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Abstract

The Genode OS framework represents a novel operating system architec-
ture that has been developed to address the challenges posed by complex-
ity. It is an open-source tool kit for building highly secure component-
based operating systems and its functionality extends across a wide range
of devices, from those intended for use in embedded systems to those
designed for dynamic general-purpose computing. Despite Genode’s self-
characterisation as a security-oriented operating system, it is notable that
there is an absence of support for fuzzing, a process which has proven its
worth in discovering real-world software vulnerabilities. In this thesis we
present the process of porting AFL++, a state-of-the-art fuzzer, to Genode,
with the objective to address this lack of support for fuzzing. The experi-
mental findings demonstrate that, despite the introduction of additional
overhead by Genode, the ported fuzzer runs at 93% of the fuzzing speed
compared to running AFL++ on a general-purpose operating system. The
fuzzer was then employed to test a security-critical Genode component.
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Chapter 1

Introduction

In the rapidly evolving landscape of cybersecurity, ensuring the reliability
and security of software systems has become paramount. As software appli-
cations become increasingly complex and interconnected, the potential for
vulnerabilities and bugs that can be exploited by malicious actors also grows.
One of the most effective techniques for identifying these vulnerabilities is
fuzzing, a dynamic analysis method that involves inputting invalid, unex-
pected, or random data into a computer program to uncover bugs and other
weaknesses [1].

Fuzzing has emerged as a critical component in the software development
lifecycle, particularly in the context of security testing. By systematically
exploring a wide range of input scenarios, fuzzing can uncover flaws that
might otherwise go undetected through traditional testing methods.

The significance of fuzzing is underscored by its widespread adoption in both
industry [2, 3, 4, 5] and academia [6, 7, 8]. Major technology companies and
open-source projects alike have integrated fuzzing into their development
processes, recognizing its value in identifying and addressing vulnerabilities.

Especially in safety-critical systems, such as industrial control systems or
critical network infrastructure, undetected vulnerabilities can potentially cause
a lot of harm. It is a common practice for such systems to be equipped with an
operating system that provide the necessary functionality. General-purpose
operating systems, such as Linux or Windows, are a popular choice as they
can provide a multitude of functionality, drivers and system services to their
applications.

However, this approach inevitably results in a substantial and complex system,
which is unavoidable due to the dynamic nature of workloads and the high
functional demands placed upon them. This increased complexity invariably
leads to a greater probability of vulnerabilities arising [9, 10].

Therefore this complexity needs to be addressed somehow. One way to
organize it is by applying a strict organizational structure to all software com-
ponents, as proposed by ’Genode, the operating system framework’ [11]. Each
component is explicitly defined in a tree structure, receives a share of the avail-
able hardware resources and, more importantly, is compartmentalised [12].
With this approach vulnerabilities can still occur, but with a reduced impact.
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This thesis describes how we added fuzzing capabilities to the Genode frame-
work. We provide an additional security tool by porting a state-of-the-art
fuzzer AFL++ to Genode. A distinguishing feature of our fuzzer is its ability
to test the communication interfaces of Genode’s components and its core
functionalities, which are crucial to every Genode system. Furthermore, by
porting an existing fuzzer, we can utilise years of research that have been
incorporated into these fuzzing tools.

By combining the vulnerability detection capability of fuzzers with the orga-
nizational structure of Genode, a novel method of addressing the complexity
issue in security-critical systems will be presented. The ported fuzzer is based
on AFL++ and achieves an execution speed of around 93% of that of AFL++.
This disparity can be attributed to the architectural design of Genode, which
prioritises security over performance.

The structure of the thesis is as follows: Initially, a comprehensive overview
of the background of Genode, fuzzing and its related topics is provided.
Thereafter, the problem statement is presented. The chapter after that demon-
strates the concrete implementation of the ported fuzzer through a top-down
approach. The subsequent chapters will then evaluate the fuzzer, review the
related work, followed by a concise discussion and conclusion.
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Chapter 2

Background

2.1 The Genode Framework

Genode [11] is an open-source operating system framework designed for high
security and robustness. It enables the construction of highly secure systems
by building on a microkernel architecture, which separates applications and
functionality into distinct, isolated domains known as Protection domain
(PD). These protection domains provide compartmentalization and operate
independently, ensuring that even if one fails or is compromised, the impact
on the overall system is minimized. Genode is often used for embedded
systems, IoT devices, and security-critical environments due to its flexibility
and fine-grained control over system resources.

At its core, Genode runs on top of a microkernel, which is responsible for essen-
tial tasks like memory management, thread scheduling, and Inter Process Com-
munication (IPC). Unlike traditional monolithic operating systems, Genode
organizes applications and system services into small, modular components
that communicate with each other through Remote Procedure Call (RPC)s.
This architecture allows for fine-grained control over permissions, memory,
and resources, as each component is confined within its PD.

2.1.1 Components

Genode’s architecture is organized around modular components, each serving
a distinct role in the system and running within its own PD. This modularity
allows the system to be highly customizable, enabling developers to include
only the components required for a specific application. And as mentioned,
each component communicates with others through the microkernel’s RPC
mechanisms, governed by capabilities to ensure strict access control.

Components are organized in a hierarchical and recursive system structure,
as illustrated in Figure 2.1. The first user-level component is called core and
represents the root of the component tree. It is a central part of the Genode
architecture, providing essential services such as memory management, ca-
pability distribution, and system resource allocation [12]. Further, it directly
communicates with the kernel and manages the creation and organization of
other components while enforcing system-wide policies.
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2.1. The Genode Framework

device driver init

user application B

init

core

user application A

Figure 2.1: Example of a Genode component tree. It highlights the hierarchical and recursive
system structure: the arrows depict the parent-child relationship and init can start another init
component.

Next an init component is started. Among other functions, this component
creates subsystems according to a user defined configuration called a “run-
script”. This script contains all information necessary for it to run, such as the
components used, how many resources each component receives and how or
when the script finishes. The tree structure exhibits an inherent parent-child
relationship, whereby each component is initiated by its parent as a child.
Exceptions to this rule are represented by the root of the tree.

This parent-child relationship allows components to manage resources and
delegate specific capabilities to their children, providing a flexible way to
construct and manage subsystems with isolated privileges. A child can then
announce its service to the parent, allowing other components to detect its
service.

To go beyond the core’s functionality, device drivers in Genode are also
modular components that interact with hardware through strictly controlled
interfaces. System services, such as networking, file storage, and graphics,
are likewise encapsulated in separate components. Thanks to the protection
domain, failures or security vulnerabilities in one driver or service component
do not affect others.

2.1.2 Protection domains

Protection domains in Genode are isolated environments for applications and
services. Each domain has its own set of resources and permissions, and inter-
actions between domains are carefully controlled. This isolation mechanism is
fundamental for security, as it prevents direct access to resources or data in
other domains. If a domain needs to communicate or access resources outside
its boundary, it must do so through defined, secure interfaces, managed by
the employed microkernel.

The primary means of communication between protection domains in Genode
are RPCs, which enable a domain to request services or resources from another
domain in a secure, structured manner. When a component (the client) wants
to use a service provided by another component (the server), it sends an
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RPCs request. The microkernel intercepts and mediates this communication,
providing security checks and enforcing access control policies to ensure that
only authorized components can interact.

2.1.3 Sessions

As previously stated, a child announces its service to the parent. Other
components can then access this announced service by setting up a session
through the use of capabilities. Services that one might expect from a POSIX
system, such as logging information to the console or accessing a file-system,
are only available through the use of theses sessions, because there is no global
namespace.

These sessions define clear interfaces through which a service can be accessed.
Each component can announce its own custom session type, that defines how
their service is accessed. However, it is preferable for only a small number
of custom sessions to be in place, in order to maximise the composability
of components. There are many common session interfaces that are used
throughout Genode, which are introduced in the foundation book [11].

2.2 Code Coverage

Code coverage is a metric used in software testing to determine the extent
to which the source code of a program has been executed and tested. High
code coverage is often associated with thorough and effective testing. The
reasoning being, that a software bug is only detected if the flawed code is
executed. However, it is important to note that achieving high coverage does
not guarantee the absence of bugs.

Different kind of coverage metrics exist with different tradeoffs, such as
statement coverage, edge coverage and path coverage [13].

2.2.1 Statement Coverage

Statement coverage verification is conducted for each instruction in the code
to ascertain whether it has been executed. The implementation of the tracking
involves the use of a simple bit-array, called trace bits, in which a 1 indicates
the execution of a statement and 0 indicates the absence of execution. In order
to reduce the size of the trace bit array, the basic block1 can be tracked instead
of each statement on its own.

However, this approach does not guarantee the capture of all edges2. For
instance, consider the simple function foo() with its corresponding Control
Flow Graph (CFG) depicted in Figure 2.2. If all basic blocks A, B and C are
covered, we know that the edge A → B, and B → C are covered, but it is not
clear whether the edge from A → C was executed. It is for this reason that
more precise coverage information is typically desired.

1Basic blocks are straight-line code sequences with a single entry point and a single exit point,
containing no branches except at the end.

2Here edges refer to the edges from a basic block to another in the CFG.
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2.2. Code Coverage

1 void foo(char *input) {

2

3 if (input)

4 *input = ’a’;

5

6 exit (0);

7 }

A
if (input)

B
*input = 'a'

C
exit(0)

Figure 2.2: On the left: Example foo() function. On the right: CFG of the foo() function. Each
box is a basic block and the arrows signifying the edges.

2.2.2 Edge Coverage

Edge coverage, as the name suggests, tracks the edges instead of the state-
ments. This approach effectively addresses the limitations of statement cover-
age previously highlighted. As with statement coverage, trace bits are used
to mark the basic block and the edge to this specific block. Consequently,
full edge coverage implies full statement coverage. While this metric is more
comprehensive, there still exist situations where full edge coverage has been
achieved, but not every possible execution path has been taken. This situation
is exemplified in Figure 2.3. If the function bar() is run once with a = 2, b

= 3 and once with a = 3, b = 2, we achieve full edge coverage, but we miss
the out-of-bound access when calling the function with a = 3, b = 3.

1 char array [5] = { ... };

2

3 char bar(int a, int b) {

4 int i = 2;

5 if (a < 3) i -= 1;

6 else i += 2;

7 if (b < 3) i -= 2;

8 else i += 1;

9 return array[i];

10 }

i = 2
if (a < 3)

i += 2

if (b < 3)

i -= 1

i -= 2 i += 1

return

array[i]

Figure 2.3: On the left: Vulnerable bar() function that contains a potential out-of-bound access.
Inspired by [13]. On the right: CFG of the bar() function.
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2.3. Fuzzing

2.2.3 Path Coverage

Path coverage takes the tracking one step further and tracks every possible
path to address the short comings of edge coverage. This, however, poses
another problem, as each branch doubles the number of evaluated paths.
This quickly becomes expensive and is known as path explosion [14]. This
problem is exacerbated by loops where the number of iterations is not known.
The implementation also becomes more complex: Given current memory
constraints, programs with 40 branches or more cannot be mapped into a flat
array in memory, so enumerating all paths becomes impossible. One option is
to apply runtime monitoring of the execution and the paths [13].

2.3 Fuzzing

OWASP defines fuzzing in the following way:

“Fuzz testing or Fuzzing is a Black Box software testing technique,
which basically consists in finding implementation bugs using
malformed/semi-malformed data injection in an automated fash-
ion.” (OWASP[15]; 2024)

A fuzzer is then defined as the application or a system that applies fuzzing on
a system. This system is generalized as the so called System under Test (SUT)
and refers to an application or subsystem that we want to test. It can be as
simple as a ELF-binary or a complex multi-threaded server infrastructure. The
process of using a fuzzer on a SUT is then known as a fuzzing campaign.

Figure 2.4 illustrates how a fuzzer typically operates. Here, the fuzzer gener-
ates a random input and then executes the SUT with this input data. Subse-
quently, the fuzzer receives execution feedback, which may include informa-
tion on whether the SUT crashed or experienced a timeout. This feedback is
then used to generate new input data.

In the event that solely random data is generated, the efficacy of the fuzzer
is equivalent to that of a brute force approach. It is therefore crucial that
relevant input data is generated. This is typically accomplished by incorpo-
rating coverage data during the generation of new input data. The coverage
information is used by the fuzzer to identify inputs of interest, given that
these inputs have higher coverage. The fuzzer then uses these inputs as a
basis to generate further inputs. This enhances the fuzzer’s efficiency, as it
leads to the identification of more vulnerabilities with less fuzzing iterations.

An alternative approach would be to utilise dictionaries, which explicitly
define the structure of the generated input data. To illustrate this, one may
consider a dictionary designed for a web server, which would generate valid
HTTP requests, with the HTTP headers and files undergoing constant modifi-
cation.

Once relevant input is generated, the main goal becomes to increase the perfor-
mance, that is to say, the number of executions per second. It is important that
each execution is as fast as possible, thereby enabling the identification of more
potential vulnerabilities within the specified time frame. Thus, performance
is a central concern when using fuzzers.
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2.3. Fuzzing

Fuzzer SUT

Execution Feedback

Random Input

Generate 
Input

Figure 2.4: Generalized overview on how fuzzing operate.

2.3.1 Fuzzing Types

The effectiveness of fuzzing depends significantly on the approach used, with
the three main categories being black-box, grey-box, and white-box fuzzing.
Each offers distinct benefits and trade-offs based on the level of program
visibility, execution context and instrumentation available.

Black-Box Fuzzing. Black-box fuzzing is the simplest and most general
approach, where the tester has no access to or knowledge of the internal
workings of the SUT. It treats the software as a “black box”, relying solely
on its input-output behavior. Inputs are generated randomly or using pre-
defined patterns without feedback from the program’s execution. The lack
of instrumentation makes black-box fuzzing easy to implement and broadly
applicable, particularly in environments where source code or internal de-
tails are unavailable. However, this simplicity often results in poor efficiency
in finding deep or complex bugs, as the process may fail to systematically
explore diverse or critical code paths.

White-Box Fuzzing. In contrast, white-box fuzzing provides complete access
to the target program’s internal logic and structure, utilizing techniques like
symbolic execution or constraint solving to systematically explore all possible
execution paths. This allows for precise identification of vulnerabilities and
exhaustive testing, particularly in safety-critical applications. However, the
computational overhead of white-box fuzzing can be substantial, and its
scalability is limited when dealing with programs with a large state space or
complex dependencies [16].

Grey-Box Fuzzing. Grey-box fuzzing bridges the gap between black-box
and white-box approaches by providing partial visibility into the program’s
internal state through lightweight instrumentation. This balance allows testers
to gain execution feedback without the computational costs of full symbolic
analysis. Tools like American Fuzzy Lop (AFL) exemplify grey-box fuzzing
by using code coverage metrics to guide input generation, prioritizing unex-
plored paths and avoiding redundant tests. Grey-box fuzzing has become
the preferred method for many practical applications, offering an excellent
trade-off between efficiency and depth of vulnerability discovery [17].

8



2.3. Fuzzing

2.3.2 Coverage-Guided Fuzzing

Coverage-guided fuzzing is a specialized form of grey-box fuzzing that uses
execution feedback, typically code coverage data, to inform and optimize the
fuzzing process. By focusing on inputs that trigger previously unexplored
paths, it maximizes testing efficiency and effectiveness. Popular tools like
AFL, LibFuzzer, and Honggfuzz [18, 19, 2] utilize this approach, which has
proven successful in uncovering numerous high-profile vulnerabilities. The
adaptive nature of coverage-guided fuzzing makes it particularly suitable for
large and complex software systems, where random input generation would
likely fail to achieve sufficient coverage.

Fuzzing, by its very design, is only capable of detecting bugs in code that has
been executed. In order to ensure that every part of the code has been executed,
it is considered best practice to achieve high code coverage. In the context
of fuzzing, two approaches are usually employed together: mutation-based
fuzzing and source code instrumentation.

Mutation-based Fuzzing. Mutation-based fuzzing works by taking known
inputs and subjecting them to random mutations. This approach is also
attractive because it requires only a small number of sample inputs (seeds)
for the target program. Once a seed has been mutated, it is added to the
collection of inputs and used in a later execution.

Source Code Instrumentation. Source code instrumentation can facilitate
the identification of new code paths or blocks that have been triggered. Its
primary goal is to track code coverage, monitor execution paths in order to
guide fuzzers to generate more effective inputs. Techniques include compile-
time, runtime, and binary instrumentation, where extra instructions are added
at specific points (for example at the beginning of a basic block) in the code.

While instrumentation improves fuzzing by providing detailed execution
insights, it introduces performance overhead and code complexity. But this is
a favourable tradeoff as exmplified:

The code in the function process data() defined in Listing 2.1 causes a stack
overflow that can be triggered when executing line 6. In order to successfully
identify the first three characters, a black-box fuzzer would require a correct
guess from among 28×3 = 224 possible combinations. By using a coverage-
guided fuzzer with source code instrumentation, each comparison step can
be progressed step separately, which leads to 28 × 3 possible combinations,
massively increasing the overall probability of generating an input that triggers
the stack overflow during fuzzing [20].

1 void process_data(char *input , int len) {

2 char buffer [10];

3 if (len > 0 && input [0] == ’b’)

4 if (len > 1 && input [1] == ’u’)

5 if (len > 2 && input [2] == ’g’)

6 memcpy(buffer , input , len);

7 }

Listing 2.1: Vulnerable C function, inspired by [21].
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2.4. AFL++

2.4 AFL++

AFL++ [22] is an edge-coverage-guided mutation-based fuzzer, approximating
path-coverage by tracking the last two executed basic blocks [13], which boasts
a feature-rich toolbox and wide soft- and hardware support. It is the successor
of the original project AFL [23] and has the objective to consolidate all features
and enhancements of AFL into a unified project. This project was initiated
in response to the discontinuation of AFL development in mid-2017 and is
now being run by its community. Since then, AFL++ has incorporated a
multitude of features and reasearch results. It has extended its functionality
to encompass diverse architectures and fuzzing modes, like fuzzing binaries,
Android apps, fuzzing on MacOS or binary rewriters.

AFL++ provides a range of tools, including afl-min, which minimises the
initial set of seeds, and afl-showmap, which provides information about the
attained code coverage. The utilisation of these tools has the potential to
increase the execution process and to facilitate the triaging of the fuzzing
campaign and potential crashes.

Further, AFL++ supports a vast amount of command line arguments as well
as environment variables, which provide a way to control how the mutator
of the fuzzer works, allow to bind the execution to a CPU, specify a timeout
parameter and more. AFL++ supports different compilers, Clang or GCC, and
instrumentation modes. The introduction of further concepts is made when
there is a need to do so. For a comprehensive list and detailed explanation of
the features, please refer to the official documentation of AFL++ [24].

2.4.1 Fuzzing Overview

The first step when developing a fuzzing campaign using AFL++ is to define
the SUT. In an ideal scenario, the SUT should comprise solely the functionality
that is to be tested, with the objective of enhancing performance. The subse-
quent step is to instrument the target using one of the available modes. Then
the initial inputs, called seeds, need to be defined and the fuzzing campaign
can be started. This simply involves starting a binary called afl-fuzz with
the correct command line arguments and the fuzzing starts.

Figure 2.5 illustrates a simplified overview of the manner in which the fuzzer
works. When afl-fuzz is running, it uses the system calls fork() and execv()

to create a new process and start the SUT respectively. Different techniques are
used in order to increase the execution speed of AFL++. One such improve-
ment is the so-called forkserver. The forkserver increases the execution
speed by forking just before the code we want to test is executed, effectively
removing the need to call execv() in each iteration. The communications
between afl-fuzz and the SUT is then handled by the forkserver.

afl-fuzz forkserver SUT

start

report status

test-case ready

report status

Figure 2.5: Simplified AFL++ fuzzing setup.
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2.4. AFL++

Once the system is operational, afl-fuzz provides the new test case via
shared memory or a shared file and transmits a signal to the forkserver. A
new process is forked, the test-case is read and used in the current execution.
A coverage map (the trace bits) is employed for the purpose of indicating
each used edge. Upon completion of the execution, whether successfully or
due to a crash, the forkserver receives the process’ status and relays it to
afl-fuzz. The test-case is then subjected to mutation based on the status and
the coverage map, and if it resulted in a crash, it is saved. Subsequently, a
new run is initiated.

2.4.2 Mechanisms and Architecture

Figure 2.6 shows a detailed sequence diagram, that depicts all communications
between the processes when running a fuzzing campaign. Note that many
details of afl-fuzz were left out, as they are optional or not deemed relevant
to the port. However, the interactions between the components have been
accurately represented.

SUTforkserverafl-fuzz

Initialize the fuzzer
Set up coverage map (trace_bits)

becomes forkserver

map size

Write test-case to shared memory

Wait until status received

exit or crash

1. Run until just before main()
2. Set up coverage map (trace_bits)
3. Set up control and status pipe

status of child process

child PID

last execution timed out

status pipe control pipe

 Instrumented binary

Mutate test-case based on status
and coverage map

reply with welcome message

dictionary usage

use shared memory fuzzing

welcome message

end forkserver handshake

start forkserver handshake

Wait until status received

Repeat until done

Read test-case from shm
Continue from main()

call fork() and execv()

fork()

Figure 2.6: Sequence diagram of the communication between afl-fuzz, forkserver and the
SUT running in default fuzzing mode and using shared memory fuzzing. Note that execv() is only
executed once, while fork() is called in each iteration. Test-cases are communicated using shared
memory, which is not depicted in the diagram. The status and control pipes refer to UNIX pipes,
i.e. unidirectional data channels used for interprocess communication.

afl-fuzz

This component hosts the entry point, a main() function, of the fuzzer. Typi-
cally, it is initiated as a command-line executable, accepting a multitude of
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2.4. AFL++

flags and configurations. These allow the user to modify various aspects of the
execution, mutator settings, fuzzing behaviour, test settings, and several other
options. The execution process can be further influenced by the configuration
of environment variables.

In order to execute afl-fuzz, it is required to specify an input and output
directory. The input directory is used to provide one or several seeds to the
fuzzer. The execution of afl-fuzz requires that at least one of the seeds does
not result in a crash or timeout. The output directory contains every artifact
created by the fuzzer, including program inputs that result in a crash and the
specified configuration.

Based on the desired configuration, afl-fuzz will continue its initialization,
for example setting up the shared memory segment and checking if the SUT

has been instrumented or not. Then, if everything is ready to execute, this
process will fork itself and start the SUT binary. See the fork() and execv()

call in the sequence diagram.

Following the execution of the handshake with the forkserver, afl-fuzz
initiates a dry run to evaluate the configuration. Subsequently, the program
enters a loop where it takes the current test-case from a queue, writes it
to shared memory, notifies the forkserver and awaits the response of the
execution.

The execution falls into one of four options. It can run successfully, which
is the expected option. If not, it will either be marked a crash, a hang or a
timeout. It is labeled as a crash if the SUT returned a non-zero status code.
The distinction between a hang and a timeout is that a hang will complete if
the allocated time is doubled, whereas a timeout will not. So if the execution
does not finish before the user defined doubled timeout, it is marked as a
timeout.

In combination with the execution status and the trace bits, the test-case is
evaluated and checked if it is deemed to be interesting. In such cases, the test
case is saved to disk. Then, the test-case is subjected to multiple mutations,
appended to the queue, and the current iteration is finished.

forkserver

Following the initialization of the SUT, the control flow of the program is
transitioned to the forkserver, thereby the SUT becomes the forkserver.

Next, the forkserver does the handshake, exchanging a few more configu-
ration details with afl-fuzz. Upon receipt of the notification from afl-fuzz

that states whether the last execution resulted in a timeout, the server is
then prepared to initiate a fork() and pass control flow back to the SUT. It
waits until it has received execution feedback from the SUT and relays this
information to afl-fuzz.

SUT

The SUT contains the actual code that is subject to testing. However, in order
to ensure compatibility with AFL++, it is necessary to instrument its source

12



2.4. AFL++

code. The documentation of AFL++ enumerates three instrumentation modes:
LTO (link-time optimisation) mode, LLVM mode and GCC PLUGIN mode. As will
be argued subsequently in section 4.3.1, the utilisation of both LTO and LLVM

mode is not a viable option to use with Genode. Therefore, the focus will be
exclusively on the GCC PLUGIN mode.

As the name implies, the GCC PLUGIN mode uses a GCC-plugin [25]. By
attaching itself to GCC, compilation information about the CFG is made
available. Using this information, the GCC PLUGIN can add additional compiler
passes where code instructions, called instrumentation, are added to the
binary.

The instrumented SUT can then be used and started by afl-fuzz. The SUT,
similar to afl-fuzz, retrieves its configuration from environment variables. It
initialises the shared memory segment and just before executing the main()

function it becomes the forkserver. This ensures that when the forkserver

forks itself, the execution will continue at the main() function, which is exactly
where the code subject to testing starts.

By default, SUT reads the test case through standard input (stdin). In certain
instances, this may suffice for the purpose of testing. However, in most cases,
the user is required to write a harness. The purpose of the harness is to
provide a translation layer between the test-case and the tested functionality.
This translation layer is able to interpret the test-case and translate it into a
comprehensible form. This can be illustrated by the ability to load the test-case
into a specified data structure or to modify it to conform to a specific interface.
This is where dictionaries can help: by defining a specific format to which the
input must conform, the test case can be translated more easily.
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Chapter 3

Problem Statement

Safety-critical devices play an increasingly vital role in modern society, form-
ing the backbone of systems where failure can result in catastrophic conse-
quences. These systems include medical devices such as pacemakers and
infusion pumps, avionics systems in aircraft, industrial control systems, and
components in the automotive sector like autonomous driving modules or
braking systems. Given their impact, ensuring the reliability and security of
the software that powers them is of utmost importance.

The software running on safety-critical devices is intentionally designed to
be small and lean. This minimalistic approach reduces complexity, making
it easier to verify and validate the software. Smaller codebases are generally
easier to understand, maintain, and test, which is crucial for identifying and
mitigating potential risks. They reduce the attack surface and provide a
more deterministic execution model—features that are highly desirable in
security-critical environments.

The “Genode Operating System Framework” is a prominent example of
such an approach. It is a microkernel-oriented, capability-based framework
designed to build secure operating systems. Its architectural principles em-
phasize modularity, strict separation of components through compartmen-
talization, and the principle of least privilege, all of which contribute to its
suitability for safety-critical deployments.

Despite its strengths, Genode currently lacks support for one of the most
effective bug-finding techniques in software development called fuzzing.
Fuzzing, involves the automatic generation of large volumes of randomized or
semi-randomized inputs to test programs in an attempt to uncover unexpected
behavior, crashes, or security vulnerabilities. It has proven to be highly
successful in many mainstream software projects such as OSS-Fuzz, a fuzzing
initiative by Google, the integration of fuzzers into browsers like Chrome and
Firefox, and extensive use within operating system kernels and libraries.

There is an apparent disconnect between the safety-critical systems built on
Genode and the current state-of-the-art in software testing. While Genode
emphasizes minimalism and formal reasoning, modern fuzzing techniques
offer complementary benefits by uncovering bugs that might escape traditional
review or formal analysis.
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This thesis aims to bridge this gap by bringing fuzzing capabilities to the
Genode framework. By doing so, we seek to enhance Genode’s ability to
identify and mitigate software vulnerabilities, thereby improving the safety
and reliability of systems built on this framework. The introduction of fuzzing
will enable developers to proactively discover and address bugs, ultimately
contributing to the creation of more robust and secure safety-critical devices.
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Chapter 4

System

A top-down approach was used while designing the port. The structure of
this chapter mirrors this methodological approach. The initial section of this
chapter offers a high-level overview through the utilisation of a component
tree diagram. The subsequent section delves into the intricacies of component
communication during startup and a single fuzzing iteration. The final
implementation section provides a comprehensive overview of the port’s
functionality and the rationale behind the design decisions.

All code is publicly available on Github [26].

4.1 Overview

The design of the port was based on the overview in Figure 2.5. All three parts,
afl-fuzz, forkserver and SUT were mapped to a set of Genode components.
The outcome of this process is illustrated in the component tree depicted in
Figure 4.1.

The six components that are grouped as “Fuzzing Engine” provide the func-
tionality of both afl-fuzz and the forkserver. Note that the forkserver has

core

init

timer lx-fs shm-server report-rom genode-afl-fuzzSUT-init

harness

Fuzzing Engine

SUT

Figure 4.1: Overview of the component tree required to execute afl-fuzz.

16



4.2. Execution Details

been merged with afl-fuzz into a new component called genode-afl-fuzz.

Each component provides a unique but required service:

(1) The timer component provides timing information to check whether the
current execution has exeperienced a timeout.

(2) The lx-fs component is needed to save the test-cases that AFL++ deemed
interesting to disk. Here the “lx” refers to linux and “fs” to filesystem. So
this needs to be updated according to the kernel on which the fuzzer is
executed on.

(3) The shm-server component provides an translation layer between POSIX
shared memory system calls1 and Genode’s shared memory implementa-
tion.

(4) The SUT-init component is responsible for starting the SUT.

(5) The report-rom component signals SUT-init about new component trees.

(6) The genode-afl-fuzz component contains all ported logic from AFL++
and all additional logic in order to enable the use of the other components
making up the fuzzing engine.

The SUT is a component tree of any size and its functionality is invoked by
the harness. In contrast to AFL++, the harness is always required, as it is
responsible for translating the test-cases to the required format.

4.2 Execution Details

The interactions shown in the AFL++ sequence diagram in Figure 2.6 define an
interface that we adhere to. Based on this interface, the required interactions
between the Genode components were defined, as illustrated in Figure 4.2.

write test-case

init

report new config

genode-afl-fuzz

report
child status

SUT-init

read
status updates

read new config

report-rom

Shared
Memory coverage map test-case

read from map

shm-server

dataspace capability

fill coverage map

2

3
4

5

1

4

6

78

8

component 1

harness

component n

SUT

read new test-case

6

4

5

Figure 4.2: Diagram of the inter component communications taking place during start up and a
single fuzzing iteration. The numerical values represent the sequence of communication steps.

1For example shmget() or shmat().
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The operational mechanics of such a fuzzing campaign are then as follows:

(1) The init component starts genode-afl-fuzz, report-rom, shm-server
and SUT-init. Additionally, the timer and a lx-fs components are
started. Despite the fact that both components contribute to the functional-
ity of the port, they have been omitted from the diagram for the purposes
of simplicity and conciseness.

(2) Once initialized, all components except genode-afl-fuzz wait and listen
for Genode signals or RPC calls. Meanwhile, the genode-afl-fuzz pro-
gram initiates the fuzzing process via afl-fuzz’ program entry point. It
reads the user-provided configuration and starts setting up all necessary
data structures until it needs to attach a shared memory segment.

(3) Then, genode-afl-fuzz signals the shm-server through a custom session
type to receive two shared memory segments: one for the coverage map
and one for the test-cases. It will then write the first test-case into its
newly attached shared memory segment.

(4) Next, a new config is generated and reported to the report-rom. This
config contains a detailed description of the set up of the harness and
all components that are part of the SUT. The SUT-init component then
receives a signal that a new config is available and handles the request by
starting all components specified in the config as children.

(5) Once the harness is started, the shm-server is again used to setup the
same shared memory segments mentioned in step (3).

(6) The harness reads the test-case and forwards it to the SUT. Each newly
covered basic-block during the execution of SUT is marked in the coverage
map. This continues until the SUT exits, crashed or experiences a timeout.

(7) In addition to starting the config as a new child component, SUT-init
monitors all specified children in regular intervals. This monitored state
is then forwarded to the report-rom and further to genode-afl-fuzz.

(8) Upon indication from the state that the current execution of SUT has
been completed, genode-afl-fuzz reads the content of the coverage map,
mutates the test-case and resets the state to prepare for the next fuzzing
iteration. A single test-case has now been processed and the execution
loops back to step (4).

4.3 Implementation Details

The process of porting AFL++ to the Genode framework necessitated a multi-
tude of alterations in order to ensure its compatibility. A notable example of
this is the requirement to support system calls in order to execute afl-fuzz.
Most system calls, however, are not natively supported by Genode. Fortu-
nately, this is not the first project to encounter such requirements: Genode
provides a libc plugin that supports the majority of system calls required to
run AFL++, though not all of them. The missing system calls were substituted
with native Genode functionality, which integrates more effectively within the
framework and provides better compatibility for the sut.
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afl-fuzz genode-afl-fuzz shm-server report-rom SUT-init harness / SUT

call main()
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Parse cmd-line args

Request new dataspace capa-
bilities for shmidmap, shmidtest
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session (shm)
Set up cmd-line args

shmidmap, shmidtest
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if it is interesting

still running?
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Figure 4.3: Sequence diagram of the AFL++ Genode port in default mode, so not depicting
the more performant persistent mode. It expands the diagram in Figure 4.2 and shows every
interaction between the components. Note that the timer and lx-fs are not shown for simplicity.

Figure 4.3 depicts the sequence diagram of the system’s components and
the communication protocols between them. The diagram is largely self-
explanatory; however, the interesting design decisions are explained in greater
detail in the following sections.

4.3.1 Instrumenting Genode Components

Genode employs a sophisticated tool chain that utilises Makefile and expect2,
that facilitates the compilation, linkage and execution of the project. Compiling
and instrumenting the source code of the SUT using this tool chain is required
in order to adhere to Genode’s special requirements. This tool chain is
designed to support custom rules and flags, thereby offering a high degree of
customisability. Genode also provides binaries that, among others, facilitate
the processes of compilation and linkage of the code, both of which are based
on GCC.

Following this, a custom Genode library, named “afl++”, was developed to
facilitate source code instrumentation. This library fulfills two purposes: firstly
it attaches the GCC PLUGIN from AFL++ during compilation, and secondly, after
a binary has been compiled using the GCC PLUGIN, it provides the required
variable and function definition during linking.

The utilisation of a Genode library seamlessly integrates the source code
instrumentation mechanism with Genode’s tool chain, necessitating only

2The script language based on Tcl.
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minimal alterations. Furthermore, all customisation options available in
AFL++ remain and require no additional change. This enables, fo example,
the use of an allow list, thereby ensuring that only the files specified in the
allow list are instrumented.

4.3.2 System under Test (SUT)

In the context of this port, the SUT is a Genode component tree. In order to
fuzz a particular functionality or session, the user is tasked with defining this
component tree and must adhere to the following points:

Firstly, a harness, i.e. a Genode component, needs to be defined. The harness
is responsible for translating the test-case, which is only provided as simple
a void pointer through shared memory, such that the session can be tested.
This harness is analogous to that employed in AFL++.

Secondly, each component that executes instrumented code needs to attach
the shared memory dataspace, which is required to fill the coverage map.

Thirdly, in the event of fuzzing core functionality – for example, logging or the
PD – it will be necessary to build and link these separately. When the core

and init components are initiated, they expect uninstrumented code and
may consequently crash during the startup process. It is possible to fuzz an
uninstrumented target, though this approach invariably leads to a reduction
in efficiency.

4.3.3 Replacing the Forkserver

In each iteration of the fuzzing process in AFL++, the forkserver invokes
the fork() system call, as illustrated in section 2.4.2. Support for this fork()
system call exists in Genode’s libc plugin and would therefore be available.
Though utilising the fork() system call imposes limitations on the SUT that
can be created. The forkserver anticipates executing a main() function
subsequent to the fork call, which limits the SUT in Genode too much

The possibility of rewriting the ported forkserver in such a manner that it
could utilise fork() was considered. However, this approach was ultimately
dismissed due to the anticipation of further challenges. For instance, it was
unclear how several components could be forked simultaneously or how the
sessions behave if they are forked.

Therefore, the main purpose of the forkserver had become superfluous,
and turned into an overhead. Consequently, the forkserver was merged
with afl-fuzz into a unified component called genode-afl-fuzz. The com-
munication steps between the forkserver and afl-fuzz were completely
patched out. The fork() call was replaced with Genode-specific functionality,
namely a report-rom and init component, which are invoked by the new
genode-afl-fuzz component.

4.3.4 Monitoring the SUT

As illustrated in Figure 2.6, afl-fuzz utilises a system call to ascertain whether
the current iteration has finished or until a timeout is reached. In this case
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it uses the synchronous system call select(), that monitors the status pipe
for updates or until a timeout is attained. This pipe is updated when the
system call wait() from the forkserver finishes. Both these mechanisms are
unavailable when the forkserver is patched out; the communication pipes
are completely removed and wait() is never called.

Instead, the functionality is approximated by a built-in Genode implemen-
tation. The mechanism for monitoring the status of a component is termed
the “heartbeat”. This status comprises information such as the assigned RAM,
assigned capabilities and, most importantly, the exit code, which is indicative
of the end of the execution. Within a predetermined interval, the parent
init component transmits a signal to each child component of the SUT, and
a response is expected in return. This response is then transmitted to the
report-rom, which is subsequently reported to genode-afl-fuzz.

In the event of a child component failing to respond to a heartbeat signal, the
number of skipped heartbeat is also reported. The Genode documentation
acknowledges that this mechanism does not guarantee 100% accuracy, and
as such, a single skipped heartbeat is not necessarily indicative of a system
crash. In view of the inaccurate information, it is necessary to map the result
of the test-case to the four possible outcomes: success, crash, hang or timeout.

The successful execution of a process can be readily identified by the exit
status code contained within the heartbeat message. In the event of an exit
code being available and indicating a 0, the execution is to be considered
successful. The distinction between a hang and a timeout is addressed by
AFL++, rendering them indistinguishable for the purposes of this argument.
Consequently, it is imperative to establish a method that can differentiate
between a crash and a timeout.

There is not always a clear distinction between a timeout or a crash. As it
turns out, this results in a race condition, as illustrated in Figure 4.4. In the
upper example, genode-afl-fuzz sees the missed heartbeat messages, after
the SUT has crashed, and thus, this execution is considered a crash. In the
lower example, the SUT does not crash until after genode-afl-fuzz checks
the second time for heartbeat messages, but before genode-afl-fuzz is able
to detect the missed heartbeat messages. This particular execution of the SUT

is therefore counted as a timeout and not as a crash.

The user is presented with a series of configuration options, the purpose
of which is to provide a certain degree of control over the crash detection
mechanism. The user can set (1) the interval of heartbeat messages. By default,
every 5 ms a request is sent. (2) the number of skipped heartbeat messages. By
default, if 50 skipped messages were reported, the execution is considered to
have crashed. (3) the timeout. By default, this value is 200 ms. It is longer than
the timeout from AFL++ due to the additional overhead of running Genode.

So it is imperative to set a suitable timeout value. Too great and the overall
execution time is impacted, too low and a crash might go undetected, if it
cannot be considered as a hang

To summarise, the combination of this heartbeat mechanism with a blocking
call, designed to await incoming signals, results in functionality analogous
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Figure 4.4: Example executions that illustrate the race condition of the monitoring functionality.

to that of the select() call. By using this approach, genode-afl-fuzz uses a
purely Genode native solution to monitor the SUT.

However, it should be noted that this approach of waiting for incoming signals
drastically slows down the fuzzing execution speed. It was discovered that
the waiting mechanism was accountable for a decline in execution speed of 20
to 25 times. This issue is addressed in the following section.

4.3.5 Persistent Mode

AFL++ provides an option to execute the fuzzing campaign using the so
called ’persistent mode’, which allows for a much higher execution speed.
The magnitude of this speed increase is reported to be in the range of 10 to
20 times faster than the original speed. The genode-afl-fuzz component
supports this mode as well and it is enabled by default.

The intuition is, that only a small number of executions result in a system
crash or timeout. Consequently, the overhead can be significantly reduced
by reusing the existing, already running components in each iteration. This
approach necessitates that the user resets the state in each iteration, ensures
that multiple calls can be executed without resulting in resource leaks and
that earlier iterations do not affect subsequent ones.

Following, a new approach for monitoring the SUT is required, given that
the SUT does not exit on successful executions and responds to all heartbeat
messages. In case of a successful execution, the reports from the report-rom

lack the necessary information. To address this, a shared byte is used to
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transfer the status between genode-afl-fuzz and the SUT. The value is polled
on both sides to detect changes and updated accordingly.

The merit of this monitoring approach is twofold. Firstly, it eliminates the
overhead of reporting and creating a new component tree in each iteration,
and secondly, it removes the inefficient waiting for signal functionality. This
optimization resulted in a execution speed increase of up to 40 times!
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Chapter 5

Evaluation

5.1 Experimental Setup

Two different testing setups were designed, in order to evaluate effectiveness
and efficiency of the AFL++ port. The development and execution of the
Genode port was conducted within a Virtual Machine (VM), so to ensure
a level playing field all tests were also executed within the same VM. The
virtual machine is a ’Debian GNU/Linux 12 (bookworm)’ system, executed
on a ’Lenovo ThinkPad P14s Gen 3’ with a ’12th Gen Intel Core i7-1260P × 10’
and using 6 GB of memory. The version of AFL++ utilised for the purposes of
testing is designated ’afl-fuzz++4.21c’.

5.1.1 Performance and Correctness

Execution speed is a common metric by which the effectiveness of a fuzzer
is measured and compared. Because there is no other fuzzer available for
Genode, the performance was compared between AFL++ running on Linux
and running on Genode.

A rudimentary executable was constructed for Genode and again, using the
same functionality, for Linux. The executable contains certain bugs, which
were deliberately introduced to be detected by the fuzzer. The bugs included
are an infinite loop, a floating-point division by zero and a segmentation
fault. The duration of both fuzzing campaigns was 6 hours. This duration is
generally considered to be relatively brief; however, it was sufficient to obtain
the desired results.

No special flags or environment variables, that interfere with the execution
speed, were set and both setups use the GCC PLUGIN for instrumentation.

5.1.2 Init Component

The init component is widely used component in Genode, rendering it
a primary target for fuzzing. Figure 5.1 shows the exact component tree
used as the setup: the SUT is constituted of three components, namely, a
report-rom, an init component and a component called print-component.
The init component is duplicated an renamed to “init-instrumented”.
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Figure 5.1: Exact depiction of the component tree that was used to fuzz the init component.

This means that its source code is instrumented, as the name suggests. A
harness then writes a new report based on the fuzzing test-cases and through
the SUT-report-rom. The initial seed reports the valid print-component, a
component that no real purpose beside printing a single line.

No special flags or environment variables have been set for testing.

5.2 Results

5.2.1 Performance and Correctness

For comparing we focus on three key metrics, namely total executions, total
crashes and total timeouts. The results are listed in Table 5.1. The vulnerabili-
ties are easily reachable and were therefore triggered many times.

Within a time frame of 6 hours, AFL++ executed the program 75.2M times,
which equates to approximately 3’481 executions per second. The Genode
port attained a total of 70.4M executions, amounting to 3’259 executions per
second. This places the Genode port at approximately 93% of the execution
speed of AFL++.

Total Executions Total Crashes Total Timeouts
AFL++ 75.2M 2 90.9k
Genode 70.4M 37.6k 31.4k

Table 5.1: Table depicting the results of fuzzing an example program containing several intentional
vulnerabilities during 6 hours.

Next, AFL++ reported only two total crashes, whereas the port detected over
37 thousand crashes. When examining the total number of reported timeouts,
AFL++ recorded over 90 thousand timeouts in comparison to the 31 thousand
recorded for the Genode port. This discrepancy shows the limitations of the
signaling handling used for monitoring the status, a topic that is explained in
section 4.3.4. Ultimately, both fuzzers successfully identified and reported the
introduced vulnerabilities, showing the correctness of the ported fuzzer.
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5.2. Results

        american fuzzy lop ++4.21c {default} (./init_component) [explore]
┌─ process timing ────────────────────────────────────┬─ overall results ────┐
│        run time : 10 days, 0 hrs, 0 min, 0 sec      │  cycles done : 137k  │
│   last new find : 9 days, 2 hrs, 36 min, 50 sec     │ corpus count : 5     │
│last saved crash : none seen yet                     │saved crashes : 0     │
│ last saved hang : none seen yet                     │  saved hangs : 0     │
├─ cycle progress ─────────────────────┬─ map coverage┴──────────────────────┤
│  now processing : 4*312323 (80.0%)   │    map density : 0.01% / 0.03%      │
│  runs timed out : 7 (140.00%)        │ count coverage : 8.00 bits/tuple    │
├─ stage progress ─────────────────────┼─ findings in depth ─────────────────┤
│  now trying : splice 9               │ favored items : 1 (20.00%)          │
│ stage execs : 36/112 (32.14%)        │  new edges on : 3 (60.00%)          │
│ total execs : 1.74G                  │ total crashes : 0 (0 saved)         │
│  exec speed : 1805/sec               │  total tmouts : 275k (0 saved)      │
├─ fuzzing strategy yields ────────────┴─────────────┬─ item geometry ───────┤
│   bit flips : 0/0, 0/0, 0/0                        │    levels : 3         │
│  byte flips : 0/0, 0/0, 0/0                        │   pending : 2         │
│ arithmetics : 0/0, 0/0, 0/0                        │  pend fav : 0         │
│  known ints : 0/0, 0/0, 0/0                        │ own finds : 4         │
│  dictionary : 0/0, 0/0, 0/0, 0/0                   │  imported : 0         │
│havoc/splice : 2/596M, 2/1.15G                      │ stability : 0.00%     │
│py/custom/rq : unused, unused, unused, unused       ├───────────────────────┘
│    trim/eff : 2.06%/4978, n/a                      │
└─ strategy: exploit ────────── state: finished... ──┘

Figure 5.2: Final status screen of the init component fuzz run. A detailed explanation of all labels
is provided in the official documentation [27]. Most labels give an optional peek at what the
fuzzer is actually doing, such as the “stage progress”, “findings in depth” and “fuzzing strategy
yields” labels, and therefore not of interest.

5.2.2 Init Component

In this fuzzing campaign the fuzzer executed over 1.74 billion testcases within
a time frame of 10 days, so around 2’013 executions per second. An excerpt
from AFL++ status page at the end of fuzzing is shown in Figure 5.2.

While no crashes and no hangs were detected, this extended execution of
the fuzzer proved the stability of the fuzzer and shows that the source code
instrumentation is working as expected. In “process timing” the label “last
new find” indicates that a new path has been found, thereby indicating that
the coverage map operates as expected.
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Chapter 6

Related Work

Since the inception of fuzzing in 1990 [28], a plethora of fuzzers, along with
their associated forks and mutators, have been developed, and their numbers
continue to increase.

A paper from 2019 provided an overview of around 50 fuzzers, starting in
2001 and up to 2019 [6] and at the time of writing, Github lists over 8 thousand
public repository related to fuzzing [29].

In a SoK paper from 2024 [30], the authors conducted a comprehensive study
of 289 fuzzing papers from 2018 to 2023, from which 150 were randomly
selected for manual analysis. Among the findings, it was determined that
33% of papers are concerned with the development of a new fuzzing tool,
suggesting that approximately 15 fuzzers are released per year. These fuzzers
have been observed to specialise in a particular system or environment.

There are no fuzzers that can run on top of Genode and fuzz Genode sessions.
So our research includes a range of fuzzers that cover general purpose fuzzers,
fuzzing libraries, and fuzzers that work in constrained systems, such as
embedded systems.

6.1 Microkernel Operating Systems

6.1.1 Qubes OS

Qubes OS [31] is an open-source operating system designed with a strong
focus on security and privacy. It leverages Xen-based virtualization to create
isolated environments, known as “qubes”, each running in its own VM. This
architecture minimizes the risk of security breaches by compartmentalizing
different applications groups, for instance work, personal, and online activities,
into separate qubes.

The core principle behind Qubes OS is “security by isolation.” By isolating
different tasks and applications into separate VMs, Qubes OS ensures that a
compromise in one qube does not automatically affect others. This isolation
extends to hardware components, network connections, and storage devices.

On a fundamental level, there exists a strong resemblance between Qubes OS
and Genode. Though in contrast, Genode employs a fundamental different
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approach. Genode constructs a system from the ground up, characterised
by its fine-grained multi-component design, while Qubes uses a sandboxing
mechanism, which utilises Xen-based virtual machines. It is conceivable that
Qubes could be executed within the Genode Framework, thereby integrating
the two approaches.

With regard to fuzzing, Qubes OS tests a selected set of functionality and
utilises OSS-Fuzz1 and, more specifically, libFuzzer. This constitutes a funda-
mental difference in the approach adopted, as the objective of this thesis is
to fuzz Genode sessions rather than a function. Qubes OS’ approach is more
akin to “normal” fuzzing on Linux.

6.1.2 Fuchsia

Fuchsia is an operating system being developed by Google [32]. It is built
from the ground up with a microkernel architecture, known as Zircon, which
is composed of a kernel as well as a set of userspace services, drivers, and
libraries. The system’s core platform facilitates the initiation of the boot se-
quence, communication with hardware components, the loading of user-space
processes, and their subsequent execution. Furthermore, the implementation
of the majority of system components in user space and isolation serves to
reinforce the principle of least privilege.

Fuchsia has a similar goal to Genode in that it tries to provide a simple
and secure operating system, intended to reduce the amount of trusted code
running in the system. A further similarity is the utilisation of a component
as an abstraction for a sandbox, where process are being run in.

In contrast to Genode, Fuchsia incorporates built-in support for fuzzing within
its tool chain. In this case, the software utilises libFuzzer, thereby necessitating
the use of LLVM. In order to facilitate the development of a fuzzer, Fuchsia
provides a set of helper functions that aid splitting fuzz input into multiple
parts of various types. Furthermore, custom mutators and dictionaries are
supported. Fuchsia offers a wrapper around their fuzzing functionality which
can be accessed through a custom fuzz shell [33].

Despite the similarities in the overall microkernel architecture employed by
both Genode and Fuchsia, their tool chain fuzzing approach is on the wrong
layer. This approach can offer a valuable tool for testing functionality that
does not rely on the IPC, for example a parser.

6.2 Fuzzers and Fuzzing Libraries

6.2.1 Honggfuzz

Honggfuzz is an advanced and efficient feedback-driven fuzzing tool [2]. It
employs feedback mechanisms such as code coverage and hardware-based
tracing (using Intel’s Processor Trace or perf) to intelligently guide the fuzzing
process towards unexplored execution paths, increasing the likelihood of
discovering critical bugs.

1This project, a collaborative effort between Google and OpenSSF, tries to increase the security
and stability of common open-source software [4].
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Key features of Honggfuzz include its high performance, ease of integration,
and support for multiple target platforms, including Linux, macOS, Android,
and more. It also offers advanced capabilities like persistent fuzzing, thread
safety, and detailed crash analysis, making it a popular choice for security
researchers and developers seeking to enhance software robustness.

Similar to AFL++, Honggfuzz is a mature fuzzer that is extensively utilised for
fuzzing and as a foundation for constructing additional fuzzers. It possesses
a substantial number of features comparable to those of AFL++, at least in
the context of this project. It also supports instrumentation using GCC, thus
rendering it a prime candidate for porting to Genode.

In a 2022 paper [34], several fuzzers were subjected to a comparative analysis,
including Honggfuzz and AFL++. The fuzzers were run for several hundred
days on a manually curated benchmark suite consisting of 12 real-world
software systems. In terms of their effectiveness in finding bugs Honggfuzz,
compared to AFL++, ranked equally when using Friedman Rankings or an
adjusted ranking approach, and ranked slightly higher when using Linear
Score or Effect Size Rankings Quadratic Score. In conclusion, the summary
asserts the following:

“If the most important metric is effectiveness in finding bugs,
honggfuzz would be the best choice as it ranked first in almost all
of our rankings. [. . . ] Finally, as a compromise between these two
aspects (i.e., effectiveness and efficiency), we would recommend
the use of AFL++.” (Asprone et al.; 2022; p. 9)

Magma [35], a ground-truth fuzzing benchmark to compare different fuzzers,
also compared Honggfuzz and AFL++. This benchmark employs the discovery
of unique bugs as the primary metric for assessing fuzzer performance. Their
findings indicate that Honggfuzz and MOpt-AFL significantly outperformed
other fuzzers. Specifically, Honggfuzz excelled in 4 benchmarks, while MOpt-
AFL performed best in 3. Additionally, they observed that AFL, AFLFast, and
AFL++ showed comparable performance across most targets, but these fuzzer
scored lower than Honggfuzz.

Another benchmark, FuzzBench [3], yielded contradictory results in compari-
son to Magma. The functionality of FuzzBench is analogous to that of Magma,
but additionally uses code coverage as part of the metric. In this study, AFL++
was found to be the most efficient and effective fuzzer in five out of seven
different experiments.

To summarise, there is no clear consensus regarding the relative efficiency of
Honggfuzz and AFL++ as fuzzers. Consequently, relevant to this thesis was
on the effort required in porting this fuzzer to the Genode framework, which
was not clear beforehand. So in the end it came down to personal preference
and how many resources such as documentation are available. In this regard,
AFL++ emerged as a superior option, by offering a wealth of information and
resources that facilitated a more profound comprehension.
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6.2.2 libFuzzer

LibFuzzer [19] is an in-process, coverage-guided, evolutionary fuzzing engine.
It is a popular choice for fuzzing due to its integration with LLVM and its
ability to seamlessly interface with sanitizer tool chains, which include for
instance the AddressSanitizer and UndefinedBehaviorSanitizer. The effective-
ness and ease of use of libFuzzer have made it a preferred choice for many
projects.

The primary disadvantage associated with libFuzzer is its reliance on LLVM,
a tool which is incompatible with Genode. However, it would have been
possible to write a program that instruments the source code without relying
on LLVM. But given the abundance of alternative fuzzers available, we swiftly
eliminated libFuzzer as a viable option and did not pursue further research.
Moreover, the original authors of libFuzzer have ceased active work on the
project; therefore, no new features will be added.

6.2.3 libAfl

LibAFL [36] is a versatile and extensible fuzzing library designed to facilitate
the development and experimentation of custom fuzzing solutions. By pro-
viding a modular architecture, libAFL enables to seamlessly integrate various
fuzzing techniques and algorithms. This flexibility allows for the creation
of tailored fuzzers that can address specific testing requirements or explore
novel fuzzing strategies in special environments.

This library appears to be a particularly effective approach, as it was designed
to function in unconventional environments, such as Genode. Further, libAFL
does not necessitate the utilisation of any core libraries such as libc. It has
been constructed with the programming language Rust, which support was
integrated into Genode in 2023 [37]. Another advantageous feature would
have been the support of customised instrumentation back-ends.

However, one of the external dependencies is Clang, the C/C++ compiler. At
present, the Rust programming language does not provide support for all of
the necessary compiler features, including weak linking and LLVM builtins
linking. This necessitates the use of Clang.

Despite the confirmation by the libAFL maintainers of the theoretical possi-
bility of using GCC instead of Clang, they explicitly advised against its use.
Citing the significant effort required and the fact that the GCC Rust compiler
is still in its early stages and not yet suitable for compiling real Rust programs.
Consequently, this library was not given further consideration.

6.2.4 Fuzzing Embedded Systems

The application of fuzz testing to embedded systems has gained traction
over the last couple of years, as evidenced by the development of numerous
fuzzers that target different communication interfaces, including side-channels,
peripheral drivers or DMA [38, 39, 40, 41].

The execution of software in an embedded system context is typically subject
to certain constraints, including limitations in terms of resources or communi-
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cation channels. It was thought that this restricted environment would be a
promising approach, as Genode can be used in this context and is generally
more restrictive compared to general purpose OSes.

The proposed fuzzers usually focus on fuzzing through unconventional com-
munication methods, for instance through an UART debugging interface,
which limited their overall usefulness. Nevertheless, they did provide some
novel ideas on how to generally port AFL++ to Genode.

For example FIRM-AFL [41] proposes an interesting way to fuzz firmware in
an emulated setting. FIRM-AFL is configured to start afl-fuzz in user-mode
QEMU, and to instrument the branch transitions of the target program. The
idea then is to be able to reuse as much workflow from AFL++ as possible.
So each time the forkserver and the SUT are started, user-mode QEMU is
replaced with an augmented process emulation. Meaning inside this process
emulation the fork() call is removed, and instead a new snapshot of an
already running VM is created and then started. After the execution there is
switch back to the user-mode QEMU.

The objective is to increase the fuzzing performance within the QEMU en-
vironment by enabling the target user process to execute within the more
performant user-mode for as long as is possible before switching to the more
expensive augmented process emulation. This approach minimises the over-
head associated with the translation process and leaves much of AFL++’
workflow as is.

Whilst the aforementioned approach is not directly applicable to our system,
it has provided the foundation for the development. The inspiration for
this approach stems from the utilization of AFL++’ fuzzing mechanism and
interface. By adhering to the defined communication steps between afl-fuzz

and the forkserver, most of AFL++’ workflow can be used.

6.3 Rationale for Selecting AFL++

In order to achieve fast execution times, many coverage-guided fuzzers [24,
2, 42] are deeply intertwined with the operation system they are running
on. Given that we are operating within the Genode Framework, a number of
traditional operating system features will not be directly available. As a result,
the selection of an appropriate fuzzer was contingent upon the identification
of a tool with a minimal reliance on the aforementioned system features.

The next constraint is that Genode and its components can only be compiled
using GCC, meaning Clang/LLVM cannot be used. This limits our options as
many modern fuzzers use the built-in LLVM support to instrument the source
code in order to track the coverage.

Following a thorough consideration of the available options, it was determined
that AFL++ would be the most suitable option in this instance, due to several
reasons:

Firstly, AFL++ provides explicit support for source code instrumentation
using GCC. Secondly, AFL++ is regarded as a state-of-the-art fuzzer due to its
incorporation of current fuzzing research into its tools, such as AFLFast [43]
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and MOpt-AFL [44]. The argument is further compounded by the observation
that a significant proportion of custom fuzzers are built on top of AFL++.
Thirdly, the tool is a well-established fuzzer with many features and customi-
sation options, which allows fine-tuning of execution of the fuzzer. Fourthly,
given the popularity of AFL++, a many resources are available to facilitate
a more profound comprehension of the fuzzer, like the official documenta-
tion, academic papers and community blog posts from security engineers
and enthusiasts [45]. Lastly, existing familiarity with the AFL facilitated the
decision-making process.
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Chapter 7

Discussion

7.1 Limitations

As demonstrated in section 4.3.4, the mechanism to detect the current status
of the SUT is not equivalent to the one employed by AFL++. Depending on
the used flags and configuration, this can lead to drastically different results
between AFL++ and the port, as shown in section 5.2.1. It is acknowledged that
there are further mechanisms which could assist in reducing the discrepancy;
for instance, tracking the CPU or memory of the SUT to ascertain whether an
error has been experienced. This approach would facilitate the determination
of whether a system crash occurred, thereby reducing reliance on heartbeat
messages. But due to time constraints this approach is not implemented in
this version of the port.

A further limitation is the way source code instrumentation works. A signif-
icant proportion of responsibility is ascribed to the user. Initially, the user
has to ascertain that the instrumentation does not hinder the Genode start-up
sequence. At start up, Genode might crash if some of the required binaries
are instrumented. In such cases, the code responsible for the session must
be duplicated, compiled, instrumented and then linked correctly. Thus, the
instrumentation of core functionality requires a substantial engineering effort.

Next, as shown in section 2.4, AFL++ provides a lot of features that can
provide performance or developing benefits. While it is conceivable that these
features could function within Genode without additional effort, it should
be noted that no resources have been used ensuring their operability. The
majority of these features have not been tested. But, it would have been
especially interesting to investigate the performance-enhancing features of
this system. These could include multi-core/thread execution, sanitizers that
help to detect errors earlier, or custom dictionaries to generate more suitable
seeds. However, due to time constraints, the incorporation of such features
was not a viable option.

7.2 Future Work

The next step regarding this port is to address the limitation of feedback
collection. Obtaining more precise feedback would improve the port in several
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areas. Firstly, the number of reported false positive crashes would be reduced,
thereby minimising the amount of work required to debug a reported crash.
Secondly, by reducing reliance on heartbeat messages for crash detection, the
impact of the race condition would be limited. Thirdly, the overall execution
speed would increase, as a crash could be detected more rapidly.

Next, fuzzing the init component, as outlined in the evaluation, should be
conducted over an extended period. Typically, such a fuzzing campaign would
necessitate several weeks, or even months, of dedicated effort. However, due
to the temporal limitations imposed on this thesis, it was not possible to
conduct fuzzing over such an extended period.

When a fuzzing campaign is started, improving the overall performance
should be considered. We attribute the speed discrepancy of 7% between
AFL++ and the port to the overhead introduced from the communication using
signals as well as the reporting mechanism that is used. But no proper profiling
has been conducted to potentially detect other bottlenecks or slowdowns
introduced by the port.

Multi-thread or multi-core execution would be an ideal use case for fuzzing,
as each iteration is independent and can therefore be parallelised. AFL++
facilitates the synchronisation of the outcomes of each fuzzing process at
regular intervals. Another improvement could be to incorporate the function-
ality of init in the afl-fuzz component. This would remove the needs to
use report-rom component and instead allow genode-afl-fuzz to directly
launch new components.

In order to further test the robustness and functionality of the port, an ad-
ditional thorough fuzzing example should be implemented, with the NIC-
session being a potential candidate for testing. This would serve to highlight
any potential shortcomings in the user experience when fuzzing on Genode,
or any potential undetected discrepancies between AFL++ and the port.

Lastly, it became apparent that AFL++ requires many changes and fixes to
ensure its functionality. While this was anticipated to a certain extent, in
retrospect, libAFL might have also provided a robust method for developing
a fuzzer. With libAFL demonstrating its particular strengths within an en-
vironment such as Genode, it appears that this would represent an optimal
approach. However, we hypothesised that the technical challenges associated
with the development and execution of this library would not outweigh the
advantages, particularly in comparison to AFL++. Consequently, the potential
of employing libAFL was not fully explored.
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Chapter 8

Conclusion

This thesis presented the Genode OS framework, a unique and innovative ap-
proach to operating system architecture, focusing on security and modularity.
However, the absence of fuzzing support has been a notable limitation, given
the effectiveness of fuzzing in identifying software vulnerabilities.

This thesis has addressed this gap in the Genode OS framework by adding
fuzzing capabilities through the successful porting of AFL++, a state-of-the-
art fuzzer. Through careful adaptation and integration, we demonstrated
that AFL++ can operate within the constraints of the Genode environment,
achieving 93% of the fuzzing speed observed on a general-purpose operating
system. This performance serves to illustrate the feasibility and practicality of
integrating fuzzing into Genode.

Furthermore, the fuzzer was applied to a security-critical Genode component,
illustrating its value in uncovering potential defects in high-assurance software.
By bridging the gap between Genode’s security-centric design and modern
dynamic testing methods, this work contributes to enhancing the reliability
and trustworthiness of systems built on Genode. It also lays the groundwork
for further exploration of automated testing techniques in safety-critical,
minimal operating system environments.
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