_run_id": "<UUID>",
 "protocol_run_step_id": "<UUID>"
 },
 "payloads": {
 "payload": {
 "id": "<UUID>",
 "type": "96-flat-corning-3370",
 "barcode": "1111111"
 }
 },
 "timestamp": "2024-08-26T18:52:01.199233+00:00",
 "acs_data_type": "biological_event",
 "recipe_run_id": "<UUID>",
 "submodule_name": "pherastar-sm-1",
 "protocol_run_id": "<UUID>"
}

The customer in this scenario used custom

software to listen to the message bus and wait

for events that matched this plate_read

event type. This custom software initiated an

in-house data pipeline by retrieving the data file

from the plate reader through the ACS

Application API and placing it in an AWS S3

bucket using a naming convention to record

metadata about the operation. The

components involved in this flow are depicted

in FIG. 2.

The ACS message bus is built on top of the

open-source Apache Kafka ® project, a widely

Learn more ​​ ​ ​​ ​ ​ ​ 6

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

None

Contact us today!

used messaging platform. This technology has

client libraries available for almost all common

programming languages. In this scenario, the

customer provided requirements so that

Ginkgo Automation could develop the custom

component using the confluent-kafka library for

Python to write a simple Kafka consumer. This

consumer processes messages by

deserializing them according to the JSON

format defined in the Confluent Schema

Registry that runs as part of ACS. Once

deserialized, messages that match the format

of events related to the Pherastar plate reader

are passed to a message handler that retrieves

relevant data files from the ACS Pherastar

application using a RESTful API. In this

example, the API endpoint for the file contents

is provided in the following message where

ACS_APPLICATION_URL is a base URL for the

application.

{ACS_APPLICATION_URL}/data/<UUID>.1569902.pherastar_results.csv

FIGURE 2. Case Study A — High Level Architecture 1) Plate read is initiated on the Pherastar device. 2) Once the plate
read is completed, the data is returned to the ACS Pherastar Application. 3) ACS Pherastar Application publishes a Kafka
message indicating a new data file is available. 4) Custom listener that is subscribed to the Kafka topic receives notification
that the new data file is available and retrieves the file from the ACS Pherastar application. 5) Custom listener forwards the file
it retrieved to AWS S3 for further downstream processing.
The contents of the result file are then

uploaded to AWS S3 using the boto3 library for

Python. The customer then manages the data

analysis pipeline using their own in-house tools

and transformation.

Learn more ​​ ​ ​​ ​ ​ ​ 7

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

(Note: For customers with lower throughput

needs (i.e. without automated data pipelines),

only steps 1 and 2 would be relevant for their

scenario. They could directly download the

data from the device via the ACS Application.)

Summary

For customers with an interest focused on the

raw results from instruments on RACs

managed by ACS, Ginkgo Automation provides

out-of-the-box tools to create useful data

pipelines quickly. Additionally, simple custom

code components enable customized protocol

launching or data return via our APIs.

Learn more ​​ ​ ​​ ​ ​ ​ 8

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

JavaScript

Contact us today!

CASE STUDY B — MANUFACTURING
EXECUTION SYSTEM (MES) INTEGRATION
WITH AUTOMATION CONTROL SOFTWARE
(ACS)

Scenario

In this scenario, laboratory scientists execute

protocols on RACs following the guidance of a

Manufacturing Execution System (MES). These

operators are responsible for preparing the

protocol runs, but they are not the ones doing

the data analysis. Instead, a separate team of

scientists must review the data from these

experiments in the company’s custom LIMS

software. Additionally, the company’s LIMS

performs extensive sample lineage tracking.

Launching Protocol Runs

Because this customer extensively used MES

software to orchestrate its lab workflows, they

needed to integrate RACs workloads with the

MES via the ACS API. The customer elected to

design its own protocols and forms for

parameterizing them, so they simply needed a

way to submit a request and monitor the

progress of that request.

The customer chose to quickly develop a

message producer that could submit protocol

run requests via the ACS’s messaging API

using a published schema. There’s also the

option of launching protocols via ACS’s

RESTful API, as we’ll see with Case Study C.

An example of a message adhering to this schema is shown here:

{
 "baggage": {
 "acs_protolaunch_env": "virtual",
 "acs_protolaunch_version": "2.10.4"
 },
 "priority": null,
 "protocol_name": "generic_send_to_storage",
 "protocol_parameters": "{\"storage_submodule\": \"steristore-vsm-3\",
\"storage_location\": \"steristore-10-position\", \"plate_id\": \"123\",
\"additional_step\": \"\", \"plate_payload_type\": \"\", \"lid_submodule_type_name\":
\"\", \"relid_source\": true, \"pl_seal_type\": \"alu\"}",
 "protocol_run_id": "<UUID>",
 "requesting_user": {
 "string": "ginkgo_user"
 },
 "timestamp": "2024-01-01T16:59:41.102967+00:00",
 "version_specifier": null

Learn more ​​ ​ ​​ ​ ​ ​ 9

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

JavaScript

Contact us today!

}

The baggage field here deserves special

mention. Any contents passed into this field will

be passed along throughout the protocol run,

allowing application integrators to develop their

own additional semantic layer, such as sample

context, on top of the protocol run itself.

The protocol_name field is used to specify

the operation that the automation platform

should perform. Each defined protocol

specifies a schema for parameters that can be

provided at runtime, and these are stringified

as JSON and passed in the

protocol_parameters field. The

protocol_run_id is provided by the caller

and uses the UUID4 format to ensure that all

protocol runs receive a unique identifier.

The customer also developed a Kafka

consumer, integrated into their MES, to monitor

the status of runs. The ACS software that

manages RACs emits events on a Kafka topic

whenever an operation starts or completes.

An example of this type of message for the completion of a protocol run is shown below:

{
 "baggage": {
 "acs_protolaunch_env": "virtual",
 "acs_protolaunch_version": "2.10.4"
 },
 "error_message": null,
 "in_error": false,
 "module": "acs-dev-system",
 "payloads": [
 "123"
],
 "protocol_name": "generic_send_to_storage",
 "protocol_parameters":
"{\"plate_id\":\"123\",\"pl_seal_type\":\"alu\",\"relid_source\":true,\"additional_ste
p\":\"\",\"storage_location\":\"steristore-10-position\",\"storage_submodule\":\"steri
store-vsm-3\",\"plate_payload_type\":\"\",\"lid_submodule_type_name\":\"\"}",
 "protocol_run_id": "<UUID>",

Learn more ​​ ​ ​​ ​ ​ ​ 10

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

 "requested_timestamp": "2024-01-01T16:59:41.102967+00:00",
 "requesting_user": {
 "string": "ginkgo_user"
 },
 "status": "Finished",
 "timestamp": "2024-01-02T17:00:49.883807+00:00"
}

The customer designed custom web forms in

their MES for each protocol they designed to

run on their RAC system. They created

handlers to parse this form data, translate it

into the format specified by ACS, and submit a

protocol run request using the required Kafka

topic. They also created a form to monitor the

progress of protocol runs and maintain the

state of the workflow orchestration, enabling

transparent monitoring of the automation

platform. This form is illustrated in FIG. 3.

Data Return

The customer in this scenario leveraged their

MES in order to facilitate data gathering,

sample tracking, and downstream analysis. The

MES software was programmed to wait for

messages from ACS signifying that a protocol

run was complete. Upon receipt of this

message, the MES software triggered the next

steps in its defined workflow, which often

included retrieving and copying data from ACS

Applications.

Learn more ​​ ​ ​​ ​ ​ ​ 11

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

FIGURE 3. Customized Protocol Status Monitoring in the MES

As an example, upon completion of a liquid

transfer protocol run on an Echo Liquid

Handler, the MES software triggered custom

code to perform the intended liquid transfers in

their LIMS. Notably, this customer relied on the

intended liquid handling operation to determine

which transfers to model in software; they did

not need to parse logs from instruments to

verify against execution records.

Summary

Customers who already use a workflow

orchestration system like an MES can integrate

with ACS and RACs by building around the

ACS message bus to submit and monitor

protocol run requests. The data return pipeline

can be customized as needed, as all data

Learn more ​​ ​ ​​ ​ ​ ​ 12

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

produced by instruments managed by ACS is

available through ACS application APIs.

Learn more ​​ ​ ​​ ​ ​ ​ 13

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

CASE STUDY C — DEEP INTERNAL
PLATFORM INTEGRATION

Scenario

In the third scenario, we present the fully

integrated software solution used by Ginkgo

Bioworks for internal automation projects.

Ginkgo leverages a portfolio of its in-house

automation platform combined with offerings

from third-party automation system vendors in

order to complete its own automation

workflows. These disparate automation

platforms are united through a distributed

system that manages the creation of

automation runs as well as the processing of

data produced by the various platforms.

Launching Protocol Runs

There are two user personas who launch

protocol runs at Ginkgo: process development

engineers who design protocols and

automation operators who execute experiments

defined in an in-house workflow orchestration

system.

Process development engineers who must

rapidly iterate on protocols take advantage of

the included ACS Protocol Launcher tool

shown in FIG. 4. This tool allows them to define

the allowed inputs for protocols via a no-code

UI or programmatically via JSON schema. In

addition to defining inputs, this tool also allows

for launching batches of runs with different

parameter combinations, speeding up the

process of protocol development.

As a process becomes more rigidly defined,

Ginkgo process engineers may elect to define it

using an in-house workflow engine. They can

use ACS’s RESTful API to enable custom forms

in their workflow engine that operators can use

to launch protocols on RAC systems.

Data Return

Ginkgo Automation has developed an

automation event data integration system,

named the Event Processing Pipeline (EPP), for

connecting in-house and any third party

automation system. To connect ACS to

Ginkgo’s software ecosystem via EPP, new

adapter components, called Event Extractors

(shown below) were added. A high-level view of

the integration is shown in FIG. 5.

Briefly, EPP consists of three major

subsystems:

●​ An Event Store that records all events

that occur on an automation platform

and offers a way to query for those

events in a standardized format, as well

as a way to record the processing

status of those events

●​ Extractors that read events from an

automation platform and transform

them into a standard representation that

can be passed to the Event Store

Learn more ​​ ​ ​​ ​ ​ ​ 14

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

●​ An event processor that retrieves the

standardized events, processes them

using custom code, and then updates

the processing status of those events in

the Event Store.

Learn more ​​ ​ ​​ ​ ​ ​ 15

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

FIGURE 4. Protocol Launcher - Generic Echo Hitpick form

Learn more ​​ ​ ​​ ​ ​ ​ 16

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

JavaScript

Contact us today!

FIGURE 5. EPP High Level Architecture

Due to the standardization of event

representations, onboarding of RAC onto this

system only required developing new

extractors to read the events emitted by ACS.

These extractors were implemented as Kafka

consumers that read from an ACS ‘omnibus’

Kafka topic, which records events in the strict

order that they occur on instruments controlled

by the system. As an example, consider the

case of a liquid transfer performed by an

Agilent Bravo® liquid handler. When this device

completes an operation, ACS publishes a

message to the Kafka topic with the following

contents:

{
 "data": {
 "volume": "5",
 "event_type": "stamp",
 "tool_shape": "SBS96",
 "line_number": "6",
 "source_well": "B2",
 "source_plate": "123456",
 "destination_well": "A1",
 "destination_plate": "234567"

Learn more ​​ ​ ​​ ​ ​ ​ 17

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

 },
 "baggage": {
 "acs_app_version": "5.3.0",
 "protocol_run_id": "<UUID>",
 "acs_broker_version": "4.11.0",
 "protocol_run_step_id": "<UUID>",
 },
 "payloads": {
 "tips": {
 "id": "<UUID>",
 "type": "axygen-20-bravo-96",
 "barcode": ""
 },
 "source": {
 "id": "<UUID>",
 "type": "384-well Plate Echo PP",
 "barcode": "1111111"
 },
 "destination": {
 "id": "<UUID>",
 "type": "96-round-axygen-pdw11cs-halfdeep",
 "barcode": "222222"
 }
 },
 "timestamp": "2024-09-09T22:42:03.257853+00:00",
 "module_name": "nebula",
 "acs_data_type": "biological_event",
 "recipe_run_id": "<UUID>",
 "submodule_name": "bravo-96-sm-1",
 "protocol_run_id": "<UUID>"
 },
 "automation_iso_timestamp": "2024-09-09T22:42:03.257853+00:00",
 "automation_system_details": {
 "system_type": "acs",
 "service_versions": [
 {
 "name": "acs_app_version",
 "version": "5.3.0"
 },
 {
 "name": "acs_broker_version",
 "version": "4.11.0"

Learn more ​​ ​ ​​ ​ ​ ​ 18

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

JavaScript

Contact us today!

 }
]
 }
 }

This is then consumed by an extractor reading

from the topic and transformed into the

following standardized representation of a

liquid handle operation. The transformation

process is handled by custom Python code

that retrieves the operation logs from the ACS

application API and parses these into a generic

liquid handling event with a list of transfers in it:

{
 "run_id": "<UUID>",
 "event_id": "111111",
 "username": "ginkgo_user",
 "transfers": [
 {
 "id": null,
 "input": {
 "row": '2',
 "column": '2',
 "container_id": '123456'
 },
 "output": {
 "row": '1',
 "column": '1',
 "container_id": '234567'
 },
 "context": null,
 "lims_run_id": null,
 "liquid_class": null,
 "failure_reason": null,
 "actual_volume_uL": 5,
 "lims_transfer_id": null,
 "requested_volume_uL": 5,
 "occurred_at_iso_timestamp": "2024-09-09T22:42:03.257853+00:00"
 },

Learn more ​​ ​ ​​ ​ ​ ​ 19

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

 {
 "id": null,
 "input": {
 "row": '4',
 "column": '2',
 "container_id": '123456'
 },
 "output": {
 "row": '2',
 "column": '1',
 "container_id": '234567'
 },
 "context": null,
 "lims_run_id": null,
 "liquid_class": null,
 "failure_reason": null,
 "actual_volume_uL": '5',
 "lims_transfer_id": null,
 "requested_volume_uL": '5',
 "occurred_at_iso_timestamp": "2024-09-09T22:42:03.257853+00:00"
 }
],
 "event_type": "liquid_handled",
 "workcell_id": "nebula",
 "iso_timestamp": "2024-09-09T22:42:03.323335+00:00",
 "operation_type": "stamp",
 "instrument_name": "bravo-96-sm-1",
 "instrument_type": "bravo-96",
 "logged_by_service": {
 "name": "acs-extractor",
 "version": "56"
 }
}

The extractor passes this transformed event to

the EPP’s Event Store, which persists it to a

database with a unique generated identifier.

Asynchronously, a separate polling task

monitors for newly created events in the Event

Store and evaluates dependencies between

events to determine which events are available

for processing. When an event is identified as

Learn more ​​ ​ ​​ ​ ​ ​ 20

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

ready for processing, it is passed to the

matching event processor in EPP for its

standardized type. The processor is a Python

function that is responsible for any updates

that need to be performed in Ginkgo’s LIMS

and workflow management systems. Critically,

this function is written to be idempotent - if it is

called multiple times because it fails for any

reason, the output remains as expected. Upon

completion of its duties, the processor notifies

the Event Store that processing has

successfully completed.

This paradigm in EPP offers a number of

advantages:

●​ Events from different automation

platforms can be processed in the same

way

●​ Introducing the buffer of an intermediate

Event Store allows events from

independent runs to be processed in

parallel, even in the case of processing

errors in other runs.

●​ Additional interfaces and data products

can be built on top of the standardized

event data. For example, Ginkgo has

built a web application that allows users

to remediate event processing when

errors occur.

While EPP was designed for Ginkgo’s internal

software platform, it is adaptable to other LIMS

and data processing tools due to its use of

standard Python functions for event processing

tasks. We are considering productizing EPP in

simplified form for Ginkgo Automation’s

customers if there is enough interest. Please let

us know if you are interested in a product like

this.

Summary

Ginkgo was able to smoothly integrate RACs

into its EPP framework because ACS includes

modern integration points such as a

Kafka-based messaging bus and RESTful APIs.

This full integration powers in-order processing

of events from various automation platforms

with support for remediation in a custom UI. A

standardized format for automation events

allows for event processing without the need

for special handlers for each different type of

automation system.

Learn more ​​ ​ ​​ ​ ​ ​ 21

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

Contact us today!

CONCLUSION

The best integration option for a given

customer depends on their particular situation.

Customers that need lightweight integrations

with their other software systems can simply

use the tools provided by Ginkgo Automation

as in Case Study A. We believe this integration

mode will be the most common. Customers

with sizable software and hardware internal

platforms already in place may wish to build

fully integrated solutions that plug ACS into

their workflow and data ecosystem, like in

Case Studies B and C. At Ginkgo Automation,

we understand very well what it takes to

integrate the control and data planes in

high-throughput scenarios. Our design goal is

to provide the best integration flexibility and

speed in the industry for this. If you are

interested in discussing how to best integrate

ACS with your software systems, please reach

out to the Ginkgo Automation team today.

Learn more ​​ ​ ​​ ​ ​ ​ 22

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

	
	
	
	Control and Data Plane Integration for High-throughput Modular Automation
	
	(3 Case Studies)
	
	Control and Data Plane Integration for High-throughput Modular Automation (3 Case Studies)

