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Fig. 1: Robot in action. (A) Standing and looking up towards a person (B) performing closed-loop high-five interaction
with a person (C) kneeling at a coffee table manipulating interlocking toy bricks (D) reaching the ground to pick up an
object (E) being squeezed by a child’s hand (F) posing with a toy flower attached to its head (G) dancing with expressive
lights and eyebrow movements.

Abstract— Recent advances in learned control, large-scale

simulation, and generative models have accelerated progress

toward general-purpose robotic controllers, yet the field still

lacks platforms suitable for safe, expressive, long-term deploy-

ment in human environments. Most existing humanoids are

either closed industrial systems or academic prototypes that

are difficult to deploy and operate around people, limiting

progress in robotics. We introduce Sprout, a developer platform

designed to address these limitations through an emphasis on

safety, expressivity, and developer accessibility. Sprout adopts

a lightweight form factor with compliant control, limited joint

torques, and soft exteriors to support safe operation in shared

human spaces. The platform integrates whole-body control, ma-

nipulation with integrated grippers, and virtual-reality-based

teleoperation within a unified hardware-software stack. An

expressive head further enables social interaction—a domain

that remains underexplored on most utilitarian humanoids. By

lowering physical and technical barriers to deployment, Sprout

expands access to capable humanoid platforms and provides

a practical basis for developing embodied intelligence in real

human environments. See faunarobotics.com for videos.

I. INTRODUCTION

Progress in simulation, learned control, and generative AI
has renewed interest in building humanoid robots capable
of operating in everyday human environments. Despite these
advances, researchers and developers face limited access to
platforms that can be deployed safely and reliably around
people. This absence is not merely an inconvenience, but
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a gap in the physical infrastructure required to develop
embodied intelligence in human settings.

The most transformative computing technologies—
personal computers, smartphones, and virtual reality—
matured only after accessible, general-purpose platforms en-
abled broad participation and experimentation. Robotics has
not yet reached this inflection point. The lack of accessible
platforms inhibits the cadence of development, while safety
constraints push applications toward short-horizon behavior
in sanitized settings rather than sustained interaction in hu-
man environments. Participation by educators, designers, and
creative technologists—groups whose practices emphasize
exploration, iteration, and situated use—is further limited by
the need for deep expertise in low-level control, calibration,
and system maintenance.

We introduce Sprout, a humanoid platform explicitly de-
signed for safe, capable, and expressive operation in human
environments. Standing 1.07m tall and weighing 22.7 kg,
Sprout has limited kinetic energy and correspondingly re-
duced potential impact forces that substantially improve
its safety profile around people [1]. Sprout complements
this choice of scale with mechanical and control features
intended to mitigate risk during close-proximity operation,
including soft exterior panels, minimized pinch points, and
backdrivable motors with conservative joint torque limits.
At the control level, whole-body behaviors are executed
through compliant controllers that minimize contact forces

https://faunarobotics.com/


and reduce the likelihood of harm during incidental contact.
Together, these design choices aim to support routine oper-
ation in shared human spaces rather than isolated or tightly
controlled settings.

Sprout also serves as a capable and ergonomic platform
for general robotics research, development, and application
prototyping. The platform features a rear handle for manual
maneuvering, a swappable battery for convenient day-to-
day operation, and integrated, durable grippers designed to
grasp across a wide range of everyday objects. The plat-
form’s modular hardware-software architecture provides core
system services supporting different levels of abstraction.
Low-level motor control development is served by APIs
for sensing, actuation, and logging. Reusable whole-body
controllers that handle locomotion and postural transitions
enable development of high-level planning and reasoning. In-
tegrated teleoperation, mapping, and navigation capabilities
further support development of manipulation and autonomy.

Sprout’s character-like appearance is central to its
purpose—to enable new modes of interaction that rely on
social connection and physical presence. An articulated neck
enables controllable gaze, while actuated eyebrows and an
LED array support other interaction-relevant cues. In sum,
Sprout lowers the barrier to creating meaningful robot inter-
actions and broadens the set of people who can experiment
with embodied intelligence.

II. RELATED WORK

A. Humanoid Platforms
The landscape of humanoid robot development has ex-

panded rapidly in recent years, spanning academic research,
corporate R&D, and a growing number of commercial star-
tups. Yet despite this surge of activity, accessible platforms
that are suitable for capable, safe, and expressive interaction
around people remain limited, particularly within the United
States. Existing humanoid systems tend to cluster into two
categories: open academic projects that demonstrate impres-
sive technical capabilities but limited manufacturability, and
proprietary industrial efforts that are usually unavailable to
independent developers.

Among open-source and academic systems, several re-
cent efforts have advanced the state of humanoid design
and control. Toddlerbot [2] and earlier popular academic
platforms, such as OP3 [3], illustrate the potential of open
architectures and smaller-scale designs for educational and
research use. Other impactful platforms include the Berkeley
Humanoid [4], a mid-size bipedal locomotion platform, and
ARTEMIS [5], a full-size bipedal platform designed to
compete in robot soccer that demonstrated dynamic loco-
motion abilities. Collectively, these efforts highlight growing
academic interest in open, replicable humanoid systems;
however, few are designed for safe, long-term operation in
close proximity to people, nor do they enable use by non-
specialist developers.

Industrial and corporate efforts have generally focused on
large, full-scale humanoids oriented toward logistics, man-
ufacturing, or demonstration purposes (with the notable ex-

ception of entertainment-focused R&D efforts, such as those
by Disney Research [6], [7]). Industrial examples include
platforms from Boston Dynamics, Tesla, Agility, Figure, and
XPENG. Fewer companies presently frame themselves as
home-oriented (e.g., 1X Neo). In contrast, a new generation
of Chinese startups has emphasized rapid manufacturability
and cost-effective replication. Companies such as Unitree,
Fourier Intelligence, LimX, Booster, and AgiBot have made
significant strides in distributing humanoids to universities
and developers worldwide. Of these, Unitree (G1, R1) and
Booster (T1, K1) seem to have achieved the broadest uptake
among U.S.-based students and researchers, owing to their
relatively compact size, hardware reliability, and lower cost.

Morphology represents another important design consid-
eration. While some modern systems employ legged loco-
motion, others adopt wheeled or hybrid “semi-humanoid”
forms that trade the nimbleness and small footprint of feet
for simplicity (e.g., Reflex Robotics and Sunday Robotics).
Another critical differentiation lies in head design: most
industrial humanoids omit expressive heads altogether for
featureless glossy surfaces. Other expressive robots such as
those by Anki, Enchanted Tools, and the Embodied Moxie
display expression on digital screens. In contrast, we use non-
screen show elements (coordinated lights and eyebrows) to
emphasize the physicality of robotic embodiment and support
non-verbal expressions, an approach more akin to Reachy
Mini.

B. Control System Architectures
In recent years, the development of whole-body control for

humanoid robots has been fundamentally reshaped by GPU-
accelerated physics simulation. Modern frameworks such
as NVIDIA’s IsaacLab [8] and Newton, MuJoCo [9] and
its associated backends MuJoCo Warp and Mujoco XLA,
and Genesis [10] now support high-throughput rollouts at
a scale sufficient to train complex control policies directly
from interaction, enabling years of simulated experience
within practical development timelines. This capability has
shifted control development away from analytical model-
ing toward empirical optimization, most notably model-
free reinforcement learning [11], in settings where contact
dynamics, balance, and disturbance rejection are difficult
to model explicitly. These approaches have been applied
successfully to whole-body locomotion [12], [13], contact-
rich manipulation [14], compliant interaction [15], [16], and
agile behaviors such as stepping, crouching, and recovery
from external perturbations [17], [18], [19].

At higher levels of motor abstraction, learned vision- and
language-conditioned systems increasingly generate or mod-
ulate motor behavior. One class of these systems is mono-
lithic, in the sense that a single policy couples perception,
reasoning, and execution and acts directly on robot actuators.
Representative examples include early language-conditioned
robotic transformers [20] and subsequent foundation-model
efforts such as Gemini for Robotics [21], Physical Intelli-
gence [22], and Generalist AI [23], which primarily demon-
strate language-conditioned manipulation often described
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Fig. 2: Hardware overview. Key features of the Sprout robot platform from different perspectives: (A) and (B) are true-color
renders, (C) and (D) are semi-transparent renders.

within the vision-language-action (VLA) paradigm. In these
systems, high-level conditioning signals are mapped directly
to joint- or end-effector-level commands.

In contrast, many language-conditioned systems developed
for humanoid platforms adopt a modular or hierarchical
interface, particularly in settings where reliability, inter-
pretability, and verifiability are essential. In applications to
manipulation, high-level vision- and language-conditioned
models emit commands to explicit low-level control policies
rather than acting directly on actuators. Examples include
NVIDIA’s N1/N1.5 [24] and Figure’s Helix [25], which
integrate language- and vision-conditioned reasoning with
underlying locomotion and manipulation controllers. Related
work has also demonstrated language-conditioned whole-
body control derived from motion capture or teleoperation
data by commanding a low-level control policy [26]. Other
examples of modular control systems decompose autonomy
into interconnected but independently validated services—
such as perception, mapping, navigation, locomotion, and
manipulation—each implemented by specialized algorithms
or controllers. For example, recent work uses language
models to replace hand-engineered decision logic with tool-
calling and program-synthesis paradigms [27], [28], an ap-
proach championed by startups including MenteeBot [29]
and Flexion [30].

Across both low- and high-level motor control, this new
generation of learned approaches places concrete demands
on robotic platforms. At the low level, the success of
learned control depends on stable sensing, well-modeled ac-
tuator dynamics [31], physically accurate robot models, and
simulation-deployment parity [32], [33]. At higher levels,

supporting the full space of current and emerging approaches
requires a platform that enables modular decomposition with-
out obstructing end-to-end methods. Such platforms must
also provide essential system services—such as logging,
localization, and sensor integration—that are required by
both paradigms. We therefore focus on core robot services
that can be leveraged or replaced depending on the needs of
the developer.

III. HARDWARE DESIGN

Our hardware design is guided primarily by an emphasis
on safety, scalability, and aesthetics. We believe that progress
toward general-purpose robots operating in unstructured hu-
man environments depends on systems that are safe, ex-
pressive, and approachable. Sprout’s hardware architecture
reflects these priorities, balancing performance, safety, and
manufacturability within strict size and mass constraints.

Our approach to safety is structured across three com-
plementary layers. The first layer addresses safety at the
mechanical and electrical level. Sprout is intentionally com-
pact and lightweight (see full technical specifications, Sup-
plementary Table I), reducing kinetic energy and enabling
safe operation in close proximity to people. The mechanical
design minimizes pinch points, hot surfaces, and electrical
hazards. Soft, deformable exterior materials further reduce
impact forces and support direct physical interaction with
people and everyday objects. The second layer operates at
the embedded software level. A dedicated safety subsystem
runs on embedded processors independent of the application
compute stack. This layer supports real-time monitoring
and safety-critical functions, including integration with time-
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of-flight obstacle sensors and enforcement of system-level
constraints even under application-level faults (see Supple-
mentary Figure 12). The third layer consists of application-
and policy-level safety mechanisms. These include compliant
motor control policies that limit interaction forces, as well
as vision-based systems that support safe navigation and
decision-making in human environments. Together, these lay-
ers provide defense-in-depth, enabling day-to-day operation
with less risk.

Sprout’s mechanical design emphasizes low mass and
compliance while maintaining the strength and durability
required for real-world use. This balance presents signifi-
cant engineering challenges, which we address by relying
heavily on simulation to model and optimize weight, power
consumption, and thermal performance across the system.
This process enables aggressive mass reduction without
compromising structural integrity or reliability. Actuators are
selected and tuned on a per-joint basis, favoring appropriately
sized motors and gear reductions over oversized components.
This approach reduces mass, power draw, and thermal load
while improving controllability and safety.

In particular, designing lightweight arms capable of mean-
ingful manipulation at small scales required careful inte-
gration of actuation, structure, and wiring. Routing power
and signal cables through densely packed articulated joints
while maintaining reliability and serviceability proved chal-
lenging. To address this, we selected motors early in the
design process, and designed the system from the outset
to support custom single-degree-of-freedom grippers. These
grippers prioritize durability and consistent grasping per-
formance while balancing grip strength against injury risk
during interaction; as such, grip force at the fingertips is
limited by software to 12N. For arm-payload details, see
Supplementary Table II.

At the core of Sprout’s compute architecture is an NVIDIA
Jetson AGX Orin, which provides primary system compute
for perception, planning, and high-level decision-making.
The Jetson interfaces with a custom electronics motherboard
responsible for safe power distribution, real-time sensor ac-
quisition, and deterministic motor control—it also simplifies
wiring and assembly (see Supplementary Figure 11). High-
level motion commands are transmitted from the Jetson
to embedded motor controllers over Ethernet; time-critical
control loops then execute locally on those controllers. These
controllers communicate directly with actuators using real-
time motor control protocols, ensuring bounded latency and
deterministic update rates independent of application-level
compute load. The same architecture supports deterministic
communication with onboard sensors and continuous low-
level monitoring of the power system, enabling rapid fault
detection and safe responses.

Sprout uses a custom-designed battery optimized for high
energy density within tight mass and volume constraints. The
battery is built from industry-standard cells and managed by
a commercial battery management system, ensuring safety,
reliability, and serviceability (details in Table I).

Applying design principles from consumer electronics,

we engineered Sprout for manufacturability from the outset.
Assemblies are designed with low part count, standardized
fasteners, and clear assembly order, while integrated sub-
systems are favored over bespoke components. Mechanical
and electronic designs are co-developed to minimize wiring
complexity, support repeatable cable routing, and enable
automated or semi-automated assembly. Key challenges ad-
dressed through this approach include maintaining tight toler-
ances in lightweight structures, managing thermal dissipation
in compact enclosures, and ensuring serviceability without
increasing assembly complexity. By aligning the design with
established consumer electronics manufacturing processes
and a flexible global supply chain, Sprout can scale from low-
volume builds to mass production while maintaining quality,
reliability, and cost control.

Sprout’s aesthetic design draws inspiration from a century
of robots in popular culture, emphasizing approachability
and expressivity. Facial elements such as an LED array
and motorized eyebrows support nonverbal communication,
while an integrated audio system enables natural spoken
interaction. A four-microphone array supports speech recog-
nition and sound-source localization, and onboard speakers
enable expressive audio output. Sprout’s software interfaces
allow rapid experimentation with human-robot interaction
behaviors, and the head design supports cosmetic customiza-
tion using standardized interlocking toy brick components.

IV. SOFTWARE ARCHITECTURE

A. Overview

Sprout is built as a component-based AI platform, em-
phasizing modularity over end-to-end solutions. This design
allows us to integrate state-of-the-art technologies across
various domains, including perception, planning, locomotion,
and manipulation, while ensuring flexibility and ease-of-use.
Our aim is to provide developers with a robust foundation
that supports rapid iteration as new advancements emerge.

Because components are isolated behind explicit APIs,
individual services can be upgraded or replaced without
requiring a redesign of the full system. Sprout ships with
a complete baseline set of robotics services that enable im-
mediate usability out of the box. Researchers and advanced
developers can swap in their own implementations (e.g., a
custom perception stack or learned navigation policy) while
continuing to rely on the rest of the platform for integration,
safety, and deployment.

B. Deployment

Each service is run in a Docker container, allowing devel-
opers to control what is deployed on the robot. Containers
can be launched individually or as part of a constellation
of services, depending on the application requirements. We
provide a GUI to facilitate easy deployment and management
of these services, including logical groups of services that
should run together (e.g., voice recognition and speech
synthesis).
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Fig. 3: Software overview. A conceptual sketch of the dominant processes and primary channels of communication between
them. Since the communication follows a pub-sub model, additional edges may exist in practice. For example, the web
interface could communicate with any service—depicted connections correspond to core capabilities. Pink-colored nodes
(e.g., reasoning engine, memory, and social context) are included for illustrative purposes, but are not initially available as
part of our SDK.

Core platform services related to safety and real-time
control run with explicit resource isolation to ensure consis-
tent latency and throughput. In practice, this includes CPU
affinity and scheduling policy controls, prioritized execu-
tion, and container-level resource limits so developers can
deploy additional services without destabilizing the control
stack. This approach balances predictability for safety-critical
workloads with flexibility for application compute.

C. Communication
Inter-process communication on the AGX host is primarily

handled via ROS 2 [34] for its tooling, ecosystem, and
standardized message passing. For high-bandwidth data paths
(e.g., images, point clouds), selected pipelines use shared-
memory or zero-copy transports to reduce serialization over-
head and end-to-end latency. We use RMW Zenoh [35]
to improve performance and to support seamless bridging
between on- and off-board compute resources during devel-
opment (e.g., running a heavy model on a workstation while
maintaining the same interface and message contracts).

Additional protocols are used where they best match the
constraints of a link or device. For Motor Control Modules
(MCMs), we use CBOR [36] over Ethernet, optimized for
compact, deterministic control messaging. The teleoperation
headset uses JSON over WebSocket for control and state
exchange, with WebRTC for low-latency video and audio
streaming. For visualization tools, we use the Foxglove
WebSocket protocol for structured telemetry and playback.

D. Developer Experience
We provide a companion web application and integration

with the Foxglove visualization platform [37] to make Sprout

observable and debuggable during development and field
testing. The platform includes a structured logging pipeline
that captures synchronized telemetry, events, and sensor
streams for offline inspection and replay. These tools surface
key runtime signals (system state, perception inputs, nav-
igation status, localization), enabling fast iteration without
requiring deep knowledge of the underlying service topology.

The SDK exposes stable APIs for building on top of
Sprout. Today, this consists of ROS 2 message definitions
and example code for interacting with services in Python
and C++. Where appropriate, we include reference imple-
mentations for common patterns (request/response, streaming
telemetry, action-style interfaces) and provide templates for
packaging custom services as containers so they can be
deployed and managed alongside the baseline constellation.
Future releases will include additional language bindings and
non-ROS APIs to broaden accessibility.

At launch, we provide end-to-end examples for common
workflows, including:

• Deploying and running a custom low-level locomotion
policy

• Using voice commands to navigate the robot via LLM-
based agents

• Recording teleoperation sessions for analysis and play-
back

E. Performance Optimization

To maximize available compute for user applications,
we optimize the baseline stack for predictable latency and
efficient resource use. Key strategies include minimizing
internal message-passing overhead in hot paths, moving
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Fig. 4: CPU utilization. Approximate snapshot of the CPU demands of core onboard software services. In addition, some
services leverage the GPU (GPU profiling not shown).

performance-critical components to C++ (with Python bind-
ings where ergonomics matter), and using shared-memory
and zero-copy transports for large data.

V. CORE SOFTWARE SERVICES

A. Motor Control

The motor control system is designed to balance developer
ergonomics with the requirements of safe, reliable operation
in human environments. Concretely, this means the system
must be composable and debuggable, while remaining robust
to modeling error, contact variability, and external perturba-
tions. To this end, we avoid relying on a single monolithic
controller. Instead, we favor structured control interfaces that
expose clear abstractions—commands, modes, transitions,
and safety envelopes—so that learned components can be
deployed with explicit constraints and guarantees.

1) Orchestration via State Machines: To meet these goals,
control is organized around a finite state machine that orches-
trates a set of discrete control modes (Figure 5). Each mode
encapsulates a well-defined behavior (e.g., standing, walking,
kneeling), along with mode-specific safety checks, validity
conditions, and transition logic. While end-to-end policies
can achieve strong performance in unconstrained settings, the
platform adopts a state-machine-based architecture that al-
lows for explicit definition of valid operating regimes, mode-
local safety mechanisms (e.g., posture bounds, joint limit
monitoring), controlled transitions with preconditions and
recovery behavior, and isolation of changes, so modifications
to one mode do not destabilize others. The state machine
is exposed through a programmatic API, enabling external
systems (teleoperation, autonomy stacks, testing tools) to
request mode transitions while inheriting the built-in safety
logic.

2) Control Modes: Each control mode is backed by one
or more reinforcement learning policies trained to satisfy a
parameterized command interface. Commands specify de-
sired physical objectives—such as base linear and angular
velocity, root orientation, height from the ground, or joint-
space targets—rather than raw actuator signals.

Policies map short histories of proprioceptive observations,
inertial measurements, and previous actions to intermediate
control targets. These outputs are interpreted and constrained
by lower-level mechanisms, including PD control, current
limiting, and power constraints. This separation ensures
that learned behavior remains bounded by hardware-safe
execution layers.

All policies are trained in IsaacSim using training infras-
tructure built on IsaacLab [8]. Each control mode is associ-
ated with one or more dedicated policies, enabling targeted
training, evaluation, and iteration. This modular structure
allows individual behaviors to be replaced or improved
independently, without requiring system-wide retraining.

Control modes correspond to qualitatively different be-
haviors, including walking, kneeling, and crawling. Each
mode reflects a distinct set of assumptions about contact
configuration and allowable motion, and is trained and vali-
dated independently. The walking control mode, designed to
support whole-body teleoperation, provides a representative
example of how learned control is structured and deployed.
In this mode, the operator commands a continuous set of
task-level variables describing the desired motion of the
robot. These commands include the desired base linear
velocity, the desired yaw rate, the desired root orientation
specified by roll and pitch, the desired root height, and target
configurations for upper-body joints such as the arms and
torso.

Learned policies map these commands, together with pro-
prioceptive state, to control targets that realize the requested
motion. This design allows the operator to control high-level
motion intent directly, without micromanaging details re-
lated to movement dynamics. These commands also execute
seamlessly atop the compliant motion policies underneath,
ensuring safety even under human control. Importantly, the
same command interface can be reused across simulation,
teleoperation, and higher-level autonomy stacks.

3) Transitions: Transitions between behaviors are a com-
mon source of instability in robotic systems, particularly
when control modes are trained independently and rely
on different assumptions about contact state, posture, or
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Fig. 5: Locomotion system. Supported transition structure
between motor modules and motor behaviors.

admissible motion. Abrupt switching between policies can
induce discontinuities in commanded motion, violate safety
constraints, or excite unmodeled dynamics, even when the
individual control modes are stable in isolation.

We therefore treat transitions between control modes as
unique components of the control system. A transition may
consist of one or more policies executed sequentially to
safely move the robot from the state distribution of one mode
to that of another. Rather than assuming that a single policy
can reliably span both regimes, transitions are explicitly
structured to manage changes in contact configuration, body
posture, and control objectives.

Transition behaviors are implemented as learned tracking
controllers trained via imitation learning. Each transition
consists of a short motion sequence that brings the robot
into a configuration compatible with the destination control
mode while respecting safety constraints throughout. Train-
ing data for these sequences is drawn from a combination
of human motion capture and animated trajectories. To en-
sure generalization and robustness to small variations across
deployments, policies are initialized randomly by sampling
from a broad distribution around the nominal trajectory.

As with control modes, transitions define their own va-
lidity and safety conditions, which may differ from those
of the source or destination modes. These transition-aware
constraints allow the system to monitor posture, contact state,
and actuator limits throughout the transition process and

to prevent or abort transitions that would lead to unsafe
configurations. This approach enables smooth and reliable
behavior across mode boundaries.

4) Compliance: Physical interaction is unavoidable in
human environments, and compliance is a necessary property
for safe and robust operation. In this context, compliance
refers to the ability of the robot to yield appropriately to
external forces, dissipate energy during contact, and avoid
generating large or impulsive interaction forces in response
to disturbances.

The platform treats compliance as a fundamental control
property rather than a mode-specific feature. All control
modes, and certain transitions, are trained and executed under
constraints that promote compliant behavior, encouraging
controlled, non-aggressive responses to a wide range of
incidental contacts. In practice, this means that unexpected
interactions such as human contact, environmental collisions,
or external perturbations do not elicit unstable or forceful
corrective actions.

Compliance is achieved by training policies in environ-
ments that expose the robot to disturbances and modeling
uncertainty. This is paired with a reward structure that
encourages behaviors that remain stable under perturbation
and minimally counteract externally-applied forces.

Beyond safety, compliance expands the space of feasible
human-robot interactions by enabling closer proximity, phys-
ical guidance, and shared environments. Importantly, this
is achieved without fragmenting the control architecture or
introducing special-case logic, preserving the modularity and
predictability of the overall system.

5) Sim-to-Real Calibration: Reliable whole-body control
and learning depend on a shared understanding of the
robot’s physical state and capabilities. In practice, many
failures in robotic systems arise not from deficiencies in
control algorithms, but from mismatches between assumed
and actual hardware behavior [32], [31]. Sim-to-real gaps
such as calibration errors or unmodeled actuator dynamics
accumulate silently, undermining reproducibility and limiting
the usefulness of learned controllers.

We employ several industry-standard approaches to ensure
precise calibration. At the level of individual motors, we
perform zero-referencing using a precise calibration table
to enforce a known physical configuration and ensure con-
sistent encoder-to-geometry mapping. Similarly, we perform
extrinsic calibration of the camera using fiducial markers
and a self-calibration routine to ensure accurate visuo-spatial
perception. Calibration primitives are exposed through the
platform API, allowing higher-level systems to leverage
information about robot state and configuration. To support
reproducibility, we release zeroing specifications that enable
in-house and third-party calibration workflows to follow the
same conventions.

6) Actuator Models: Beyond encoding accuracy, actuator
dynamics are often the dominant factor governing control
performance and sim-to-real transfer [12], [31]. To address
this, we provide actuator models using DC motor dynamics
augmented with delay, saturation, and power constraints,
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Fig. 6: Teleoperation system. The communication between the VR system (green) and robot services as mediated by the
core robot APIs (blue), with schematic breakouts depicting the retargeting step (pink), switching between teleoperation and
autonomy (yellow), and the whole-body control layer (orange).

capturing several key non-idealities present in real systems.
We refine our actuator models using motor manufacturer
specifications, dynamometer measurements, and optimiza-
tion from real data. Similarly, system-level current and
power limits are explicitly represented to ensure motors
operate within feasible and safe bounds given electrical
constraints. All actuator assumptions are included in the
platform documentation to make these constraints transparent
to developers.

7) Supported Description Formats: Finally, to support
consistent physical modeling across tools and workflows, we
provide several standard robot description formats, including
USD, URDF, and MJCF. IsaacSim [8] serves as the primary
simulation backend, though our robots remain compatible
with MuJoCo-style tooling [9]. We make these formats
available as a part of our SDK.

B. Whole-Body Teleoperation

Using our compliant whole-body control system as a
foundation, we developed a VR-based teleoperation interface
for full-body control. Recent work has demonstrated the
effectiveness of VR-based teleoperation for humanoid whole-
body control [38], enabling operators to provide intuitive
commands for dexterous loco-manipulation tasks. This sec-
tion describes each of the components of our teleoperation
system (Figure 6).

1) Embody: User-Friendly Application for Meta Quest
Devices: We developed Embody, a user-friendly Unity appli-
cation for Meta Quest devices that enables full-body teleop-
eration of Sprout. Similar to other VR-based teleoperation

systems for manipulation [39], our application leverages
the affordability and accessibility of consumer VR headsets
to provide an intuitive control interface. Embody provides
users with an interactive experience for controlling the robot
through a series of intuitive menus, heads-up displays, and
control mappings on the Quest hand controllers. The applica-
tion uses Meta’s Movement SDK and sends body pose key-
points to the robot, while a backend service running on the
robot sends visual and haptic feedback to the user. Embody
runs a calibration routine at startup to estimate the user’s
arm lengths, torso height, and comfortable range of vertical
motion (for mapping squatting) for isomorphic retargeting
to the robot. This maps the user’s morphology in a custom
way to the robot’s size and shape, and provides a natural
feeling to control of its motions. The control defaults to full-
body control, where the user can lean forward and squat to
command the robot close to the ground to reach even small
objects like keys or paper with ease. An upper-body-only
and seated mode are available as well. Embody also provides
options to switch the robot to modes such as kneeling and
sitting while preserving the ability to teleoperate the upper
body in these situations (as well as waist pitch for bending
over when kneeling). All of this combines to provide the user
a commanding range of motions for reaching objects on or
near the ground. The application manages different states of
operation—Calibration, Teleoperation, Mode Selection, Data
Collection, and Autonomy, through a state machine that also
can change control mappings or other user preferences based
on the different mode of operation.
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2) Whole-Body Policy: To produce whole-body behavior,
we extend our compliant whole-body policy to support tele-
operation. The policy controls pelvis pitch, roll, and height
while maintaining compliance on the upper body. To support
matching commanded pitch and roll, we use projected gravity
(the gravity vector expressed in the robot’s body frame)
as the control signal. By commanding the policy to track
this projection rather than absolute orientation, the robot
maintains stable body poses relative to gravity regardless of
terrain variations. For height control, we train the policy to
match a height command corresponding to the desired torso-
to-ground distance.

3) Retargeting: We transform wrist keypoints from the
pelvis-relative frame to the robot’s frame of reference, scal-
ing the received positions using factors computed during
calibration. For full-body retargeting, we linearly map the
calibrated standing and crouching heights to the policy’s
minimum and maximum height ranges, with pitch and roll
similarly mapped from VR input ranges to the policy’s
allowable values. The retargeted Cartesian poses are then
converted to joint angles using the PINK inverse kinematics
library [40], with the solver tuned using position cost,
orientation cost, and regularization cost to avoid singularities.

4) Data Collection System: We developed a data collec-
tion system alongside the teleoperation system that allows
users to annotate, record, and play back demonstrations. The
system logs stereo RGB images at 30Hz, proprioceptive
data including whole-body pose commands (end-effector
Cartesian poses, gripper positions, pelvis pitch, roll, and
height commands), joint position commands, and velocity
commands at 50Hz, as well as proprioceptive states at
125Hz. The data collection system also allows users to
annotate demonstrations with a simple button press, in order
to efficiently segment out usable trajectories for training
from other motions. Recordings and annotations can also be
managed from the app.

Beyond pure demonstration collection, the system supports
DAgger-style interventions [41] following recent work in
manipulation learning [42] to address the covariate shift
problem inherent in behavioral cloning. During autonomous
policy execution, an operator monitors the robot’s behavior
through the VR interface and can seamlessly take over
control when the policy encounters states outside its training
distribution or begins to fail. These intervention segments are
logged alongside the autonomous rollouts, capturing expert
corrections precisely at the failure modes that matter most.
Our system allows the user to pause policy playback at the
point of an error, at which point we project the current pose
of the robot at that point as a “ghost” controller to which the
user can align their controllers when they assume control.
When the user wants to demonstrate a motion intervention
starting at the paused position, the user can then align
their controller to these ghosts and start collecting new data
from the exact position and orientation where the robot
left off. This provides clean, novel examples that can be
aggregated as on-policy data with the original demonstrations
for retraining. This iterative process helps policies become

more robust to compounding errors, which is critical for
learning reliable whole-body manipulation behaviors.

C. Mapping & Navigation
Sprout’s indoor autonomy system consists of three core

components: a custom fused visual-inertial-kinematic odom-
etry pipeline designed for bipedal locomotion, a lightweight
on-demand mapping system with a low compute footprint
accessible via both CLI and GUI, and a modular navigation
stack that integrates pose tracking, local obstacle avoidance,
and global route generation. The following sections describe
each component in detail.

1) Odometry: We developed a Fused Odometry system
that combines visual, inertial, and kinematic information to
produce a low-latency, high-frequency state estimate suitable
for agile bipedal locomotion. The estimator is implemented
as an Extended Kalman Filter (EKF) that integrates measure-
ments from the ZED2i stereo camera, the onboard inertial
measurement unit (IMU), a learned proprioceptive velocity
estimator from the robot’s motor control policy, and, when
available, global position information from loop closures
(Figure 7A). The filter outputs pose, velocity, and associated
covariance estimates at 50Hz.

Kalman filtering remains a standard approach for state
estimation in legged robots due to its computational ef-
ficiency and ability to incorporate heterogeneous sensor
modalities. Prior work demonstrates the benefits of tightly
fusing inertial, visual, and leg kinematics to reduce drift and
improve robustness in challenging scenarios [43], [44]. Our
system builds directly on this line of work while adapting
the fusion strategy to the specific characteristics of Sprout’s
morphology, gait dynamics, and sensing configuration.

In contrast to wheeled—and even quadrupedal—
platforms, Sprout exhibits intermittent, asymmetric foot
contacts and rapid changes in support surfaces during
walking. These characteristics introduce additional noise in
kinematic measurements and complicate contact inference.
Our approach mitigates these challenges by leveraging
redundant visual and inertial cues while using the learned
estimator to regularize short-term motion estimates.
The resulting odometry is robust to texture-poor indoor
environments, rapid body motions, and depth sensing noise,
forming a stable foundation for downstream mapping and
navigation.

2) Mapping (and Localization): Indoor SLAM (Simulta-
neous Localization and Mapping) for legged robots presents
distinct challenges due to drift-prone odometry, rapid six-
degree-of-freedom body motions, intermittent and uncertain
foot contacts, and possible degradation of depth or visual
information in texture-poor environments. Classical visual
SLAM systems such as ORB-SLAM3 [45] and related
monocular or RGB-D pipelines excel on wheeled robots,
where motion is smoother and exteroceptive observations
are more stable. Likewise, 2D LiDAR-based indoor SLAM
approaches [46] and mobile-robot mapping systems assume
near-planar motion and consistent sensor geometry. In con-
trast, recent work on legged-robot state estimation and map-
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Fig. 7: Mapping and localization. (A) An overview of the sensor inputs (blue), the Fused Odometry module (orange), and
the Volumetric Mapping algorithm (green); these components work together to estimate the robot’s state and environment.
(B) A map before and after graph optimization. (C) The same map showing its individual maplets in different colors.

ping emphasizes the importance of tightly coupling inertial,
kinematic, and visual cues to maintain robustness under
aggressive motions and variable ground interaction [43],
[44], [47]. These efforts underscore the need for SLAM
architectures that tolerate transient perception failures while
maintaining global map consistency in 3D environments.

Our SLAM pipeline, Volumetric Mapping, builds on these
insights by constructing a dense 3D representation of the en-
vironment using a Truncated Signed Distance Field (TSDF),
a volumetric grid where each voxel stores the signed dis-
tance to the nearest surface, truncated to a finite range for
computational efficiency. TSDF fusion naturally denoises
depth measurements, provides smooth and continuous sur-
face estimates, and supports both local planning and global
reconstruction. Depth images from Sprout’s RGB-D camera
are fused into TSDF volumes at a high rate, forming the
basis for our dense mapping layer.

A key architectural feature of the system is its division
of the world into locally consistent volumetric submaps,
or maplets (shown in Figure 7C). Each maplet represents
a rigid, non-deforming coordinate frame in which TSDF
fusion occurs. New maplets are created as the robot moves
beyond the predefined spatial extent of the current maplet (to
mitigate the effects of long-term drift), or when degradation
in odometry quality is detected (e.g., a sudden jump in
estimated robot pose). This design prevents reconstruction

errors—arising from inaccurate depth measurements, rolling-
shutter distortion, or degraded odometry—from corrupting
the global map, while keeping the local fusion strategy com-
putationally efficient. It also mirrors the submap strategies
used in other successful dense and semi-dense SLAM sys-
tems [48], where locality is exploited to maintain real-time
performance while enabling scalable global optimization.

Global alignment is handled through a hierarchical pose
graph comprising both keyframe poses and maplet poses.
Odometry constraints derived from our fused estimator, along
with visual loop closures, introduce spatial relationships
between maplets that allow the back-end optimizer (imple-
mented in GTSAM [49]) to correct accumulated drift. Loop
closure constraints between revisited regions produce non-
local updates that adjust the arrangement of maplets in the
global frame while preserving their internal rigidity. This
strategy achieves a balance between computational efficiency
and global consistency comparable to multi-layer factor-
graph approaches in recent legged-robot SLAM systems [47]
(Figure 7B).

From a systems perspective, Volumetric Mapping is de-
signed to achieve strong reconstruction and loop-closure
consistency under tight onboard compute budgets. In our
internal benchmarks, it outperforms RTAB-Map [50] while
using approximately 30% of its compute, enabling onboard
operation with low CPU load (typically a third of a single
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Fig. 8: Navigation system. Inputs: an offline-generated
static map, global robot pose, global target pose, and vi-
sion/proprioceptive sensor data. Outputs: a global path to
the target, a local path along the global path, and velocity
commands for path following.

core as shown in Figure 4). This efficiency comes from the
TSDF fusion pipeline optimized for high-rate integration, to-
gether with a maplet-based architecture that keeps fusion lo-
cally consistent under drift and enables sparse, asynchronous
global optimization. We further reduce overhead with a cus-
tom ML-based loop-closure service that runs asynchronously
alongside the real-time mapping pipeline. The loop-closure
service uses a cascaded set of neural networks for visual
place recognition, feature detection, and feature matching,
producing low-latency loop constraints for the pose graph.

This mapping architecture is particularly well suited to
Sprout’s locomotion dynamics and sensing configuration.
Rapid 6-DoF motions and intermittent foot contacts often
lead to short-term degradation in depth or feature tracking;
by limiting fusion to compact, rigid maplets and deferring
global adjustments to an asynchronous optimizer, the system
remains robust to transient noise and maintains a stable
mapping backbone even during fast maneuvers. The resulting
SLAM pipeline provides reliable, high-fidelity maps tailored
to the demands of agile indoor bipedal navigation.

3) Navigation: We implemented a lightweight navigation
system that coordinates locomotion to both static and dy-
namic target poses. The system is optimized for real-time
performance using only onboard compute. The navigation

system consists of three main modules: online occupancy
grid generator, path planner (global + local planner), and
path tracker. Figure 8 shows an overview of the navigation
system.

The navigation system operates based on an occupancy
grid representation of the environment. The occupancy grid
consists of a static layer created by the mapping module
and a dynamic layer created online using an OctoMap-based
approach [51]. The two maps are then fused to create the
final occupancy grid used for navigation.

Then, a path planner generates the navigation path. The
path planner has a global and local component. For both the
global and local planners, we employ a custom Hybrid Aω

planner [52] to generate paths. Given the up-to-date map of
the environment, the global planner generates a path from the
robot’s current pose to the target pose. Then, the local planner
selects a local target along this global path and generates a
path to this local target. The global path is updated only
when the robot deviates significantly from the global path or
if it becomes invalid due to changes to the global map, while
the local path is updated every planning cycle (the default
planning cycle is 10Hz). Once the local path is generated,
a pure-pursuit-based path tracker [53] is used to generate
velocity commands to follow the generated path, which are
sent to the locomotion system for execution.

D. Human-Robot Interaction

The Human-Robot Interaction (HRI) subsystem commu-
nicates system status and conveys expressive intent through
Sprout’s lights, sounds, and mechanical movements (eye-
brows, head pose, and upper-body gesticulation). Developers
and creators can control these hardware channels alongside
the built-in behaviors to design custom interactions without
losing system cues. This feedback improves trust and engage-
ment by providing legible indicators for the robot’s states and
actions.

The HRI service consumes a wide range of robot state
spanning system readiness (e.g., power state, battery status),
user interaction (e.g., reasoning state, microphone status),
and activity of other services (e.g., navigation state). These
signals are mapped into coherent indicators that set expecta-
tions, reduce confusion, and clearly surface safety-relevant
conditions without sacrificing expressiveness in everyday
interaction. Examples include warning indicators for high
motor temperatures (audible beeping and pulsing orange
lights) and a “thinking” animation while the reasoner is
processing (spinning lights on the face).

Outputs are generated by a hierarchical graph of compu-
tation nodes (Figure 9), each of which interprets a subset of
state and proposes an action in one or more domains. Rather
than emitting a monolithic “behavior,” each node produces a
partial command structured into independent slots (e.g., LED
patterns, audio cues, body and head targets, show-element
poses). On each control tick, eligible nodes run, emit their
slot outputs, and propagate these proposals upward; inter-
mediate nodes then combine child proposals into a single,

11



Fig. 9: Human-Robot Interaction subsystem. Behavior-generation tree (left) with merge at every level. Leaves emit sparse
slot proposals (show elements, audio, motor control); internal nodes blend their children. At the root, alerts preempt other
behaviors while expression and idle layers blend. The merge example (right) shows per-slot strategies (brighten/replace/last-
wins) producing a single command stream at every level, ultimately sent to hardware.

coherent command using an explicit merge policy. This slot-
based structure allows domains to be coordinated tightly
(such as synchronizing an eyebrow motion with a light cue)
while remaining decoupled enough that unrelated channels
can continue unaffected. Behaviors can be authored from
manual keyframe-based animations, teleoperation recordings,
learned whole-body controllers, or heuristic generators, all
integrated through the same slot-based command interface
and tooling pipeline.

Unlike winner-take-all control structures (e.g., state ma-
chines), the framework supports multiple merge operators to
combine child outputs: additive blending for layered LED
effects, select-one arbitration when exclusivity is required,
and per-slot last-writer-wins composition when later behav-
iors should override earlier ones. Blending enables explicit
prioritization for high-priority safety behaviors (e.g., critical
faults, imminent power loss, collision avoidance) to reliably
preempt lower-priority expression, while interactive and idle
behaviors can still contribute when safe.

E. Conversation and Reasoning

Our platform, at present, does not provide a turnkey
conversational agent for autonomous operation. Instead, it
exposes a suite of core robot services that developers can
assemble into their own agent-based systems. These services
include ROS 2 topics for event and state signaling, as
well as a Model Context Protocol (MCP) [54] server that
hosts a variety of tools for agentic control. Together, these
communication channels and tools can be orchestrated by
LLM-based agents to perform complex, end-to-end reasoning
tasks. This modular architecture allows developers to design
agents tailored to their specific applications while taking
advantage of the growing ecosystem of agent frameworks
with first-class MCP support.

Conversational closed-loop interactions (Figure 10A) rely
on three core components: a wake-word detector, an auto-
matic speech recognition (ASR) service, and a text-to-speech

(TTS) tool. The wake-word detector, built on openWake-
Word [55], continuously listens for the activation phrase “hey
robot” and initiates an interaction—typically by triggering
ASR. Once active, the ASR system transcribes spoken input
into text that can be processed by an LLM-based reasoning
module. The TTS tool, whether called directly or invoked
by an agent, then generates verbal responses that support
natural, dynamic interaction. In typical workflows, the robot
provides spoken feedback after completing a task, reporting
results or describing any issues encountered.

We support multiple ASR and TTS providers but have the
tightest integrations with Deepgram Flux [56] and Eleven-
Labs v2 [57], which provide high-quality voice I/O with min-
imal load on the robot’s onboard computer. For developers
who prefer these services to run locally, the system can be
configured to use NVIDIA Riva [58] for both ASR and TTS.

Beyond conversation, the MCP server provides tools that
allow agents to control the robot’s core motor functions
(Figure 10B). Agents can switch between motor control
modes—such as walking, crawling, dancing, sitting, and
more—using dedicated tool calls. The platform also exposes
higher-level behaviors that coordinate motion, lighting, and
sound, including actions like head nodding, head shaking,
high-fives, and handshakes. Agents can query the list of
available behaviors at runtime, as it dynamically depends on
the current motor mode. Navigation is similarly controllable
through MCP tools: agents can query the robot’s current
position and set navigation goals for autonomous locomotion
within a mapped environment.

Together, these capabilities give agents comprehensive
control over the robot’s interaction, motion, and navigation.
Developers can further expand agentic functionality by cre-
ating custom tools and binding them to agents via preferred
frameworks. Additionally, as the platform continues to ma-
ture, we plan to expand the library of tools and services,
further increasing the robot’s autonomy and enriching its
interactive capabilities.
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Fig. 10: Conversation and reasoning. (A) General flow of agentic, conversational interaction, including the core Think-
Act-Observe reasoning loop. (B) State machines for both reasoning and conversational turn-taking, useful for triggering
automatic HRI responses, such as listening, speaking, and thinking.

VI. DISCUSSION

Sprout is a humanoid platform designed for safe, expres-
sive, and sustained operation in close proximity to people,
with an emphasis on durability and scaled manufacturability.
The platform provides integrated support for whole-body
behaviors such as walking, kneeling, crawling, and compliant
interaction, along with teleoperation, mapping, navigation,
and expressive HRI primitives. These capabilities are ex-
posed through a modular software stack that includes stable
control interfaces, containerized services, and tooling for de-
ployment, monitoring, and data collection. As additional core
capabilities (e.g., visually guided locomotion, autonomous
manipulation, etc.) are developed and tested, they can be
provided via software updates.

In optimizing the platform, we made a set of deliberate
trade-offs guided by reliability and safety. For the initial
release, we opted for simpler one-degree-of-freedom grippers
rather than multi-fingered hands, prioritizing robustness and
low mass. The intended use of the robot emphasizes object
fetching, hand-offs, and physical interaction in shared spaces,
as well as the ability to fall, crawl, and recover without dam-
aging delicate end effectors. While increased dexterity may
prove valuable over time, we believe that for these classes
of tasks, dependable whole-body behavior, compliance, and
ease of deployment are more immediate constraints than
dexterous manipulation.

Similar considerations informed decisions around sensing
and morphology. We excluded wrist-mounted cameras to
reduce system complexity and integration burden. For many
applications, head-mounted RGB-D sensing combined with
whole-body teleoperation and mapping provides sufficient
perceptual coverage for a broad set of research. The robot’s
height, which is shorter than an adult human, imposes lim-
itations in certain environments, but significantly improves
safety during close interaction and reduces the kinetic energy

involved in falls or unintended contact. For operation in
homes, labs, and public spaces, we believe this trade-off
meaningfully shifts the balance toward safe, approachable,
and repeatable use.

Taken together, these design choices address long-standing
barriers to broader participation and reliable research in
humanoid robotics. By providing a platform that is safe to
operate around people, robust enough for day-to-day use,
and structured to support reproducible deployment, we seek
to broaden access to embodied robotics beyond specialized
labs and short-term demonstrations. Lowering these practical
and safety-related barriers is, in our view, a prerequisite
for rigorous research on HRI, learning from real-world
experience, and long-horizon autonomy. By foregrounding
safety and expressivity, the platform supports a shift toward
sustained, trustworthy humanoid operation in environments
designed for regular human interaction.
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SUPPLEMENT

Fig. 11: Compute architecture. The AGX communicates
with custom motor control modules (MCMs), microcon-
trollers, which in turn communicate with motors and sensors.
The MCMs mount to a custom backplane, or “motherboard”,
which also regulates power to the motors and computers.

TABLE I: Technical Specifications.

Category Details

Dimensions Standing Height: 107 cm
Width: 45 cm
Depth: 21 cm

Mass 22.7 kg
Compute NVIDIA Jetson AGX Orin 64GB
Sensing ZED2i RGB-D stereo camera

4 ! VL53L8CX ToF
9-axis IMU
4 ! MEMS microphone array

Actuation 29 degrees of freedom,
including (2x) eyebrows

Power / Battery 46.8V Nominal DC system
5000mAh (standard)
or 10 000mAh (extended run)
Li-ion battery (Molicel P50B cells)
Runtime 3-3.5 h

Safety E-Stop
Environmental Operating Temperature: 10 ↑C to 30 ↑C

Storage Temperature: 5 ↑C to 35 ↑C
Humidity: 10%–90% RH noncondensing
Indoor use only

Fig. 12: Field-of-view. (A) top-down view of the primary
sensor horizontal FoV, for 3 representative neck yaw angles
(B) profile view of the primary sensor vertical FoV, for 3
representative neck pitch angles (C) profile view of the torso
time-of-flight obstacle sensor FoV

TABLE II: Payloads. Per-arm theoretical maximum pay-
loads; actual supported payloads may differ depending on
the teleoperation controller.

Configuration Max (kg) Nominal (kg) Rated (kg)

(<10s) (<90s) (indefinitely)

Forward Raise 3.7 1.75 0.7
Lateral Raise 5.6 2.5 0.0*

Bent Elbow 11.2 5.0 1.1

* It is not recommended to maintain the Lateral Raise configuration
indefinitely, with or without payload.
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