GINKGO
BIOWORKS

Control and Data Plane

Integration for High-throughput
Modular Automation

WwWW.GINKGO.BIO

GINKGO
BIOWORKS

Contact us today! 71

Control and Data
Plane Integration for
High-throughput
Modular Automation
(3 Case Studies)

Greg Lammers, Jose Cortez, Chris Bremner

INTRODUCTION

Ginkgo’s Automation Control Software (ACS)
provides a flexible interface for the integration
of our RAC systems with a wide range of
customer software integration needs. Our
platform uses open-source messaging
standards and schema definition tools to
ensure that new integrations can be developed
rapidly. This paper details three case studies
where ACS was integrated into various
high-throughput environments. Each case
study describes a scenario presented and

summarizes the solution that was developed
both for launching protocol runs and integrating
the data generated by them into automated

LIMS data pipelines.

The three case studies are presented here in
order of increasing complexity. We see the
simpler integration presented in Case Study A
as the integration mode that covers most
high-throughput customers. Case Study A
should be thought of as the default mode.
Case Studies B and C are heavy-weight modes
of integration that illustrate what software
integrations can look like when sizable software
and hardware ecosystems are already in place,
such as a Manufacturing Execution System
(MES) and data flow management from multiple

workcell platforms.

We do not cover the low-throughput scenario
(i.e. no automated data pipelines) in this
document, which can easily be accomplished
without the need for any customized software.
This scenario deserves mention here since it
will suit the needs of many customers, but it is
too simple to merit its own integration case
study. Files generated by devices are made
available in ACS applications, and they can be
downloaded manually as needed. In Case
Study A, we will point out the two relevant
steps for this integration mode.

Learn more A

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

(Note: In this document, we’ll use the general
term MES instead of the more specialized term
“Laboratory Execution System (LES)” that
typically applies in this domain since MES is

more widely known.)

Learn more A 3

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

CASE STUDY A — DIRECT PROTOCOL
EXECUTION WITH FILE-BASED OUTPUT

Scenario

In this customer’s scenario, laboratory
scientists directly execute protocols on RACs
without an orchestration layer, like a
Manufacturing Execution System (MES). They
expect to receive raw data from the
instruments on the RACs, and they also expect

this data to be available in a data warehouse.

Launching Protocol Runs

The RAC platform provides a tool that allows
users to launch protocol runs directly on RACs
without the need for external software. This tool
provides a schema-driven, user-friendly
interface for launching protocol runs with their
required parameters. A screenshot of this tool
is provided in FIG. 1 for a plate read protocol
on a BMG Labtech PHERAstar®.

For this case, the customer needed additional
validation and transformation logic added to
the protocol launching tool.

Learn more A

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO

BIOWORKS
Contact us today! 71
RUN1 RUN 2 RUN 3
FORM DATA

Generic PHERAstar Read | v5.1

storage location. Process instructions: https:#/ginkgobioworks.atlassian.net/wiki/x/ZwinVQ

Plate ID
123

@ Found container 123 in LIMS!

The ID of the plate to read

Plate starts sealed. Option to shake plate on BioShake and spin plate on HIiG prior to sending to PHERAstar. Performs an OD read. Then seal plate before sending it to designated

Plate Payload Type
[384-flat-corning-3640

The read plate container type

Bioshake Shake Duration (secs) *

30

Bioshake shake duration (secs)

Bioshake Shake Spead (rpm) *
2500

Bioshake shake speed (rpm)
HIG Spin Force (Gs)
4000

HiG spin force (Gs)
HIG Spin Time [sec) *

60

HiG spin time (Gs)

FIGURE 1. Protocol Launcher - Generic PHERAstar Read form
This was provided as part of the agreement

between the customer and Ginkgo Automation.

The custom version of the protocol launcher is
maintained by Ginkgo Automation separate

from other customer code and is updated as

the customer designs new protocols.

Data Return
This version of the RAC-based workflow
requires scientists and data scientists to

understand the output coming directly from
devices installed on the RAC system. These
devices typically generate files that are stored
local to the device and are exposed through
applications provided by ACS.

The primary data-producing instrument in this
example scenario is a Pherastar plate reader.
When the ACS application for the device

Learn more A

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

completes an operation, it produces a message

to its message bus with the following contents:

JavaScript

{
"data": {

"file_url": "<ACS_APPLICATION_URL>/data/<UUID>.1569902.pherastar_results.csv",

"event_type": "plate_read",
"line_number": 3,

"container_id": "id123",
"protocol_name": "0D66006"
o
"baggage": {
"acs_app_version": "5.3.0",
"protocol_run_id": "<UUID>",
"protocol_run_step_id": "<UUID>"
e
"payloads": {
"payload": {
"id": "<UUID>",
“type": "96-flat-corning-3370",
"barcode": "1111111"
}
},
"timestamp": "2024-08-26T18:52:01.199233+00:00",
"acs_data_type": "biological_event",
“recipe_run_id": "<UUID>",
"submodule_name": "pherastar-sm-1",

"protocol_run_id": "<UUID>"

The customer in this scenario used custom
software to listen to the message bus and wait
for events that matched this plate_read
event type. This custom software initiated an
in-house data pipeline by retrieving the data file
from the plate reader through the ACS
Application API and placing it in an AWS S3

bucket using a naming convention to record
metadata about the operation. The
components involved in this flow are depicted
in FIG. 2.

The ACS message bus is built on top of the
open-source Apache Kafka ® project, a widely

Learn more A

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

used messaging platform. This technology has
client libraries available for almost all common
programming languages. In this scenario, the
customer provided requirements so that
Ginkgo Automation could develop the custom
component using the confluent-kafka library for
Python to write a simple Kafka consumer. This
consumer processes messages by
deserializing them according to the JSON
format defined in the Confluent Schema
Registry that runs as part of ACS. Once

None

deserialized, messages that match the format
of events related to the Pherastar plate reader
are passed to a message handler that retrieves
relevant data files from the ACS Pherastar
application using a RESTful API. In this
example, the API endpoint for the file contents
is provided in the following message where
ACS_APPLICATION_URL is a base URL for the
application.

{ACS_APPLICATION_URL}/data/<UUID>.1569902.pherastar_results.csv

Customer-managed] | Ginkgo Automation | |MPLS Custom Compnnent|

oy
ACS Pherastar
Application

Q Fam plate read ACS Pherastar Device

&, Driver
Send plate read data —

Data Pipelines

S— b =

FIGURE 2. Case Study A — High Level Architecture 1) Plate read is initiated on the Pherastar device. 2) Once the plate
read is completed, the data is returned to the ACS Pherastar Application. 3) ACS Pherastar Application publishes a Kafka
message indicating a new data file is available. 4) Custom listener that is subscribed to the Kafka topic receives notification
that the new data file is available and retrieves the file from the ACS Pherastar application. 5) Custom listener forwards the file

it retrieved to AWS S3 for further downstream processing.
The contents of the result file are then

uploaded to AWS S3 using the boto3 library for
Python. The customer then manages the data

analysis pipeline using their own in-house tools

and transformation.

Learn more A

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

(Note: For customers with lower throughput
needs (i.e. without automated data pipelines),
only steps 1 and 2 would be relevant for their
scenario. They could directly download the

data from the device via the ACS Application.)

Summary

For customers with an interest focused on the
raw results from instruments on RACs
managed by ACS, Ginkgo Automation provides
out-of-the-box tools to create useful data
pipelines quickly. Additionally, simple custom
code components enable customized protocol
launching or data return via our APlIs.

Learn more A

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

CASE STUDY B — MANUFACTURING
EXECUTION SYSTEM (MES) INTEGRATION
WITH AUTOMATION CONTROL SOFTWARE
(ACS)

Scenario

In this scenario, laboratory scientists execute
protocols on RACs following the guidance of a
Manufacturing Execution System (MES). These
operators are responsible for preparing the
protocol runs, but they are not the ones doing
the data analysis. Instead, a separate team of
scientists must review the data from these
experiments in the company’s custom LIMS
software. Additionally, the company’s LIMS

performs extensive sample lineage tracking.

Launching Protocol Runs

Because this customer extensively used MES
software to orchestrate its lab workflows, they
needed to integrate RACs workloads with the
MES via the ACS API. The customer elected to
design its own protocols and forms for
parameterizing them, so they simply needed a
way to submit a request and monitor the
progress of that request.

The customer chose to quickly develop a
message producer that could submit protocol
run requests via the ACS’s messaging API
using a published schema. There’s also the
option of launching protocols via ACS’s
RESTful API, as we’ll see with Case Study C.

An example of a message adhering to this schema is shown here:

JavaScript
{
"baggage": {
"acs_protolaunch_env": "virtual",
"acs_protolaunch_version": "2.10.4"
H
"priority": null,
"protocol_name": "generic_send_to_storage",
"protocol_parameters": "{\"storage_submodule\": \"steristore-vsm-3\",

\"storage_location\": \"steristore-10-position\", \"plate_id\": \"123\",
\"additional_step\": \"\", \"plate_payload_type\": \"\", \"lid_submodule_type_name\":
\"\", \"relid_source\": true, \"pl_seal_type\": \"alu\"}",

"protocol_run_id": "<UUID>",
"requesting_user": {
"string": "ginkgo_user"

Ji:

"timestamp": "2024-01-01T716:59:41.102967+00:00",

"version_specifier": null

Learn more A

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

The baggage field here deserves special
mention. Any contents passed into this field will
be passed along throughout the protocol run,
allowing application integrators to develop their
own additional semantic layer, such as sample
context, on top of the protocol run itself.

The protocol_name field is used to specify
the operation that the automation platform
should perform. Each defined protocol
specifies a schema for parameters that can be
provided at runtime, and these are stringified

as JSON and passed in the
protocol_parameters field. The
protocol_run_id is provided by the caller
and uses the UUID4 format to ensure that all

protocol runs receive a unique identifier.

The customer also developed a Kafka
consumer, integrated into their MES, to monitor
the status of runs. The ACS software that
manages RACs emits events on a Kafka topic
whenever an operation starts or completes.

An example of this type of message for the completion of a protocol run is shown below:

JavaScript
1
"baggage": 1
"acs_protolaunch_env": "virtual",
"acs_protolaunch_version": "2.10.4"
}I

"error_message": null,
"in_error": false,

“module": "acs-dev-system",
"payloads": [
“123"
e
"protocol_name": "generic_send_to_storage",

“protocol_parameters":

"$\"plate_id\":\"123\",\"pl_seal_type\":\"alu\",\"relid_source\":true,\"additional_ste
p\":\"\",\"storage_location\":\"steristore-10-position\",\"storage_submodule\":\"steri
store-vsm-3\",\"plate_payload_type\":\"\",\"1lid_submodule_type_name\":\"\"%",

"protocol_run_id": "<UUID>",

Learn more A

10

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

"requested_timestamp": "2024-01-01T16:59:41.102967+00:00",

"requesting_user": {
"string": "ginkgo_user"
5,

"status": "Finished",

“timestamp": "2024-01-02T17:00:49.883807+00:00"

The customer designed custom web forms in
their MES for each protocol they designed to
run on their RAC system. They created
handlers to parse this form data, translate it
into the format specified by ACS, and submit a
protocol run request using the required Kafka
topic. They also created a form to monitor the
progress of protocol runs and maintain the
state of the workflow orchestration, enabling
transparent monitoring of the automation
platform. This form is illustrated in FIG. 3.

Data Return

The customer in this scenario leveraged their
MES in order to facilitate data gathering,
sample tracking, and downstream analysis. The
MES software was programmed to wait for
messages from ACS signifying that a protocol
run was complete. Upon receipt of this
message, the MES software triggered the next
steps in its defined workflow, which often
included retrieving and copying data from ACS

Applications.

Learn more A

11

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

Review Protocol Status
ACS Amplicon QC Request (v. v2.2.0) &

&8 Set follow-up date A Set due date

Form Workflow Context History Description Details

Protocol Status

i1 Add groups

Protocol runs have been submitted to ACS for the plates shown below. If a protocol errors or fails, contact the Shift Lead or Manufacturing Area
Owner. This page will update every 10 seconds or on refresh to display current status information. Please check back at the estimated completion

time.

Plate Info Status Details

1D: 3279625000 Running
Description: AD_PCR_1
1D: 3279829000

Description: AD_PCR_5

ID: 3279826000 Running
Description: AD_PCR_2
ID: 3279830000

Description: AD_PCR_6

ID: 3279827000 Running
Description: AD_PCR_3
ID: 3279831000

Description: AD_PCR_7

ID: 3279628000 Running
Description: AD_PCR_4
ID: 3279832000

Description: AD_PCR_8

FIGURE 3. Customized Protocol Status Monitoring in the MES

As an example, upon completion of a liquid
transfer protocol run on an Echo Liquid
Handler, the MES software triggered custom
code to perform the intended liquid transfers in
their LIMS. Notably, this customer relied on the
intended liquid handling operation to determine
which transfers to model in software; they did
not need to parse logs from instruments to
verify against execution records.

Summary

Customers who already use a workflow
orchestration system like an MES can integrate
with ACS and RACs by building around the
ACS message bus to submit and monitor
protocol run requests. The data return pipeline
can be customized as needed, as all data

Learn more A

12

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

produced by instruments managed by ACS is
available through ACS application APIs.

Learn more A 13

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

CASE STUDY C — DEEP INTERNAL
PLATFORM INTEGRATION

Scenario

In the third scenario, we present the fully
integrated software solution used by Ginkgo
Bioworks for internal automation projects.
Ginkgo leverages a portfolio of its in-house
automation platform combined with offerings
from third-party automation system vendors in
order to complete its own automation
workflows. These disparate automation
platforms are united through a distributed
system that manages the creation of
automation runs as well as the processing of
data produced by the various platforms.

Launching Protocol Runs

There are two user personas who launch
protocol runs at Ginkgo: process development
engineers who design protocols and
automation operators who execute experiments
defined in an in-house workflow orchestration
system.

Process development engineers who must
rapidly iterate on protocols take advantage of
the included ACS Protocol Launcher tool
shown in FIG. 4. This tool allows them to define
the allowed inputs for protocols via a no-code
Ul or programmatically via JSON schema. In
addition to defining inputs, this tool also allows

for launching batches of runs with different

parameter combinations, speeding up the
process of protocol development.

As a process becomes more rigidly defined,
Ginkgo process engineers may elect to define it
using an in-house workflow engine. They can
use ACS’s RESTful API to enable custom forms
in their workflow engine that operators can use
to launch protocols on RAC systems.

Data Return

Ginkgo Automation has developed an
automation event data integration system,
named the Event Processing Pipeline (EPP), for
connecting in-house and any third party
automation system. To connect ACS to
Ginkgo’s software ecosystem via EPP, new
adapter components, called Event Extractors
(shown below) were added. A high-level view of
the integration is shown in FIG. 5.

Briefly, EPP consists of three major
subsystems:

e An Event Store that records all events
that occur on an automation platform
and offers a way to query for those
events in a standardized format, as well
as a way to record the processing
status of those events

e Extractors that read events from an
automation platform and transform
them into a standard representation that
can be passed to the Event Store

Learn more A

14

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO

BIOWORKS
Contact us today! 71
e An event processor that retrieves the using custom code, and then updates
standardized events, processes them the processing status of those events in

the Event Store.

Learn more A 15

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO

BIOWORKS
Contact us today! 71
RUN 1 RUN 2 RUN 3
FORM DATA

Generic Echo Hitpick (Many to Many) | vo.11

See Protocol Process Instructions https://ginkgobioworks.atlassian.net/wiki/spaces/RACBOTS/pages/1412367556

Hitpick Plans by Destination
Lists of hitpick plans grouped by destination plate.

& Hitpick Summary

This plan involves 1 plate pair with a total of 96 well transfers.
Source plates: 1481890.
Destination plates: 1482149.
Source liquid class: AQ_BP.
Plate pairs (1):
* 1481890 -> 1482149 (96 transfers)

FORM DATA

Run Launch Parameters

Target RAC System

nebula | Nebula Production RAC System -
RAC system to submit this run to

Project ID

25: General v

Optional Project ID

CREATE BATCH OF 3 RUN(S)

FIGURE 4. Protocol Launcher - Generic Echo Hitpick form

Learn more A 16

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

N

~ < =

Operators

L 4

\
';j

{ | | Remediation Ul Notification Service

Run Creation APls

A
Interfaces

AN s s A
. V.
Module Systems /’_ —_— \ LIMS
l ™ ¥
~ ',-I Event Extractors }—U—; Event Store 4>{ Event Processor I
N 00/ y/ . A " A

N \ Ginkgo Data Systems /
X 7 Core / \

A 4

i

Data Lake

FIGURE 5. EPP High Level Architecture

Due to the standardization of event order that they occur on instruments controlled
representations, onboarding of RAC onto this by the system. As an example, consider the
system only required developing new case of a liquid transfer performed by an
extractors to read the events emitted by ACS. Agilent Bravo® liquid handler. When this device
These extractors were implemented as Kafka completes an operation, ACS publishes a
consumers that read from an ACS ‘omnibus’ message to the Kafka topic with the following
Kafka topic, which records events in the strict contents:
JavaScript
{
“data": 1
“volume": "5",
"event_type": "stamp",
“tool_shape": "SBS96",
"line_number": "6",
"source_well": "B2",

"source_plate": "123456",
"destination_well": "A1",
"destination_plate": "234567"

Learn more A 17

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO

BIOWORKS
Contact us today! 71
§o
"baggage": %
"acs_app_version": "5.3.0",
"protocol_run_id": "<UUID>",
"acs_broker_version": "4.11.0",
"protocol_run_step_id": "<UUID>",
5o
"payloads": {
"tips": %
"id": "<UUID>",
"type": "axygen-20-bravo-96",
"barcode": ""
5o
"source": %
"id": "<UUID>",
"type": "384-well Plate Echo PP",
"barcode": "1111111"
§o
"destination": {
"id": "<UUID>",
"type": "96-round-axygen-pdwllcs-halfdeep",
"barcode": "222222"
¥
5o
"timestamp": "2024-09-09T22:42:03.257853+00:00",
"module_name": "nebula",
"acs_data_type": "biological_event",
"recipe_run_id": "<UUID>",
"submodule_name": "bravo-96-sm-1",
"protocol_run_id": "<UUID>"

5o
"automation_iso_timestamp": "2024-09-09T722:42:03.257853+00:00",
"automation_system_details": {
"system_type": "acs",
"service_versions": [
{
“name": "acs_app_version",
"version": "5.3.0"

"name": "acs_broker_version",
"version": "4.11.0"

Learn more A 18

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

This is then consumed by an extractor reading
from the topic and transformed into the
following standardized representation of a
liquid handle operation. The transformation

JavaScript

3
"run_id": "<UUID>",
"event_id": "111111",

"username": "ginkgo_user",
"transfers": [
$
"id": null,
"input": %
"row": '2"',
"column": '2',
"container_id": '123456'
5o
"output": %
"row": '1',
"column": '1°',
"container_id": '234567'
5o

"context": null,
"lims_run_id": null,
"liquid_class": null,
"failure_reason": null,
"actual_volume_ulL": 5,
“lims_transfer_id": null,
"requested_volume_ulL": 5,

process is handled by custom Python code
that retrieves the operation logs from the ACS
application APl and parses these into a generic
liquid handling event with a list of transfers in it:

"occurred_at_iso_timestamp": "2024-09-09T722:42:03.257853+00:00"

Learn more A

19

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

"id": null,
"input": %
"row": '4"',
"column": '2°',
“container_id": '123456'
5o
"output": {
"row": '2"',
"column": '1°',
"container_id": '234567'
5o
"context": null,
"lims_run_id": null,
"liquid_class": null,
"failure_reason": null,

"occurred_at_iso_timestamp": "2024-09-09T22:42:03.257853+00:00"

"actual_volume_uL": '5"',
"lims_transfer_id": null,
"requested_volume_uL": '5"',
¥
e
"event_type": "liquid_handled",
"workcell_id": "nebula",
"iso_timestamp": "2024-09-09T722:42:03.323335+00:00",
"operation_type": "stamp",
"instrument_name": "bravo-96-sm-1",
"instrument_type": "bravo-96",
"logged_by_service": {
"name": "acs-extractor",
"version": "56"
¥

The extractor passes this transformed event to
the EPP’s Event Store, which persists it to a

database with a unique generated identifier.

Asynchronously, a separate polling task
monitors for newly created events in the Event
Store and evaluates dependencies between
events to determine which events are available

for processing. When an event is identified as

Learn more A

20

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

ready for processing, it is passed to the
matching event processor in EPP for its
standardized type. The processor is a Python
function that is responsible for any updates
that need to be performed in Ginkgo’s LIMS
and workflow management systems. Critically,
this function is written to be idempotent - if it is
called multiple times because it fails for any
reason, the output remains as expected. Upon
completion of its duties, the processor notifies
the Event Store that processing has
successfully completed.

This paradigm in EPP offers a number of
advantages:

e FEvents from different automation
platforms can be processed in the same
way

e Introducing the buffer of an intermediate
Event Store allows events from
independent runs to be processed in
parallel, even in the case of processing
errors in other runs.

e Additional interfaces and data products
can be built on top of the standardized
event data. For example, Ginkgo has
built a web application that allows users
to remediate event processing when

errors occur.

While EPP was designed for Ginkgo’s internal
software platform, it is adaptable to other LIMS
and data processing tools due to its use of

standard Python functions for event processing
tasks. We are considering productizing EPP in
simplified form for Ginkgo Automation’s
customers if there is enough interest. Please let
us know if you are interested in a product like
this.

Summary

Ginkgo was able to smoothly integrate RACs
into its EPP framework because ACS includes
modern integration points such as a
Kafka-based messaging bus and RESTful APIs.
This full integration powers in-order processing
of events from various automation platforms
with support for remediation in a custom Ul. A
standardized format for automation events
allows for event processing without the need
for special handlers for each different type of
automation system.

Learn more A

21

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

GINKGO
BIOWORKS

Contact us today! 71

CONCLUSION

The best integration option for a given

customer depends on their particular situation.

Customers that need lightweight integrations
with their other software systems can simply
use the tools provided by Ginkgo Automation
as in Case Study A. We believe this integration
mode will be the most common. Customers
with sizable software and hardware internal
platforms already in place may wish to build
fully integrated solutions that plug ACS into
their workflow and data ecosystem, like in
Case Studies B and C. At Ginkgo Automation,
we understand very well what it takes to
integrate the control and data planes in
high-throughput scenarios. Our design goal is
to provide the best integration flexibility and
speed in the industry for this. If you are
interested in discussing how to best integrate
ACS with your software systems, please reach

out to the Ginkgo Automation team today. 71

Learn more A

22

https://www.ginkgo.bio/contact-us
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgobioworks.com/offerings/automation/#contact
https://www.ginkgo.bio/

	
	
	
	Control and Data Plane Integration for High-throughput Modular Automation
	
	(3 Case Studies)
	
	Control and Data Plane Integration for High-throughput Modular Automation (3 Case Studies)

